首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
目的 探讨床旁防护屏对冠状动脉介入诊疗过程中,第一及第二术者位置辐射剂量的屏蔽效果。方法 采用冠状动脉造影过程中常用的足位、右足位、左足位、头位、左头位、左侧位、右侧位7个体位,桡动脉途径,对标准仿真人模体进行曝光采集。测量高度125 cm,在不同采集体位时,测量有无床旁防护屏情况下的入射体表剂量率,采用t检验比较体表入射剂量率是否存在差异,并分别计算辐射剂量的屏蔽效果。结果 在无床旁防护屏情况下,各采集体位第一术者位置的剂量率高于第二术者(t=97.1~2 263.0,P<0.05);在有床旁防护屏情况下各采集体位(除左足位外)第一术者的剂量率低于第二术者(t=-80.9~275.1,P<0.05);床旁防护屏对第一、第二术者位置的辐射剂量屏蔽率范围分别为92.26%~99.36%、27.83%~97.90%。结论 采用床旁防护屏可有效降低操作者位置的辐射剂量,并改变了操作者站立区域的剂量分布,冠状动脉介入诊疗过程中应充分利用床旁防护屏,同时重点关注第二术者的防护。  相似文献   

2.
目的:探讨悬吊防护屏规格及摆放位置对介入手术中第一及第二术者辐射防护效果,为选择悬吊防护屏最佳辐射防护方案提供科学依据。方法在第一及第二术者站位,从地面20 cm至180 cm处,每隔20 cm放置一个个人计量仪。投照体位选择正位与左侧位。悬吊防护屏为铅玻璃(简称玻璃式)与铅玻璃下接铅橡胶皮(简称混搭式)两种。防护屏摆位分别为靠近术者、远离术者、在术者左侧及贴近球管4种。测量2种投照体位下,不同防护屏规格与摆位在第一及第二术者位9个高度的实时辐射剂量率,计算剂量屏蔽率。结果两种防护屏防护效果接近,以玻璃式略优。对于第一术者,正位投照时以近术者摆位的防护效果最佳,侧位投照则以术者左侧摆位的防护效果最好;对于第二术者,正及侧位投照均以近术者摆位防护效果最优。在最佳摆位情况下:正位投照时第一术者在120 cm高度、侧位投照时第一及第二术者各高度仍可检测到较高的辐射剂量率;第一与第二术者总体接受的辐射剂量接近;第一术者的剂量屏蔽率除正位120 cm高度稍低(玻璃式为60.11%,混搭式为39.89%)外,其余各点均高达93%以上,第二术者剂量屏蔽率为57%~97%;侧位屏蔽率整体略高于正位屏蔽率。结论两种防护屏防护效果接近,均能取得较好的防护效果,但正位投照时第一术者的120 cm高度及侧位投照时2位术者的各高度辐射剂量率仍相对较高,需加强对120 cm高度的辐射防护,并尽量少用侧位投照。  相似文献   

3.
目的:探讨悬吊防护屏规格及摆放位置对介入手术中第一及第二术者辐射防护效果,为选择悬吊防护屏最佳辐射防护方案提供科学依据。方法在第一及第二术者站位,从地面20 cm至180 cm处,每隔20 cm放置一个个人计量仪。投照体位选择正位与左侧位。悬吊防护屏为铅玻璃(简称玻璃式)与铅玻璃下接铅橡胶皮(简称混搭式)两种。防护屏摆位分别为靠近术者、远离术者、在术者左侧及贴近球管4种。测量2种投照体位下,不同防护屏规格与摆位在第一及第二术者位9个高度的实时辐射剂量率,计算剂量屏蔽率。结果两种防护屏防护效果接近,以玻璃式略优。对于第一术者,正位投照时以近术者摆位的防护效果最佳,侧位投照则以术者左侧摆位的防护效果最好;对于第二术者,正及侧位投照均以近术者摆位防护效果最优。在最佳摆位情况下:正位投照时第一术者在120 cm高度、侧位投照时第一及第二术者各高度仍可检测到较高的辐射剂量率;第一与第二术者总体接受的辐射剂量接近;第一术者的剂量屏蔽率除正位120 cm高度稍低(玻璃式为60.11%,混搭式为39.89%)外,其余各点均高达93%以上,第二术者剂量屏蔽率为57%~97%;侧位屏蔽率整体略高于正位屏蔽率。结论两种防护屏防护效果接近,均能取得较好的防护效果,但正位投照时第一术者的120 cm高度及侧位投照时两位术者的各高度辐射剂量率仍相对较高,需加强对120 cm高度的辐射防护,并尽量少用侧位投照。  相似文献   

4.
本文作者设计了由专业工厂承制的介入诊疗专用多功能X射线防护铅屏(简称介入铅屏),形成了一个完整的放射隔离保护区,防护范围大,无手术者受照裸区、不增加术者负重,不影响操作灵活性、防护效果可靠,弥补了现行穿戴法、吊屏法和普通铅屏法防护的不足。介入铅屏以设置的万向轮任意定位、滑动屏随床升降,铅吊帘封闭患躯周边透射区,铅玻璃窗随时观察患者颜面,辅设的无影照明灯、观片灯、内外对讲系统形成了多功能的特点,经4年多应用感到得心应手。市预防医学中心放射卫生科使用西安262厂生产的FJ347(A)X、γ剂量仪检…  相似文献   

5.
目的 测试3种常见介入诊疗中机房内的辐射场分布,为介入放射工作人员的防护和安全操作提供基础数据。方法 在介入诊疗床周围的水平面和介入放射工作人员经常停留区域的立面,选择不同的点放置热释光剂量计,根据选定的实验条件分组照射,结束后将热释光剂量计带回实验室测量并计算辐射场剂量。结果 相同位置的数据大部分符合心血管介入诊疗>脑血管介入诊疗>肝脏介入诊疗;同种介入诊疗在相同位置的剂量大都符合高剂量组>中剂量组>低剂量组,该结果与有用线束剂量大小一致,与透视时间的长短成正比。个别不符合以上规律的数据存在测量误差或实验偏差。结论 肝脏和脑血管介入诊疗时,辐射剂量相对较低,3 m以外的辐射剂量基本可以忽略。心血管介入诊疗时,离X射线管中心点越远,剂量降低越多。辐射场中术者、第一助手和第二助手站立处的剂量较高,患者的头端、足端方向剂量较低。  相似文献   

6.
【摘要】 目的?探讨经皮冠状动脉介入诊疗过程中不同防护屏和操作者不同体位时所受辐射剂量的构成特点。 方法?采用冠状动脉介入诊疗常用7个体位,取桡动脉入路,对标准仿真人模体进行射线曝光,采集测量不同体位无床旁防护、只有悬吊防护屏、只有床旁固定铅裙时第1、第2操作者入射体表剂量。重复测量20次。采用t检验比较不同情况下体表入射剂量值差异,分别计算不同体位不同防护屏屏蔽率。 结果?第1、第2操作者体表入射剂量在只有床旁固定铅裙时均高于只有悬吊防护屏时(t值1 =926.0、376.5、75.8、1 329.0、668.0、1 148.0、419.5,t值2 =102.6、41.1、82.8、539.4、541.8、204.0、43.1),差异均有统计学意义(P<0.05)。不同体位悬吊防护屏对第1操作者体表入射剂量屏蔽率分别为98.31%、93.67%、67.74%、98.63%、99.52%、89.28%、96.10%,床旁固定铅裙对第1操作者屏蔽率分别为10.39%、4.53%、57.67%、0.68%、4.66%、54.38%、9.68%。 结论?冠状动脉介入诊疗过程中操作者所受辐射剂量主要来源于导管床上方散射辐射,以左足位、左前斜位、足位、右足位、右前斜位最显著;左头位、头位时操作者所受辐射剂量除了来源于导管床上方散射辐射,也有部分来源于导管床下方散射辐射。充分了解各体位时所受辐射剂量构成特征,有助于日常辐射防护有的放矢。  相似文献   

7.
目的 通过模拟实验测量,比较国际辐射防护委员会(ICRP)139号报告推荐的4种单双剂量计算法对估算心血管介入诊疗程序中第一术者有效剂量之间的差异,以探讨这4种算法对介入诊疗场景的适用性。方法 模拟第一术者的男性躯干模体穿戴铅衣和铅围脖,在其体内布放热释光探测器,在其铅衣内外布放热释光个人剂量计,模拟心血管病介入诊疗场景,通过模拟测量得到的器官剂量计算第一术者的有效剂量,与通过个人剂量计及4种单双剂量计算法得到的结果进行比较。结果 在本实验条件下,由模拟测量计算得到的有效剂量为0.581 mSv;而用Swiss ordinance法、McEwan法、Von Boetticher法与Martin-Magee法估算得到的有效剂量分别为0.667、0.484、0.485和0.726 mSv,与模拟测量得到的有效剂量的相对偏差分别为14.8%、-16.7%、-16.5%和24.9%。结论 4种计算方法得到第一术者有效剂量与模拟测量结果均有较大的差异;从辐射防护观点出发,推荐使用Swiss ordinance法开展心血管病介入诊疗程序中第一术者的个人剂量监测。  相似文献   

8.
【摘要】 目的 探讨冠脉介入诊疗中术者上肢暴露部位射线剂量与部位高度、术者站位、造影体位及物理防护强度之间的关系。方法 通过对仿真人体模型进行造影曝光,采集桡动脉途径时2位模拟术者左手、左上臂在不同防护条件、不同造影体位下的体表入射剂量率。采用T检验比较仅穿无袖铅衣时左手和左上臂间的体表入射剂量率及同一部位在两位术者间的体表入射剂量率,比较左手在床旁防护前后的体表入射剂量率;采用单因素方差分析比较仅穿无袖铅衣时同一部位在各体位间的体表入射剂量率,比较左上臂在不同防护条件间的体表入射剂量率;并计算左手、左上臂在不同防护措施下的射线屏蔽率。结果 仅穿无袖铅衣时,第一术者上肢的体表入射剂量率均高于第二术者(左手t=38.9~86.5,左上臂t=13.0~83.8,P<0.05);两位术者左上臂大多数体位的体表入射剂量率高于左手(第一术者t=7.1~55.3,第二术者t=9.2~78.8,P<0.05)。左手给予床旁防护后体表入射剂量率明显较低(第一术者左手t=49.4~181.6,第二术者左手t=5.1~47.3,P<0.05);左上臂给予的防护越强,体表入射剂量率越低(第一术者左上臂F=84.6~531.3,第二术者左上臂F=7.0~326.3,P<0.05)。单纯床旁防护时,第一术者左手、左上臂的射线屏蔽率分别为22.46%~52.93%、23.83%~72.12%,第二术者左手、左上臂的射线屏蔽率分别为2.28%~17.39%、3.45%~50.62%,第一术者上肢的射线屏蔽率均高于第二术者,左上臂的射线屏蔽率在多数体位高于左手。半袖铅衣+床旁防护时第一、第二术者左上臂的射线屏蔽率升至73.32%~89.48%、63.97%~89.55%,两术者之间及各体位之间的射线屏蔽率差值较单纯床旁防护时明显缩小。结论 经桡动脉冠脉介入诊疗中,术者上肢暴露部位的射线剂量受部位高度、术者站位、造影体位、物理防护强度等多种因素综合影响,单纯床旁防护对第一术者上肢尤其上臂的防护效果更好,而半袖铅衣弥补了单纯床旁防护的不足,应充分利用床旁防护及穿戴强化的射线防护用品以减少介入术者的辐射危害。  相似文献   

9.
目的探讨综合性放射防护措施在介入治疗防护中的应用价值。方法在84例介入手术治疗中联合应用床下铅橡胶帘、铅玻璃防护屏、铅防护服、铅围脖、铅眼镜及距离等对介入操作人员进行综合性防护。利用FJ-2000个人剂量仪监测X射线辐射剂量,并对相关数据进行统计分析。结果床下铅橡胶帘防护效率为93.4%;铅玻璃防护屏防护效率为93.5%;铅防护服防护效率为88.4%这些放射防护器材前后X线辐射剂量差异均具有统计学意义(P<0.01)。距球管1 m处X线衰减量为58.6%,距球管3 m处的X线衰减量为86.4%。1 m与2 m之间,2 m与3 m之间的辐射剂量差异均具有统计学意义(P<0.01)。结论综合性防护措施在介入操作中可有效降低X射线辐射、减少对介入操作人员身体危害。  相似文献   

10.
目的 调查北京地区介入放射诊疗资源分布和放射防护状况,规范介入放射诊疗行为并促进放射防护监管措施的落实。方法 以北京地区开展介入放射诊疗工作的各级各类医疗机构为调查对象,设计专门的调查表并成立市区两级调查组,逐级调查各区域截至2020年底介入放射工作基本情况和介入放射工作人员职业健康监护情况,依据国家有关法规标准对指标参数进行分析评估。结果 截至2020年底,北京地区开展介入放射工作的医疗机构93家,800 mA(含)以上数字减影血管造影机(DSA)236台;开展介入放射学手术135 593例,年介入手术量在1 000例以上的40家,10~1 000例的41家;介入放射工作人员3 539人,持有《放射工作人员证》者为99.0%,职业健康检查、个人剂量监测和放射防护培训通过率分别为96.9%、99.5%和95.8%;配置的工作人员防护用品3 532件,其中98.9%的机构配备了分体式铅衣或一体式铅衣,但6.5%的机构未配置铅防护眼镜、54.9%的机构未配置铅防护手套。结论 北京地区介入放射诊疗防护状况和防护管理总体较好,但应结合介入放射诊疗资源分布的现况进一步完善监管机制,强化人员的在岗期间职业健康检查、放射防护培训和防护用品的配置与使用。  相似文献   

11.
介入诊疗区域内辐射场的测定与评价   总被引:6,自引:2,他引:4       下载免费PDF全文
目的测量和评价介入诊疗区域内常规穿刺平面辐射剂量的分布特点,绘制相应的等剂量曲线示意图。方法在介入诊疗区域内常规穿刺平面建立测量平台,以X射线发生中心为测量中心,选取常规正位和常规侧位两个基本体位,在八个方向上每0.10m选择一个测量点,每个测量点测量3次,取算术平均值,校正并折算为mGy/h。结果成功测量相关数据并绘制介入诊疗区域内常规穿刺平面正、侧位辐射剂量分布示意图。结论患者右侧是高辐射场区域,一般为手术人员站立处,辐射强度较高,必须加以防护。患者左上辐射场的强度相对较高,往往安装心脏起搏器时医师容易站在此处,应加以提示。实习医师和进修医师也常在此处观摩手术,应尽量避免。患者左下常为护师给患者输液、加药处,应予以注意。足侧偏左常为电生理技师操作仪器处,虽然辐射强度不大,但也应注意。  相似文献   

12.
目的 测量冠状动脉造影8个投照体位在有与无床旁防护装置防护下术者所受辐射剂量,为冠心病介入治疗中减少术者辐射暴露提供参考。方法 在第一及第二术者站位,距地面20至180 cm处,每隔20 cm放置一个实时剂量测量仪。采用冠状动脉造影8个体位投照,测量在有与无床旁防护装置防护下,术者在不同投照体位的不同高度接受辐射剂量情况。结果 在第一术者位,除1.2 m高度仍可测到较高剂量(剂量率0.35~4.78 mSv/h,屏蔽率27.67%~89.33%),其余各点屏蔽率均在91%以上。左前斜尾位、左前斜位、左前斜头位辐射剂量较高。第二术者位屏蔽率较第一术者位低,剂量峰值可出现在0.8、1.0及1.4 m高度(剂量率0.27~1.86 mSv/h,屏蔽率30.34%~92.13%)。右前斜尾位、左前斜尾位、正头位、左前斜位辐射剂量较高。结论 床旁防护装置防护下,术者在左前斜尾位、左前斜位、左前斜头位、右前斜尾位的辐射暴露较高,应尽量少采用上述投照体位长时间曝光。同时应加强0.8~1.4 m高度的辐射防护。  相似文献   

13.
A scattered dose and a surface dose from phantom measurements during interventional procedures with computed tomography (IVR-CT) were evaluated. To reduce the personnel exposure in IVR-CT, the new protective devices were developed and its effect evaluated. Two radiation protection devices were experimentally made using a lead vinyl sheet with lead equivalent 0.125mmPb. The first device is a lead curtain which shields the space of CT-gantry and phantom for the CT examination. The second device is a lead drape which shields on the phantom surface adjacent to the scanning plane for the CT-fluoroscopy. Scattered dose and phantom surface dose were measured with an abdominal phantom during Cine-CT (130 kV, 150 mA, 5 seconds, 10 mm section thickness). They were measured by using ionization chamber dosimeter. They were measured with and without a lead curtain and a lead drape. Scattered dose rate was measured at distance of 50-150 cm from the scanning plane. And, surface dose was measured at distance of 4-21 cm from the scanning plane on the phantom. On operator's standing position, scattered dose rates were from 8.4 to 11.6 micro Gy/sec at CT examination. The lead curtain and the lead drape reduced scattered dose rate at distance of 50 cm from the scanning plane by 66% and 58.3% respectively. Surface dose rate were 118 micro Gy/sec at distance of 5 cm from the scanning plane at CT-fluoroscopy. The lead drape reduced the surface dose by 60.5%. High scattered exposure to personnel may occur during interventional procedures using CT. They were considerably reduced during CT-arteriography by attaching the lead curtain in CT equipment. And they were substantially reduced during CT-fluoroscopy by placing the lead drape adjacent to the scanning plane, in addition, operator's hand would be protected from unnecessary radiation scattered by phantom. It was suggested that the scattered exposure to personnel could be sufficiently reduced by using radiation protection devices in IVR-CT. The radiation protection devices and the CT equipment should be improved or developed based on the radiation protection.  相似文献   

14.
OBJECTIVE: The use of PET in Australia has grown rapidly. We conducted a prospective study of the radiation exposure of technologists working in PET and evaluated the occupational radiation dose after implementation of strategies to lower exposure. METHODS: Radiation doses measured by thermoluminescent dosimeters over a 2-y period were reviewed both for technologists working in PET and for technologists working in general nuclear medicine in a busy academic nuclear medicine department. The separate components of the procedures for dose administration and patient monitoring were assessed to identify the areas contributing the most to the dose received. The impact on dose of implementing portable 511-keV syringe shields (primary shields) and larger trolley-mounted shields (secondary shields) was also compared with initial results using no shield. RESULTS: We found that the radiation exposure of PET technologists was higher than that of technologists performing general nuclear medicine studies, with doses averaging 771 +/- 147 and 524 +/- 123 microSv per quarter, respectively (P = 0.01). The estimated dose per PET procedure was 4.1 microSv (11 nSv/MBq). Injection of 18F-FDG contributed the most to radiation exposure. The 511-keV syringe shield reduced the average dose per injection from 2.5 to 1.4 microSv (P < 0.001). For the longer period of dose transportation and injection, the additional use of the secondary shield resulted in a significantly lower dose of radiation than did use of the primary shield alone or no shield (1.9 vs. 3.6 microSv [P = 0.01] and 3.4 microSv [P = 0.03], respectively). CONCLUSION: The radiation doses currently received by technologists working in PET are within accepted occupational health guidelines, but improved shielding can further reduce the dose.  相似文献   

15.
Bremsstrahlung radiation doses were measured in an anthropomorphic phantom using thermoluminescent dosimeters. A single source of 90Y (beta-ray range less than or equal to 1.0 cm) was inserted in the bladder region and dosimeters were placed at distances greater than or equal to 3 cm to preclude detection of decay betas. Doses were corrected so as to represent the case of no biologic clearance. By comparing dosimeter location with the standard MIRD human geometry, sample organ doses could be determined. Representative results were 432 +/- 76 mrad/mCi at 3 cm (bladder), 260 +/- 60 mrad/mCi (uterus), 71 +/- 4 mrad/mCi (lower large intestine), and 1.4 +/- 0.7 mrad/mCi (liver). An estimation method, based on absorbed fraction tables, gave organ doses that were within the errors of measurement for all tissues with the exception of the bladder site. We conclude that organ bremsstrahlung radiation doses are not negligible and that they can be estimated using an integration over both the brake and beta-ray spectra.  相似文献   

16.
“十”字封闭型介入防护装置的研制   总被引:11,自引:0,他引:11  
目的 为介入放射学提供辐射安全保障,方法根据介入手术之特点、X射线辐射场的剂量2以及辐 护最优化的原则,按照射区与手术区屏蔽隔离的原理,设计制造通用组合式介入防护装置。结果 研制出三台防护装置,经三家医院三种没类型线机匹配使用一,证明其适用性,通用性与防护效果良好。结论 设计思路科学、可行,具有推广应用价值,可民甸的介入防护问题。  相似文献   

17.
Since cardiac interventional procedures deliver high doses of radiation to the physician, radiation protection for the physician in cardiac catheterization laboratories is very important. One of the most important means of protecting the physician from scatter radiation is to use additional lead shielding devices, such as tableside lead drapes and ceiling-mounted lead acrylic protection. During cardiac interventional procedures (cardiac IVR), however, it is not clear how much lead shielding reduces the physician dose. This study compared the physician dose [effective dose equivalent (EDE) and dose equivalent (DE)] with and without additional shielding during cardiac IVR. Fluoroscopy scatter radiation was measured using a human phantom, with an ionization chamber survey meter, with and without additional shielding. With the additional shielding, fluoroscopy scatter radiation measured with the human phantom was reduced by up to 98%, as compared with that without. The mean EDE (whole body, mean+/-SD) dose to the operator, determined using a Luxel badge, was 2.55+/-1.65 and 4.65+/-1.21 mSv/year with and without the additional shielding, respectively (p=0.086). Similarly, the mean DE (lens of the eye) to the operator was 15.0+/-9.3 and 25.73+/-5.28 mSv/year, respectively (p=0.092). In conclusion, although tableside drapes and lead acrylic shields suspended from the ceiling provided extra protection to the physician during cardiac IVR, the reduction in the estimated physician dose (EDE and DE) during cardiac catheterization with additional shielding was lower than we expected. Therefore, there is a need to develop more ergonomically useful protection devices for cardiac IVR.  相似文献   

18.
The radiation dose to the pulp of both index fingers has been measured in a radiopharmacy supplying 11 000 patient doses a year, in a hospital dispensary (4500 doses a year) and in its injection area. Tungsten syringe shields were used for one week and not used during the other week. In the radiopharmacy and the dispensary the highest finger dose recorded was 6.8 mSv, which corresponds to an annual figure of 330 mSv. Syringe shields gave a protection factor of less than two, and the dose to the left hand was approximately half that to the right. When giving injections the corresponding weekly and annual doses were 4.6 and 220 mSv respectively. If all injections had been given by a single person the corresponding annual dose would have been 430 mSv. Using syringe shields this could be reduced by factors of at least eight for the right hand but only 1.3 for the left hand. Dose rates for unshielded syringes expressed per 10 GBq handled are similar to other data in the literature. However, syringe shields reduce the dose rates less than anticipated. Tungsten 1.94 to 3.05 mm thick would be expected to give an attenuation factor of 27 to 178.  相似文献   

19.
Fluoroscopically guided procedures in the electrophysiology room, such as radiofrequency catheter ablation and implantation of cardiac resynchronization devices, may result in high radiation exposure of electrophysiologists and assisting staff. Our aim was to provide accurate and applicable data on occupational doses to the electrophysiology laboratory personnel. We exposed fluoroscopically an anthropomorphic phantom at three projections common in electrophysiology studies. For each exposure, scattered radiation was measured at 182 sites of the cardiology room at four body levels. Effective dose values, eye lens, skin and gonadal doses to the laboratory staff were calculated. Our study has shown that a procedure requiring 40 min of fluoroscopy yields a maximum effective dose of 129 microSv and a maximum value of gonadal dose of 56.8 microSv to staff using a 0.35 mm lead-equivalent apron. A conservative estimate of the electrophysiologist's annual maximum permissible workload is 155 procedures. Staff effective dose values vary by a factor of 40 due to positioning during fluoroscopy and by a factor of 11 due to radiation protection equipment. Undercouch protective shields may reduce gonadal doses up to 98% and effective dose up to 25%. Consequently, radiation levels in the electrophysiology room are not negligible. Mitigation of occupational exposure is feasible through good fluoroscopy and working practices.  相似文献   

20.
Preparing and injecting radiopharmaceuticals containing beta emitting radionuclides, for radiosynovectomy (RS), implies the risk of exceeding the upper limit of skin and hand radiation absorbed dose, of 500 mSv/year to both technologists, who prepare and to doctors, who inject these radiopharmacuticals. A high number of RS treatments per day lack of effective radiation protection devices and skin contamination, increase the skin radiation absorbed dose. Pronounced dosimetric and radiation protection data for radionuclides used for RS, like yttrium-90, erbium-169, rhenium-186, dysprosium-165 and holmium-166, indicate the risk and the rationale for minimizing skin radiation doses to the hands of technologists and to doctors. Hands and skin radiation exposure is mainly due to direct beta radiation from yttrium-90 containing syringes. However skin contamination, may increase this dose independently of the radionuclide used for RS. Using a syringe shield with 5 mm perspex and holding the syringe by forceps, especially for the fixation of the needle to the syringe, beta radiation exposure to the finger tips may be reduced effectively. The use of radiation-resistant gloves reduces beta radiation dose to the skin only slightly, but offers a much better protection than Latex gloves for radioactive contamination. In this article we report measurements performed by us, underlining aspects of the most effective syringe shielding applied for RS. For reducing hands beta radiation exposure during RS the following are proposed: a) To use radiation protection devices, like manipulators and perspex syringe shields and b) Special training of the personnel for the proper handling of doses and for the removal of possible contamination from beta-emitting radionuclides and c) To use beta radiation personal ring dosimeters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号