首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract The chemokine receptor CXCR4 is expressed by CD34 + hematopoietic stem/progenitor cells (HSC/HPC). Several investigators have suggested that expression of CXCR4 may be an important characteristic of HSC/HPC. We studied the dynamic expression of CXCR4 during growth factor-induced mobilization of HSC in a clinically relevant nonhuman primate model, Papio anubis (baboons). We evaluated whether CXCR4 expression in HSC/HPC varies during steady-state hematopoiesis as well as during growth factor-induced mobilization. Peripheral blood stem cells from 5 baboons were mobilized with growth factors. During mobilization, there was a consistent stepwise increase in the proportion of peripheral blood CD34 + cells that were CXCR4 -. The highest number of CD34 + CXCR4 - cells appeared in the peripheral blood at the same time as the maximum number of assayable colony-forming cells. The cloning efficiency of the CD34 + CXCR4 - population was 3-fold greater than that of CD34 + CXCR4 + cells, and the frequency of cobblestone area-forming cells was 6 times higher in the CD34 + CXCR4 - population in comparison to CD34 + CXCR4 + cells. Furthermore, the most quiescent CD34 + cells isolated on the basis of low Hoechst 33342 (Ho) and rhodamine 123 (Rho) staining (Ho Low /Rho Low ) were highly enriched in the CXCR4 Low/- cell population. Ex vivo incubation of mobilized peripheral blood CD34 + cells with growth factors for 40 hours resulted in increasing numbers of cells expressing CXCR4. Peripheral blood stem cell grafts containing CD34 + cells that consisted of predominantly CXCR4 - cells were able to rapidly engraft lethally irradiated baboons. Because the overwhelming number of CD34 + cells within the mobilized peripheral blood grafts were CXCR4 - and were capable of rescuing lethally irradiated baboons, it seems unlikely that the expression of CXCR4 in vitro is an absolute requirement for HSC homing and engraftment. In summary, our data suggest the dynamic nature of CXCR4 expression on CD34 + cells during growth factor-induced HSC/HPC mobilization. In addition, our data indicate that the lack of CXCR4 expression is possibly a characteristic of relatively more primitive HSC/HPC characterized by a higher proliferative capacity.  相似文献   

2.
Hematopoietic stem cells (HSC) can be identified by the expression of the CD34 molecule. CD34+ cells are found in bone marrow (BM), umbilical cord blood (UCB) and in mobilized peripheral blood (PB). CD34+ cells express P-glycoprotein (Pgp), a product of the multidrug resistance (MDR) gene. Pgp activity can be measured by the efflux of the dye Rhodamine 123 (Rho 123) and can be blocked by verapamil. Transport activity in HSC suggests that Pgp could have a functional role in stem cell differentiation. This study compared the number of CD34+ cells with Pgp activity measured by efflux of Rho 123 in the hematopoietic population obtained from different sources. Samples were analysed for their content of CD34+ cells, and BM had a significantly higher amount of CD34+ cells compared to UCB, mobilized PB and normal PB. When the frequency of Rholow cells was studied among the CD34+ population, an enrichment of cells with Pgp activity was observed. The frequency in BM was significantly lower than that in UCB and mobilized PB. The low retention of Rho 123 could be modified by verapamil, indicating that the measurements reflected dye efflux due to Pgp activity. Although UCB and mobilized PB had a lower number of CD34+ cells compared to BM, the total number of CD34+ cells with Pgp activity was similar in the three tissues. The different profiles may indicate the existence of subpopulations of stem cells or different stages of cellular differentiation detected by the extrusion of the dye Rho 123.  相似文献   

3.
Umbilical cord blood (CB) CD34(+) cells, on the basis of flow cytometry analysis, are comprised of multiple populations. In in vitro assays, only CD34(regular) FSC(high) cells are functional and low percentages of nonfunctional CD34(regular) FSC(low) cells were determined to be present in liquid-stored CB. Liquid-stored CD34(regular) FSC(high) cells prior to cryopreservation were judged to be functional by the formation of erythroid and myeloid colonies and transmigration assays. We have further evaluated the occurrence of apoptosis in CB CD34(+) cells using various apoptotic markers to understand better the influence of storage conditions that could be utilized with transplantation of CB. Of the CD34(regular) FSC(low) cells shown in the present study, 20-45% were labeled with the apoptotic reagents annexin-V, fluorescent caspase peptide substrates, and the anti-mitochondrial antibody APO2.7, but these cells were minimally stained with 7-aminoactinomycin-D (7-AAD). These apoptotic reagents identify different cellular targets, indicating the initiation of the apoptotic cascade prior to cryopreservation/thawing. Following cryopreservation and thawing, the apoptotic markers SYTO-16, tetramethyl rhodamine ethyl ester (TMRE), and 7-AAD showed the presence of apoptotic cells. After cryopreservation/thawing, enumeration of CB CD34(+) cells was reduced 10-65% when excluding cells positive for apoptotic markers. We attempted to limit the progression of apoptosis observed after cryopreservation/thawing by the addition of anti-apoptotic reagents z-VAD-fmk (100 microM) and Q-VD-OPH (100 microM) (peptide inhibitors of caspases) without or with the inclusion of survival reagents for CD34(+) cells-stromal-derived factor-1 (SDF-1), stem cell factor (SCF), thrombopoietin, and diprotin A, an inhibitor of CD26 prior to cryopreservation. The expression of apoptosis markers was minimally affected even when using combinations of caspase inhibitors/ CD34(+) cell survival cytokines in an attempt to block apoptosis caused by cryopreservation/thawing. Decreases in apoptosis marker reactivity following cryopreservation were not observed except for a reduced expression of APO2.7 reactivity with z-VAD-fmk and Q-VD-OPH caspase inhibitors. The ability of the inhibitors of apoptosis of CD34(+) cells to generate CFU-GM, CFU-MK, or BFUE colonies was also unaffected except with z-VAD-fmk (100 microM) and Q-VD-OPH (100 microM). The occurrence of apoptosis, as measured by flow cytometry with selected apoptotic markers, suggests a reduction in the number of viable CD34(+) cells.  相似文献   

4.
We sought to determine whether lympho-hematopoietic stem-progenitor cells (HSC) from human placental/umbilical cord blood (CB) or adult mobilized blood (PBSC) are sensitive to Fas-induced apoptosis. Human CD34+ cells from CB or PBSC were cultured in serum-free medium, with or without hematopoietic growth factors (FKT: FLT-3 ligand [FL], KIT ligand [KL], and thrombopoietin [TPO]), and with or without soluble Fas ligand (sFasL) or agonistic anti-Fas antibody. After 5-48 hours of culture, cells were assessed for viability and stained with Annexin V and 7-Aminoactinomycin D for apoptosis analysis by fluorescence-activated cell sorting. Cultured cells were also assessed by in vitro hematopoietic colony-forming cell (CFC) and in vivo nonobese diabetic/severe combined immunodeficient mouse engraftment potential (SEP) assays. Levels of Fas, FLICE inhibitory protein (FLIP), and Caspase 8 mRNA in CD34+ cells were determined by real-time quantitative polymerase chain reaction. Expression of FLIP was confirmed by Western blotting. No decrease in viability, CFC, or SEP was observed in CB or PBSC CD34+ cells cultured in the presence of sFasL or agonistic anti-Fas antibody. Human CB and mobilized PBSC CD34+ cells expressed high levels of FLIP, low ratios of Caspase 8:FLIP, and low levels of Fas. Thus, human CB and PBSC CD34+ HSC were resistant to Fas pathway agonists. High-level expression of FLIP likely provides one level of protection of CD34+ cells from Fas-mediated apoptosis.  相似文献   

5.
By means of flow cytometry, CD34+/CD38- hematopoietic stem cells (HSC) were collected from umbilical cord blood (UCB) of 10 healthy women at the time of delivery and cultivated in stem-cell culture media supplemented with cell growth stimulating factors (IL-3, IL-6, GM-CSF, EPO, IGF-1, and SCF) for long periods. Apoptotic status, cell surface marker expression, and karyotypes of the cultured UCB-derived CD34+/CD38- stem-cells were investigated by flow cytometry and GTG-banding methods. The UCB-derived CD34+/CD38- stem-cells were able to divide and proliferate in vitro for at least 6 months. They did not show significantly increased apoptosis following ex vivo expansion for 20 and 32 days, respectively, in 2 cases and retained the same cell surface marker expression pattern (i.e., CD34+ and CD38-) in the majority of the cells of 2 cases following 20 and 37 days of incubation, respectively. In another 2 cases, chromosome analysis showed no evidence of numerical and structural abnormalities in the CD34+/CD38- stem-cells obtained after 20 and 43 days in culture, respectively. Our findings indicated that UCB-derived CD34+/CD38- stemcells are able to maintain their basic biologic and genetic characteristics after dividing and proliferating in vitro for a long period of time. UCB-derived HSC following ex vivo expansion can serve as a reliable resource for hematopoietic precursor cells transplantation.  相似文献   

6.
CD34抗原的生物学特性及其临床应用   总被引:17,自引:0,他引:17  
柏树令  赵丹 《解剖科学进展》2005,11(1):54-56,60
CD34抗原是一种高度糖基化Ⅰ型跨膜蛋白,它选择性的表达于人类造血干细胞(HSC),祖细 胞(PC)和血管内皮细胞(EC)表面。CD34+细胞并非通常所指的原始细胞,而是存在于淋巴细胞群内的造血 干细胞,随干细胞的分化成熟而逐渐消失。目前,已经证实了最原始的造血干细胞是CD34-细胞。本文对 CD34抗原、CD34+细胞和CD34-细胞的生物学特性以及临床应用进行了综述。  相似文献   

7.
Cord blood (CB) is an unlimited source of hematopoietic stem and progenitor cells (HSPC). The use of cryopreserved CB-derived CD34+ HSPCs is successful in children and usually leads to rapid hematopoietic recovery upon transplantation. However, current methods for ex vivo expansion of HSPCs still result in a loss of multilineage differentiation potential and current freeze-thawing protocols result in significant cell death and loss of CD34+ HSPCs. The major cause for the loss of viability after slow freezing is apoptosis induced directly by cryoinjury. Very recent reports have demonstrated that Y-27632, a selective and robust ROCK inhibitor is a potent inhibitor of the apoptosis and is efficient in enhancing the post-thaw survival and recovery of different human stem cells including human embryos, hESCs, induced pluripotent stem cells and mesenchymal stem cells. Here, we analyzed the effect of such an inhibitor in CB-derived CD34+ HSPCs. CB-derived CD34+ HSPCs were MACS-isolated and treated with or without 10 μM of Y-27632. The effect of Y-27632 on culture homeostasis was determined in both fresh and cryopreserved CB-derived CD34+ HSPCs. Our results indicate that the Y-27632 not only dramatically inhibits cell expansion of both fresh and cryopreserved CD34+ HSPCs but also impairs survival/recovery of CD34+ HSPCs upon thawing regardless whether Y-27632 is added to both the cryopreservation and the expansion media and or just to the expansion culture medium with or without hematopoietic cytokines. This study identifies for the first time a detrimental effect of Y-27632 on the expansion and survival of both fresh and cryopreserved CB-derived CD34+ HSPCs, suggesting that Y-27632 may have a differential impact on distinct lineage/tissue-specific stem cells. Our data suggest different functions of Y-27632 on human stem cells growing in suspension versus those growing attached to either treated tissue culture plastic or extracellular matrix. We discourage any clinical application of Y-27632 in potential technical developments aimed at improving cryopreservation procedures of CB-derived cells and/or in vitro expansion of HSPCs without spontaneous differentiation.  相似文献   

8.
Primitive hematopoietic stem cells (HSCs) can be purified from murine bone marrow by sorting Hoechst 33342-effluxing side population (SP) cells. The aim of this study was to establish whether SP cells from peripheral blood contain primitive HSCs and whether this is altered in mice following mobilization. SP cells were analyzed and isolated from bone marrow and blood of mice after mobilization; the HSC content of isolated SP cells was determined through surrogate cobblestone area-forming cell (CAFC) assays. SP cells in normal blood were not found in the high Hoechst dye effluxing portion of the SP tail, did not express the stem cell markers c-Kit and CD34, and did not have measurable CAFC activity. In contrast, SP cells in mobilized blood expressed both stem cell markers, contained cells in the high dye efflux portion of the SP tail, and displayed significant day- 28 to day-35 CAFC activity with 165- to 334-fold enrichment. In comparison to mobilized blood SP cells, normal marrow SP cells contained a higher proportion of cells expressing c-Kit and CD34 and had a greater percentage of cells in the high Hoechst dye-effluxing portion of the SP tail. Analysis of SP cells in the bone marrow after mobilization revealed a decrease in the frequency of SP cells, in expression of c-Kit and Sca+ CD34(+)/CD34(-), and in day-7 to day-35 CAFC activity, consistent with mobilization into blood. We conclude that murine SP cells mobilized into blood contain primitive hematopoietic stem cell activity (day-28 to day-35 CAFC activity). This model offers a means to study the mechanisms of mobilization of primitive stem cells directly in a murine model.  相似文献   

9.
目的: 探讨主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)来源的基质细胞对造血干细胞(HSC)增殖的促进作用,为探寻HSC的体外扩增方法奠定实验基础。 方法: 分别从孕11 d BALB/c小鼠胚胎AGM区及6周龄小鼠骨髓分离、培养基质细胞,流式细胞仪等对基质细胞进行鉴定;利用小鼠胚胎干细胞(ESC)向造血细胞定向分化的模型,结合高增殖潜能集落(HPP-CFC)、原始细胞集落(BL-CFC)形成实验及流式细胞仪分析CD34+、CD34+Sca-1+细胞比例,对比研究AGM及骨髓基质细胞对ESC来源的HSC的扩增作用。 结果: 小鼠AGM和骨髓基质细胞在形态及表型上基本相似,均符合基质细胞的特征。AGM和骨髓基质细胞均可促进ESC来源的HPP-CFC的形成,但AGM基质细胞还可促进ESC来源的 BL-CFC的形成;流式细胞仪检测发现:在骨髓基质细胞支持下,CD34+细胞增加了3-4倍,但CD34+/Sca-1+却无明显增加;而在AGM基质细胞支持下CD34+、CD34+Sca-1+细胞均明显增加了4-5倍。 结论: AGM基质细胞在有效扩增小鼠HSC同时,能很好地维持HSC自我更新及多向分化的潜能。  相似文献   

10.
For the past thirty years, hematology has switched from the concept of bone marrow transplantation to the concept of hematopoietic stem cell (HSC) transplantation, from allograft to autograft, from non-manipulated graft to hyper-selection, from hematopoietic cellular therapy to immunotherapy. Indications of these transplantations are now more clear for malignant diseases and are ongoing for auto-immune diseases. A better knowledge of the HSC allows the control of their proliferation and differentiation, opening the field of ex vivo expansion. Very recently, new stem cells have been identified, establishing that a differentiated cell retain its totipotency: a nervous system cell can differentiate into HSC, which will further give hematopoiesis, mesenchymental cells or hepatocytes. New tools are under development: human ES cells, biomaterials, functionalized materials, opening the field of cellular engineering in the year 2000.  相似文献   

11.
目的:探讨体外定向诱导胚胎干细胞(ESC)发育为造血干细胞(HSC)的方法。方法:将小鼠E14胚胎干细胞在含干细胞生长因子(SCF)和血管内皮生长因子(VEGF)的甲基纤维素培养基中首先诱导发育为胚胎体(EB),再将EB置于均含SCF、VEGF、IL-3、IL-6及促红细胞生成素(EPO)的3种不同培养体系中定向分化为HSC,并观察HSC表面标志性抗原、造血集落形成及瑞氏-姬姆萨染色的结果。结果:经两阶段诱导ESC分化为HSC,发现在甲基纤维素半固体培养体系中HSC发育缓慢,分化14d后CD34+/Sca-1+细胞数最高为(31.5±4.7)%;而在骨髓基质细胞饲养层上HSC发育较快,细胞数量较多,分化第10dCD34+/Sca-1+细胞数即达到峰值,为(47.8±6.3)%;骨髓基质细胞饲养层+胎肝基质细胞上清培养体系中HSC发育同样迅速,所产生的CD34+/Sca-1+细胞数量在3个体系中最高,为(53.6±7.2)%。经瑞氏-姬姆萨染色证实上述细胞为早期造血细胞,均有形成各系造血细胞集落的能力。结论:使用骨髓基质细胞饲养层+胎肝基质细胞上清培养体系及SCF、VEGF、IL-3、IL-6及EPO等细胞因子,通过两阶段诱导分化,可从小鼠ESC获得较高比例的HSC。  相似文献   

12.
Homing-associated cell adhesion molecules (H-CAM) on the CD34+ cells play an important role for the engraftment process following hematopoietic stem cell transplantation (HSCT). However, it seems that not only CD34+ cells but also other nucleated cells (NCs) with H-CAM could be implicated in the engraftment process and the proliferation of hematopoietic stem cells. We investigated the differences of HCAM and cell cycle status on the NCs in cord blood (CB), bone marrow (BM), and mobilized peripheral blood (PB). The proportions of CXCR4+ cells within the NC populations were greater in CB than in PB or BM (p=0.0493), although the proportions of CXCR4+, CD44+, and CD49d+ cells within the CB CD34+ cell populations were same within BM or PB. A lower proportion of CD34+CD49d+ cells within the CD34+ cell populations was more noted in CB than in PB or BM (p=0.0085). There were no differences in cell cycle status between CB and BM or PB. Our results suggest that the migrating potential of CB would be enhanced with increased CXCR4 expression on the NCs, but the adhesion potential of CB CD34+ cells would be less than that of PB and BM. These findings may help explain why the lower cell dose is required and engraftment is delayed in cord blood stem cell transplantation.  相似文献   

13.
The macrophage colony-stimulating factor-deficient bone marrow stromal cell line OP9, derived from osteopetrotic mice, is known to support hematopoietic stem cell (HSC) expansion as well as hematopoietic differentiation of embryonic stem cells. Coculture of HSC in the OP9 system requires cytokine support to achieve significant cell expansion. Recently, we reported extensive expansion without cell senescence of cord blood (CB)-derived HSC cocultured with OP9 stromal cells for more than 18 weeks with a single cytokine support using human thrombopoietin (TPO). In this study, we evaluated the efficiency of the OP9/TPO coculture system to sustain long-term hematopoiesis of adult, granulocyte colony-stimulating factor mobilized human peripheral blood (PB) CD34(+) cells. Maximum cell expansion was attained during the first 4 weeks of coculture. At the same time, the maximum progenitor cell expansion was demonstrated by the production of colony-forming cells and cobblestone area-forming cells. In contrast to the expansion of CB CD34(+) cells, PB CD34(+) cells showed termination of cultures after 8 weeks, independent of the cell expansion rates attained. The evaluation of cell senescence by assessing the telomere length in most cultures showed no relevant telomere shortening, despite rapid decrease in telomerase activity. Interestingly, increases in telomere length were demonstrated. In conclusion, OP9/TPO system provides extensive stem cell expansion without concomitant telomere erosion for both CB and adult CD34(+) cells. Termination of adult CD34(+) cell cocultures seems to be independent of telomere length.  相似文献   

14.
Two FDA-approved agents, ferumoxides (Feridex), a suspension of superparamagnetic iron oxide (SPIO) nanoparticles and protamine sulfate, a drug used to reverse heparin anticoagulation, can be complexed and used to label cells magnetically ex vivo. Labeling stem cells with ferumoxides-protamine sulfate (FePro) complexes allows for non-invasive monitoring by MRI. However, in order for stem cell trials or therapies to be effective, this labeling technique must not inhibit the ability of cells to differentiate. In this study, we examined the effect of FePro labeling on stem cell differentiation. Viability, phenotypic expression and differential capacity of FePro labeled CD34 + hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) were compared with unlabeled control cells. Colony-forming unit (CFU) assays showed that the capacity to differentiate was equivalent for labeled and unlabeled HSC. Furthermore, labeling did not alter expression of surface phenotypic markers (CD34, CD31, CXCR4, CD20, CD3 and CD14) on HSC, as measured by flow cytometry. SDF-1-induced HSC migration and HSC differentiation to dendritic cells were also unaffected by FePro labeling. Both FePro-labeled and unlabeled MSC were cultured in chondrogenesis-inducing conditions. Alcian blue staining for proteoglycans revealed similar chondrogenic differentiation for both FePro-labeled and unlabeled cells. Furthermore, collagen X proteins, indicators of cartilage formation, were detected at similar levels in both labeled and unlabeled cell pellets. Prussian blue staining confirmed that cells in labeled pellets contained iron oxide, whereas cells in unlabeled pellets did not. It is concluded that FePro labeling does not alter the function or differentiation capacity of HSC and MSC. These data increase confidence that MRI studies of FePro-labeled HSC or MSC will provide an accurate representation of in vivo trafficking of unlabeled cells.  相似文献   

15.
Granulocyte--colony-stimulating factor administered for autologous hematopoietic stem cell isolation from blood may favor restenosis in patients implanted after acute myocardial infarction (AMI). We therefore tested the isolation of peripheral-blood CD34+ cells without mobilization in six patients with AMI. After large-volume cytapheresis and positive CD34+ cell selection, 3.6 to 27.6 million CD34+ cells were obtained. We performed intra-coronary implantation of these cells and recorded no restenosis or arrhythmia. We used positron emission tomography (PET) to assess myocardial-labeled CD34+ cell homing, which accounted for 5.5% of injected cells 1 hour after implantation. In conclusion, large amounts of CD34+ cells, in the range reported in previous studies, can be obtained from nonmobilized peripheral blood. PET with [18F]-fluorodeoxyglucose cell labeling is an efficient imaging method for homing assessment.  相似文献   

16.
CUB-domain-containing protein 1 (CDCP1) is a novel transmembrane molecule that is expressed in metastatic colon and breast tumors as well as on the surface of hematopoietic stem cells. In this study, we used multiparameter flow cytometry and antibodies against CDCP1 to analyze the expression of CDCP1 on defined hematopoietic cell subsets of different sources. In addition, CDCP1 expression on leukemic blasts and on cells with nonhematopoietic stem/progenitor cell phenotypes was determined. Here we demonstrate that a subset of bone marrow (BM), cord blood (CB), and mobilized peripheral blood (PB) CD34+ cells expressed this marker and that CDCP1 was detected on CD34(+)CD38- BM stem/progenitor cells but not on mature PB cells. Analysis of leukemic blasts from patients with acute lymphoblastic leukemia, acute myeloid leukemia, and chronic myeloid leukemia in blast crisis revealed that CDCP1 is predominantly expressed on CD34(+)CD133+ myeloid leukemic blasts. However, CDCP1 was not strictly correlated with CD34 and/or CD133 expression, suggesting that CDCP1 is a novel marker for leukemia diagnosis. Stimulation of CD34+ BM cells with CDCP1-reactive monoclonal antibody CUB1 resulted in an increased (approximately twofold) formation of erythroid colony-forming units, indicating that CDCP1 plays an important role in early hematopoiesis. Finally, we show that CDCP1 is also expressed on cells phenotypically identical to mesenchymal stem/progenitor cells (MSCs) and neural progenitor cells (NPCs). In conclusion, CDCP1 is not only a novel marker for immature hematopoietic progenitor cell subsets but also unique in its property to recognize cells with phenotypes reminiscent of MSC and NPC.  相似文献   

17.
We report here the transplantation of extensively purified "mobilized" peripheral blood CD34Thy-1 hematopoietic stem cells from 22 patients with recurrent or metastatic breast cancer. Patients were mobilized with either high-dose granulocyte colony-stimulating factor (G-CSF) alone or cyclophosphamide plus G-CSE Median purity of the stem cell product at cryopreservation was 95.3% (range, 91.1%-98.3%), and viability was 98.6% (range, 96.5%-100%). After high-dose chemotherapy with carmustine, cisplatin, and cyclophosphamide, CD34+Thy-1 cells at a median dose of 11.3 x 10(5) per kilogram (range, 4.7-163 x 10(5) per kilogram) were infused. No infusion-related toxicity was observed. Neutrophil recovery was prompt, with median absolute neutrophil count >500/microL by day 10 (range, 8-15 days) and >1000/microL by day 11 (range, 8-17 days). Median platelet recovery (>20,000/microL) was observed by day 14 (range, 9-42 days) and >50,000/microL by day 17 (range, 11-49 days). Tumor cell depletion below the limits of detection of a sensitive immunofluorescence-based assay was accomplished in all patients who had detectable tumor cells in apheresis products before processing. Although CD4+ T-cell reconstitution was slow, no unusual infections were observed. Neither early nor late graft failure was observed, and no patient required infusion of unmanipulated backup cells. At a median follow-up of approximately 1.4 years and a maximum follow-up of 2.5 years, 16 of the 22 patients remain alive, with 9 free of disease progression, and have stable blood counts. In summary, highly purified CD34+Thy-1+ cells used as the sole source of the hematopoietic graft result in rapid and sustained hematopoietic engraftment.  相似文献   

18.
CD34 is a cell-surface sialomucin expressed by hematopoietic stem cells (HSC), mast cells, and vascular endothelia. Despite its popularity as an HSC marker, the function of CD34 on hematopoietic cells remains enigmatic. Here, we have addressed this issue by examining the behavior of mutant mast cells lacking CD34, the related sialomucin, CD43, or both molecules. Loss of these molecules leads to a gene-dose-dependent increase in mast cell homotypic aggregation with CD34/CD43KOs > CD43KO > CD34KO > wild-type. Importantly, reexpression of CD34 or CD43 in these cells caused reversal of this phenotype. Furthermore, we find that loss of these sialomucins prevents mast cell repopulation and hematopoietic precursor reconstitution in vivo. Our data provide clear-cut evidence for a hematopoietic function for CD34 and suggest that it acts as a negative regulator of cell adhesion.  相似文献   

19.

Background

Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HSC mobilization include G-CSF and the CXCR4 inhibitor AMD3100 (plerixafor). The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects.

Results

Hierarchical clustering of miRNAs separated HSCs from PBLs. miRNAs up-regulated in all HSCs included hematopoiesis-associated miRNA; miR-126, miR-10a, miR-221 and miR-17-92 cluster. miRNAs up-regulated in PBLs included miR-142-3p, -218, -21, and -379. Hierarchical clustering analysis of miRNA expression separated the AMD3100-mobilized CD133+ cells from G-CSF-mobilized CD34+ cells. Gene expression analysis of the HSCs naturally segregated samples according to mobilization and isolation protocol and cell differentiation status.

Conclusion

HSCs and PBLs have unique miRNA and gene expression profiles. miRNA and gene expression microarrays maybe useful for assessing differences in HSCs.  相似文献   

20.
背景:国内外诸多学者和机构都在研究如何缓解辐射损害,寻找最合适的药物,而人参皂苷作为名贵中药人参的主要药理成分,具有明显的抗氧化作用。 目的:探讨人参总皂苷对不同强度电离辐射损害人造血干细胞的缓解作用及其作用机制。 方法:采集健康人脐血,分离培养得到CD34+造血干细胞,分为未处理组和人参皂苷预处理组,之后分别用1,2,5 Gy的X射线对细胞照射24 h。MTT检测细胞增殖活性,应用流式细胞仪测定各组内的活性氧水平,AV/PI双染检测各组细胞的凋亡率,最后用Western blot和Real-time PCR对各组细胞内caspase-3和Nrf-2水平进行定量分析。 结果与结论:治疗剂量的电离辐射可以诱导CD34+细胞活性下降,同时诱导其发生凋亡,而且细胞内的活性氧活性也呈现进行性升高,这种作用与电离辐射的剂量相关,用人参皂苷进行预处理后,上述作用可得到明显缓解。Western blot和PCR检测结果显示人参皂苷Rb3可以有效抑制由电离辐射引起的caspase-3表达活性增强,另外还可以促进Nrf-2在CD34+细胞内的表达。结果表明人参皂苷可以有效抑制电离辐射诱导CD34+造血干细胞的损伤,这种保护作用很可能与其抗凋亡和抑制氧化应激作用相关。中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程全文链接:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号