首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 microM, the toxin inhibits 65.3 +/- 4.1% of the sodium conductance and 24.6 +/- 6.8% of the gating current of brain Na(v)1.2a channels, with a specific effect on rapidly moving gating charge. Strong positive prepulses can reverse the inhibitory effect of ProTx-II, indicating voltage-dependent dissociation of the toxin. Voltage-dependent reversal of the ProTx-II effect is more rapid for cardiac Na(v)1.5 channels, suggesting subtype-specific action of this toxin. Voltage-dependent binding and block of gating current are hallmarks of gating modifier toxins, which act by binding to the extracellular end of the S4 voltage sensors of ion channels. The mutation L833C in the S3-S4 linker in domain II reduces affinity for ProTx-II, and mutation of the outermost two gating-charge-carrying arginine residues in the IIS4 voltage sensor to glutamine abolishes voltage-dependent reversal of toxin action and toxin block of gating current. Our results support a voltage-sensor-trapping model for ProTx-II action in which the bound toxin impedes the normal outward gating movement of the IIS4 transmembrane segment, traps the domain II voltage sensor module in its resting state, and thereby inhibits channel activation.  相似文献   

2.
Toxins have been used extensively to probe the gating mechanisms of voltage-gated ion channels. Relatively few such tools are available to study the low-voltage activated T-type Ca channels, which underlie thalamic neuron firing and affect sleep, resistance to seizures, and weight gain. Here we show that ProTxII, a peptide toxin recently isolated from the venom of the tarantula spider Thrixopelma pruriens, dose-dependently inhibited CaV3.1 causing a decrease in current (81.6% ± 3.1% at −30 mV in 5 μM toxin) and a positive shift in the voltage range of activation (+34.5 mV ± 4.4 mV). Toxin-modified currents were slower to activate and faster to deactivate and they displayed a longer lag in the onset of current, i.e. the Cole-Moore shift, consistent with the inhibition of gating transitions along the activation pathway, particularly the final opening transition. Single-channel current amplitude and total gating charge were unaffected by toxin, ruling out a change in ion flux or channel dropout as mechanisms for the decrease in macroscopic conductance. A positive shift in the voltage range of gating charge movement (+30.6 mV ± 2.6 mV shift in the voltage of half maximal charge movement in the presence of 5 μM toxin) confirmed that ProTxII-induced gating perturbations in this channel occur at the level of the voltage sensors, and kinetic modeling based on these findings suggested that reductions in current magnitude could be largely accounted for by kinetic perturbations of activation.  相似文献   

3.
BmK 11(2) is a 7216Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch. Nanomolar concentrations of the toxin prolong amphibian nerve action potentials without attenuation of the amplitude. The pharmacological action of the toxin and its sequence similarity to other alpha-scorpion toxins suggest that BmK 11(2) selectively alters voltage-gated Na channels. In order to test whether BmK 11(2) preferentially modulates the gating or kinetics of certain channel isoforms, we applied BmK 11(2) to muscle, heart and neuronal Na channels. 100nM BmK 11(2) increased the peak current amplitude of skeletal muscle (micro1) and neuronal (N1E-115) Na currents by 40 and 20%, respectively, and reduced the cardiac Na (hH1) current by 15%. The toxin slowed current decay of all isoforms, most prominently in N1E-115 (tau(BmK)/tau(Control)=12), micro1 (11), and less so for hH1 (1.3). BmK 11(2) shifted the voltage dependence of activation of micro1 and N1E-115 currents. BmK 11(2) had no effect on steady-state inactivation, use-dependent availability, and the kinetics of entry into slowly recovering inactivated states.  相似文献   

4.
1. The effects of Ba(2+) (0.1 - 2 mM) on the component of the perineural voltage change associated with nerve terminal calcium currents (prejunctional Ca(2+) currents) were compared with the effects of this ion to antagonize calcium-dependent acetylcholine (ACh) release. These experiments were made on isolated neuromuscular junctions of the frog. 2. In the presence of sufficient concentrations of K(+) channel blockers to eliminate measurable prejunctional K(+) currents, low concentrations of Ba(2+) selectively antagonized prejunctional Ca(2+) currents in normal Ca(2+) solutions. Higher concentrations of Ba(2+) also substantially reduced the Na(+) component of the perineural waveform. 3. Ba(2+) inhibited the prolonged prejunctional Ca(2+) currents that developed in the presence of higher concentrations of K(+) channel blockers. 4. Simultaneous measurements of the prejunctional Ca(2+) currents and the electrophysiological correlates of ACh release (i.e. end-plate potentials, EPPs) were made under conditions of modest K(+) channel blockade. Under these conditions, Ba(2+) generally produced simultaneous decreases in both Ca(2+) currents and EPP amplitudes. In some instances, a prolongation of prejunctional Ca(2+) currents and a transient increase in EPP amplitudes preceded the decreases in both electrophysiological events. 5. These results suggest that Ba(2+) ions can antagonize the entry of calcium into motor nerve endings and this effect is likely to be responsible for the inhibitory effects of Ba(2+) on evoked ACh release.  相似文献   

5.
1. Whole-cell patch-clamp method was applied to single smooth muscle cells freshly isolated from the rat inferior vena cava. 2. Depolarizing pulses, applied from a holding potential of -90 mV, activated both Na+ and Ca2+ channels. The fast Na+ current was inhibited by nanomolar concentrations of tetrodotoxin (TTX). The slow Ba2+ current (measured in 5 mM Ba2+ solution) was inhibited by Cd2+ and modulated by dihydropyridine derivatives. When the cells were held at a holding potential of -80 mV, racemic Bay K 8644 increased the Ba2+ current (ED50 = 10 nM) while racemic isradipine inhibited the current (IC50 = 21 nM). 3. The voltage-dependency of isradipine blockade was assessed by determining the steady-state availability of the Ca2+ channels. From the shift of the inactivation curve in the presence of isradipine, we calculated a dissociation constant of 1.11 nM for inactivated Ca2+ channels. Scatchard plots of the specific binding of (+)-[3H]-isradipine obtained in intact strips incubated in 5.6 mM or 135 mM K+ solutions confirmed the voltage-dependency of isradipine binding. 4. Specific binding of (+)-[3H]-isradipine was completely displaced by unlabelled (+/-)-isradipine, with an IC50 of 15.1 nM. This value is similar to the IC50 for inhibition of the Ba2+ current (21 nM) in cells maintained at a holding potential of -80 mV. 5. Bay K 8644 had no effects on the Ba2+ current kinetics during a depolarizing test pulse. The steady-state inactivation-activation curves of Ba2+ current were not significantly shifted along the voltage axis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of amiodarone on Na(+)/Ca(2+) exchange current (I(NCX)) was examined in single guinea-pig ventricular myocytes using the whole-cell voltage clamp technique. I(NCX) was recorded by ramp pulses from the holding potential of -60 mV in the presence of 140 mM Na(+) and 2 mM Ca(2+) in the external solution, and 20 mM Na(+) and 398 nM free Ca(2+) (19 mM Ca(2+) and 30 mM BAPTA) in the internal solution. External application of amiodarone suppressed I(NCX) in a concentration-dependent manner. The IC(50) value was 3.3 microM with a Hill coefficient of 1. Intracellular application of trypsin via the micropipette attenuated the blocking effect of amiodarone, suggesting that amiodarone affects the cytoplasmic side of the molecule. This inhibitory effect of amiodarone on the Na(+)/Ca(2+) exchanger may contribute to the cardioprotective action of the drug.  相似文献   

7.
7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepine-2(3H)-one (CGP-37157) inhibits mitochondrial Na(+)-Ca(2+) exchange. It is often used as an experimental tool for studying the role of the mitochondrial Na(+)-Ca(2+) exchanger in Ca(2+) signaling. Because the selectivity of CGP-37157 in adult cardiomyocytes has not been confirmed, we tested whether CGP-37157 affects the L-type Ca(2+) channel using a whole-cell patch-clamp in adult rat atrial myocytes. We found that CGP-37157 suppressed L-type Ca(2+) current (I(Ca)) with IC(50) of approximately 0.27 microM, without altering the voltage dependence of the current-voltage relationships. CGP-37157 inhibited the Ba(2+) current (I(Ba)) through the Ca(2+) channel with a similar dose-response. The inhibitory effects of CGP-37157 on I(Ca) or I(Ba) were resistant to the intracellular Ca(2+) buffering. Intracellular application of CGP-37157 did not significantly alter I(Ca). The combination of CGP-37157 with known Ca(2+) channel inhibitor diltiazem yielded antagonism consistent with additivity of response. Our data suggest that CGP-37157 directly suppresses the L-type Ca(2+) channel in intact adult cardiomyocytes.  相似文献   

8.
1 The present investigation was undertaken to characterize the Na(+)/K(+) pump current in small (相似文献   

9.
In cultured bovine adrenal chromaffin cells, NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride], a newly-synthesized neuroprotective drug, inhibited veratridine-induced (22)Na(+) influx via voltage-dependent Na(+) channels (IC(50)=11.4 microM). The inhibition by NS-7 occurred in the presence of ouabain, an inhibitor of Na(+),K(+) ATPase, but disappeared at higher concentration of veratridine, and upon the washout of NS-7. NS-7 attenuated veratridine-induced (45)Ca(2+) influx via voltage-dependent Ca(2+) channels (IC(50)=20.0 microM) and catecholamine secretion (IC(50)=25.8 microM). Chronic (>/=12 h) treatment of cells with NS-7 increased cell surface [(3)H]-STX binding by 86% (EC(50)=10.5 microM; t(1/2)=27 h), but did not alter the K(D) value; it was prevented by cycloheximide, an inhibitor of protein synthesis, or brefeldin A, an inhibitor of vesicular transport from the trans-Golgi network, but was not associated with increased levels of Na(+) channel alpha- and beta(1)-subunit mRNAs. In cells subjected to chronic NS-7 treatment, (22)Na(+) influx caused by veratridine (site 2 toxin), alpha-scorpion venom (site 3 toxin) or beta-scorpion venom (site 4 toxin) was suppressed even after the extensive washout of NS-7, and veratridine-induced (22)Na(+) influx remained depressed even at higher concentration of veratridine; however, either alpha- or beta-scorpion venom, or Ptychodiscus brevis toxin-3 (site 5 toxin) enhanced veratridine-induced (22)Na(+) influx as in nontreated cells. These results suggest that in the acute treatment, NS-7 binds to the site 2 and reversibly inhibits Na(+) channels, thereby reducing Ca(2+) channel gating and catecholamine secretion. Chronic treatment with NS-7 up-regulates cell surface Na(+) channels via translational and externalization events, but persistently inhibits Na(+) channel gating without impairing the cooperative interaction between the functional domains of Na(+) channels.  相似文献   

10.
High-threshold Ca(2+) channels and tetrodotoxin-resistant Na(+) channels are highly expressed in small dorsal root ganglion neurons. In acutely isolated rat dorsal root ganglion neurons, the effects of neomycin, one of the aminoglycoside antibiotics, on high-threshold Ca(2+) currents and tetrodotoxin-resistant Na(+) currents were examined using whole-cell patch recording. We showed for the first time that neomycin dose-dependently inhibited peak high-threshold Ca(2+) currents and peak tetrodotoxin-resistant Na(+) currents with half-maximal inhibitory concentrations at 3.69 microM (n=20) and 1213.44 microM (n=25), respectively. Inactivation properties of high-threshold Ca(2+) currents and activation properties of tetrodotoxin-resistant Na(+) currents were also affected by neomycin with reduction of excitability of small dorsal root ganglion neurons. Half-maximal inactivation voltage of high-threshold Ca(2+) currents was -45.56 mV before and -50.46 mV after application of neomycin (n=10). Half-maximal activation voltage of tetrodotoxin-resistant Na(+) currents was -19.93 mV before and -11.19 mV after administration of neomycin (n=15). These results suggest that neomycin can inhibit high-threshold Ca(2+) currents and tetrodotoxin-resistant Na(+) currents in small dorsal root ganglion neurons, which may contribute to neomycin-induced peripheral and central analgesia.  相似文献   

11.
Lithium has been proven to be effective in the therapy of bipolar disorder, but its mechanism of pharmacological action is not clearly defined. We examined the effects of lithium on voltage-dependent Na(+) channels, nicotinic acetylcholine receptors, and voltage-dependent Ca(2+) channels, as well as catecholamine secretion in cultured bovine adrenal chromaffin cells. Lithium chloride (LiCl) reduced veratridine-induced (22)Na(+) influx in a concentration-dependent manner, even in the presence of ouabain, an inhibitor of Na(+), K(+)-ATPase. Glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763, SB415286 or the GSK-3 inhibitor IX) did not affect veratridine-induced (22)Na(+) influx, as well as inhibitory effect of LiCl on veratridine-induced (22)Na(+) influx. Enhancement of veratridine (site 2 toxin)-induced (22)Na(+) influx caused by alpha-scorpion venom (site 3 toxin), beta-scorpion venom (site 4 toxin), or Ptychodiscus brevis toxin-3 (site 5 toxin), still occurred in the presence of LiCl in the same manner as in the control cells. LiCl also reduced veratridine-induced (45)Ca(2+) influx and catecholamine secretion. In contrast, LiCl (< or = 30 mM) had no effect on nicotine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion, as well as on high K(+)-induced (45)Ca(2+) influx and catecholamine secretion. Chronic treatment with LiCl at 100mM (but not at < or = 30 mM) significantly reduced cell viability in a time-dependent manner. These results suggest that lithium selectively inhibits Na(+) influx thorough Na(+) channels and subsequent Ca(2+) influx and catecholamine secretion, independent of GSK-3 inhibition.  相似文献   

12.
The mechanisms of K(+)-induced relaxation and of acetylcholine (ACh)-stimulated, endothelium-dependent relaxation were assessed in rat femoral arteries mounted in a myograph. ACh-stimulated (1 nM-1 microM) relaxation of arteries precontracted with 1 microM noradrenaline was mostly resistant to the combination of indomethacin (INDO; 10 microM) and N(omega)-nitro-L-arginine (L-NNA, 100 microM). The remaining relaxation was abolished by 30 mM K(+) or ouabain (1 mM) and significantly reduced by 30 microM Ba(2+) or charybdotoxin (ChTx; 100 nM) plus apamin (100 nM). K(+)-induced relaxation effected by raising [K(+)](o) by 0.5-4 mM was endothelium-independent and inhibited by ouabain and Ba(2+). These results indicate that ACh-stimulated relaxations are effected mainly by a non-prostanoid, non-nitric oxide mechanism, presumably an endothelium-derived hyperpolarising factor (EDHF). Relaxations stimulated by EDHF and K(+) are both mediated by Na(+)-K(+) ATPase and inward rectifier potassium channels (K(IR)). This study provides further functional evidence that EDHF is K(+) derived from endothelial cells that relaxes arterial smooth muscle subsequent to activation of Na(+)-K(+) ATPase and K(IR).  相似文献   

13.
The pharmacological properties of the expressed murine T-type alpha(1G) channel were characterized using the whole cell patch clamp configuration. Ba(2+) or Ca(2+) were used as charge carriers. Both I(Ba) and I(Ca) were blocked by Ni(2+) and Cd(2+) with IC(50) values of 0.47+/-0.04 and 1.13+/-0.06 mM (Ni(2+)) and 162+/-13 and 658+/-23 microM (Cd(2+)), respectively. Ni(2+), but not Cd(2+), modified the gating of channel activation. Ni(2+) consistently accelerated channel deactivation while Cd(2+) had a similar effect only on I(Ca). The alpha(1G) channel was potently blocked by mibefradil in a dose- and voltage-dependent manner. I(Ba) was moderately blocked by phenytoin (IC(50) 73.9+/-1.9 microM) and was resistant to the block by valproate. Also 3 mM ethosuximide blocked 20 and 35% of the I(Ba) at a HP of -100 and -60 mV, respectively, while 5 mM amiloride inhibited I(Ba) by 38% and significantly slowed current activation. The alpha(1G) channel was not affected by 10 microM tetrodotoxin. Both 1 microM (+)isradipine and 10 microM nifedipine inhibited 18 and 14% of I(Ba) amplitude at a HP of -100 mV, and 23% and 29% of I(Ba) amplitude at a HP of -60 mV, respectively. The alpha(1G) current was minimally activated by 1 microM Bay K 8644.  相似文献   

14.
1. In the rat hepatic artery, the SK(Ca) inhibitors UCL 1684 (300 nM) completely blocked, and scyllatoxin (1 microM) and d-tubocurarine (100 microM) partially inhibited EDHF relaxations when each of them was combined with charybdotoxin (300 nM). 2. The IK(Ca) inhibitors clotrimazole (3 microM) and 2-chlorophenyl-bisphenyl-methanol (3 microM) strongly depressed EDHF relaxations when each of them was combined with apamin (300 nM). The cytochrome P450 mono-oxygenase inhibitor ketoconazole (10 microM) had no effect in the presence of apamin. 3. Ciclazindol (10 microM), which abolishes EDHF relaxations in the presence of apamin, almost completely prevented the calcium ionophore (A23187) stimulated (86)Rb(+) influx via the Gardos channel (IK(Ca)) in human erythrocytes. 4. The Na(+)/K(+) ATPase inhibitor ouabain (500 microM) and the K(IR) blocker Ba(2+) (30 microM) neither alone nor in combination inhibited EDHF relaxations. Ba(2+) was also without effect in the presence of either apamin or charybdotoxin. 5. In contrast to EDHF, an increase in extracellular [K(+)] from 4.6 mM to 9.6, 14.6 and 19.6 mM inconsistently relaxed arteries. In K(+)-free physiological salt solution, re-admission of K(+) always caused complete and sustained relaxations which were abolished by ouabain but unaffected by Ba(2+). 6. The present study provides pharmacological evidence for the involvement of SK(Ca) and IK(Ca) in the action of EDHF in the rat hepatic artery. Our results are not consistent with the idea that EDHF is K(+) activating Na(+)/K(+) ATPase and K(IR) in this blood vessel.  相似文献   

15.
Tyrosine kinase (TK) inhibitors genistein and tyrphostin A23 (A23) inhibited Ca(2+) currents in guinea-pig ventricular myocytes investigated under standard whole-cell conditions (K(+)-free Tyrode's superfusate; EGTA-buffered (pCa-10.5) Cs(+) dialysate). However, the inhibitors (100 microM) also induced membrane currents that reversed between -40 and 0 mV, and the objective of the present study was to characterize these currents. Genistein-induced current behaved like Cl(-) current, and was unaffected by either the addition of divalent cations (0.5 mM Cd(2+); 3 mM Ni(2+)) that block the Na(+)-Ca(2+) exchanger (NCX), or the removal of external Na(+) and Ca(2+). A23-induced current was independent of Cl(-) driving force, and strongly suppressed by addition of Cd(2+) and Ni(2+), and by removal of either external Na(+) or Ca(2+). These and other results suggested that A23 activated an NCX current driven by submembrane Na(+) and Ca(2+) concentrations higher than those in the bulk cytoplasm. Improved control of intracellular Na(+) and Ca(2+) concentrations was obtained by suppressing cation influx (10 microM verapamil) and raising dialysate Na(+) to 7 mM and dialysate pCa to 7. Under these conditions, stimulation by A23 was described by the Hill equation with EC(50) 68 +/- 4 microM and coefficient 1.1, tyrphostin A25 was as effective as A23, and TK-inactive tyrphostin A1 was ineffective. Phosphotyrosyl phosphatase inhibitor orthovanadate (1 mM) antagonized the action of 100 microM A23. The results suggest that activation of cardiac NCX by A23 is due to inhibition of genistein-insensitive TK.  相似文献   

16.
The relaxant effect of procainamide, a class Ia antiarrhythmic agent, was examined in bovine tracheal smooth muscle. Procainamide produced concentration-dependent decreases in tension and full relaxation in the preparations contracted with methacholine (0.3 microM). By comparison, in preparations contracted with 40 mM K(+), procainamide had only slight relaxant effects. The relaxant effects of cromakalim and salbutamol on 40 mM K(+)-contracted preparations were significantly (P<0.01) smaller than those on 0.3 microM methacholine-contracted ones. On the other hand, the concentration-response relationships for quinidine, lidocaine, mexiletine and propafenone were not so dramatically different between 0.3 microM methacholine- and 40 mM K(+)-contracted preparations. Tetraethylammonium (300 microM), iberiotoxin (30 nM) and Ba(2+) (1 mM) significantly (P<0.05) attenuated the relaxant effects of procainamide on methacholine-induced contractions, whereas apamin (100 nM), 4-aminopyridine (300 microM), and glibenclamide (10 microM) did not affect them. The inhibitory effect of a combination of iberiotoxin and Ba(2+) was greater than that of iberiotoxin or Ba(2+) alone (P<0.01). These results suggest that the activation of at least two types of K(+) (maxi-K(+) and inward rectifier K(+)) channels contributes to the procainamide-induced relaxation of bovine tracheal smooth muscle.  相似文献   

17.
We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amplitudes elicited by strong depolarizing pulses that maximally activate the channels. The APETx1 binding site is distinctly different from that of a pore-blocking peptide toxin, BeKm-1. Mutations in the S3b region of hERG have dramatic impact on the responsiveness to APETx1: G514C potentiates whereas E518C abolishes the APETx1 effect. Restoring the negative charge at position 518 (methanethiosulfonate ethylsulfonate modification of 518C) partially restores APETx1 responsiveness, supporting an electrostatic interaction between E518 and APETx1. Among the three hERG isoforms, hERG1 and hERG3 are equally responsive to APETx1, whereas hERG2 is insensitive. The key feature seems to be an arginine residue uniquely present at the 514-equivalent position in hERG2, where the other two isoforms possess a glycine. Our data show that APETx1 is a gating modifier toxin of the hERG channel, and its binding site shares characteristics with those of gating modifier toxin binding sites on other Kv channels.  相似文献   

18.
K Peng  X D Chen  S P Liang 《Toxicon》2001,39(4):491-498
Huwentoxin-I (HWTX-I), a 3.75 kDa peptide toxin isolated from the venom of the spider Selenocosmia huwena, was found to be a reversible presynaptic inhibitor by our previous work. Using whole-cell patch clamp methods, we found that HWTX-I had no significant effect on the TTX-sensitive Na(+) current or the delayed rectifier K(+) current (K(r)) in low-serum medium cultured NG108-15 cells, but High-Voltage-Activated Ca(2+) channel expressed in prostaglandin E(1) differentiated NG108-15 cells could be potently inhibited by HWTX-I (EC(50) approximately 100 nM), while it hardly affected low-voltage-activated Ca(2+) channel. Among types of high-voltage-activated Ca(2+) channel, HWTX-I selectively inhibited N-type Ca(2+) channel and had only very weak effect on L-type Ca(2+) channel in prostaglandin E(1) differentiated NG108-15 cells.  相似文献   

19.
Both spironolactone (SP) and its main metabolite, canrenoic acid (CA), prolong cardiac action potential duration and decrease the Kv11.1 (HERG) current. We examined the effects of SP and CA on cardiac hKv1.5, Kv4.3 and Kv7.1+minK channels that generate the human I(Kur), I(to1) and I(Ks), which contribute to the control of human cardiac action potential duration.hKv1.5 currents were recorded in stably transfected mouse fibroblasts and Kv4.3 and Kv7.1 + minK in transiently transfected Chinese hamster ovary cells using the whole-cell patch clamp. SP (1 microM) and CA (1 nM) inhibited hKv1.5 currents by 23.2 +/- 3.2 and 18.9 +/- 2.7%, respectively, shifted the midpoint of the activation curve to more negative potentials and delayed the time course of tail deactivation.SP (1 microM) and CA (1 nM) inhibited the total charge crossing the membrane through Kv4.3 channels at +50 mV by 27.1 +/- 6.4 and 27.4 +/- 5.7%, respectively, and accelerated the time course of current decay. CA, but not SP, shifted the inactivation curve to more hyperpolarised potentials (V(h)-37.0 +/- 1.8 vs -40.8 +/- 1.6 mV, n = 10, P < 0.05).SP (10 microM) and CA (1 nM) also inhibited Kv7.1 + minK currents by 38.6 +/- 2.3 and 22.1 +/- 1.4%, respectively, without modifying the voltage dependence of channel activation. SP, but not CA, slowed the time course of tail current decay.CA (1 nM) inhibited the I(Kur) (29.2 +/- 5.5%) and the I(to1) (16.1 +/- 3.9%) recorded in mouse ventricular myocytes and the I(K) (21.8 +/- 6.9%) recorded in guinea-pig ventricular myocytes.A mathematical model of human atrial action potentials demonstrated that K(+) blocking effects of CA resulted in a lengthening of action potential duration, both in normal and atrial fibrillation simulated conditions. The results demonstrated that both SP and CA directly block hKv1.5, Kv4.3 and Kv7.1 + minK channels, CA being more potent for these effects. Since peak free plasma concentrations of CA ranged between 3 and 16 nM, these results indicated that blockade of these human cardiac K(+) channels can be observed after administration of therapeutic doses of SP.Blockade of these cardiac K(+) currents, together with the antagonism of the aldosterone proarrhythmic effects produced by SP, might be highly desirable for the treatment of supraventricular arrhythmias.  相似文献   

20.
1. Neuropeptide Y (NPY) reduces cell shortening at high concentrations in guinea-pig ventricular myocytes. We have studied the effects of the peptide on calcium current in cardiac myocytes. 2. We have recorded L-type calcium current in guinea-pig ventricular myocytes under conditions in which the effects of other overlapping currents have been minimised by using Na(+)-free, K(+)-free external solution and patch-clamp electrodes containing Cs+. 3. Peak inward calcium current is reduced by NPY at concentrations in excess of 1 nM, and maximal inhibition (31%) was found at and above concentrations of 100 nM. The IC50 value for NPY inhibition of peak calcium current was 1.72 nM. 4. NPY had no effect on the voltage-dependence of calcium current amplitude, on the time course of current inactivation, or on the voltage-dependence of the steady-state gating variables. 5. NPY did not reduce the calcium current in the presence of 8-Br-cyclic AMP, and it was also without effect when GTP-gamma-S or GDP-beta-S were included in the patch pipette. 6. We conclude that in guinea-pig ventricular myocytes NPY acts at low concentration to reduce L-type calcium current, via a G-protein-mediated pathway and reduction in intracellular cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号