首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is general agreement that dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and prefrontal cortex play a key role in drug reinforcement. The activity of these neurons is strongly modulated by the inhibitory and excitatory input they receive. Activation of mu-opioid receptors, located on GABAergic neurons in the VTA, causes hyperpolarization of these GABAergic neurons, thereby causing a disinhibition of VTA dopaminergic neurons. This effect of mu-opioid receptors upon GABA neurotransmission is a likely mechanism for mu-opioid receptor modulation of drug reinforcement. We studied mu-opioid receptor signaling in relation to cocaine reinforcement in wild-type and mu-opioid receptor knockout mice using a cocaine self-administration paradigm and in vitro electrophysiology. Cocaine self-administration was reduced in mu-opioid receptor knockout mice, suggesting a critical role of mu-opioid receptors in cocaine reinforcement. The frequency of spontaneous inhibitory post-synaptic currents onto dopaminergic neurons in the ventral tegmental area was increased in mu-opioid receptor knockout mice compared with wild-type controls, while the frequency of spontaneous excitatory post-synaptic currents was unaltered. The reduced cocaine self-administration and increased GABAergic input to VTA dopaminergic neurons in mu-opioid receptor knockout mice supports the notion that suppression of GABAergic input onto dopaminergic neurons in the VTA contributes to mu-opioid receptor modulation of cocaine reinforcement.  相似文献   

2.
The striatum is reciprocally connected to the brainstem dopaminergic nuclei and receives a strong dopaminergic input. In the present study the spatial relation between the dopaminergic and dopaminoceptive structures of the avian medial striatum (formerly: lobus parolfactorius) was observed by confocal laser scanning microscope in the domestic chick (Gallus domesticus). We also analysed the connections in the area ventralis tegmentalis and the substantia nigra. To label the dopaminergic structures, anti-tyrosine hydroxylase was used and DARPP-32 (dopamine and cAMP regulated phosphoprotein) was a marker of dopaminoceptive elements. The tyrosine hydroxylase positive fibres formed baskets of juxtapositions around the DARPP-32 containing cells of the medial striatum. However, such baskets were also observed to juxtapose DARPP-32 immunonegative cells. In the tegmentum, DARPP-32 was observed in axons descending from the telencephalon via the ansa lenticularis. These varicose fibers innervated the ventral tegmental area and substantia nigra and were often juxtaposed to dopaminergic neurons and dendrites. Approximately 40% of the striatal projection neurons targeting the ventral tegmentum, and 60% of striatal projection neurons targeting the nigra were immunoreactive to DARPP-32, as revealed by retrograde pathway tracing with Fast Blue. Endogenous dopamine may exert a retrograde synaptic effect on the afferent striato-tegmental fibers, apart from the reported extrasynaptic action. The abundance of juxtapositions observed in the avian brainstem and medial striatum corroborates the possibility of reciprocal striato-tegmental circuits, relevant to the reinforcement of behaviour.  相似文献   

3.
The vast majority of striatal neurons are GABAergic medium-sized spiny neurons. These cells receive glutamatergic input from the cortex, thalamus and limbic areas and dopaminergic input from the mesencephalon. Most relevant evidence indicates that dopamine D1 receptors are located on striatonigral projection neurons, and that adenosine A2A receptors and most dopamine D2 receptors are located on striatopallidal projection neurons (see, however, Refs I and 13). Here we have utilized regulation of the phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein of mol. wt 32,000 (DARPP-32) to study the possible interactions among nigrostriatal dopaminergic neurons and the two classes of dopaminoceptive target neurons. We show that, in striatal slices, the D2 receptor agonist, quinpirole, strongly inhibits the phosphorylation of DARPP-32 induced by either the D1 receptor agonist, SKF 81297, or the A2A receptor agonist, CGS 21680. Tetrodotoxin abolished the effect of quinpirole on the D1 agonist-induced but not the A2A agonist-induced phosphorylation of DARPP-32. These data indicate that: (i) adenosine A2A and dopamine D2 receptors interact within the same striatopallidal neurons, and (ii) D2 receptors present on the striatopallidal neurons modulate the effects of D1 receptors on the striatonigral neurons. Thus, a single neurotransmitter is capable of activating distinct classes of receptors on distinct populations of target neurons, which, in turn, interact with each other through intercellular communication.  相似文献   

4.
Midbrain dopamine neurons are critical in mediating the rewarding effects of opiates in dependent rats, as well as modulating some manifestations of opiate withdrawal. Morphine is known to excite dopamine neurons and thereby facilitate forebrain dopamine transmission through inhibition of GABA neurons. Cholinergic neurons in the mesopontine laterodorsal and pedunculopontine tegmental nuclei provide the principal source of excitatory cholinergic input to ventral tegmental area and substantia nigra pars compacta dopamine-containing neurons, via actions on midbrain muscarinic and nicotinic acetylcholine receptors. The present study hypothesized that a reduction in tonic cholinergic input via blockade of midbrain muscarinic receptors would reduce the pharmacological effects of morphine on forebrain dopamine release. Using in vivo chronoamperometry, alterations in morphine-evoked dopamine efflux were monitored at stearate-graphite paste electrodes implanted unilaterally in the nucleus accumbens and striatum of urethane (1.5 g/kg) anesthetized rats, following the pharmacological inhibition of ventral tegmental area/substantia nigra pars compacta muscarinic receptors. The facilitatory effects of morphine (2.0 mg/kg, i.v.) on accumbens and striatal dopamine efflux were markedly reduced by prior infusion of the non-selective muscarinic receptor antagonist scopolamine (200 microg/microl) into the ventral tegmental area or substantia nigra pars compacta, respectively. These findings demonstrate that decreased activation of midbrain muscarinic receptors attenuates the excitatory effects of morphine on mesoaccumbens and nigrostriatal dopaminergic transmission.  相似文献   

5.
Dopamine (DA), via activation of D1 receptors, enhances N-methyl-D-aspartate (NMDA)-evoked responses in striatal neurons. The present investigation examined further the properties of this enhancement and the potential mechanisms by which this enhancement might be effected. Dissociated medium-sized striatal neurons were obtained from intact rats and mice or mutant mice lacking the DA and cyclic adenosine 3',5' monophosphate (cAMP)-regulated phosphoprotein of M(R) 32,000 (DARPP-32). NMDA (10-1,000 microM) induced inward currents in all neurons. In acutely dissociated neurons from intact rats or mice, activation of D1 receptors with the selective agonist, SKF 81297, produced a dose-dependent enhancement of NMDA currents. This enhancement was reduced by the selective D1 receptor antagonist SKF 83566. Quinpirole, a D2 receptor agonist alone, produced small reductions of NMDA currents. However, it consistently and significantly reduced the enhancement of NMDA currents by D1 agonists. In dissociated striatal neurons, in conditions that minimized the contributions of voltage-gated Ca(2+) conductances, the D1-induced potentiation was not altered by blockade of L-type voltage-gated Ca(2+) conductances in contrast to results in slices. The DARPP-32 signaling pathway has an important role in D1 modulation of NMDA currents. In mice lacking DARPP-32, the enhancement was significantly reduced. Furthermore, okadaic acid, a protein phosphatase 1 (PP-1) inhibitor, increased D1-induced potentiation, suggesting that constitutively active PP-1 attenuates D1-induced potentiation. Finally, activation of D1 receptors produced differential effects on NMDA and gamma aminobutyric acid (GABA)-induced currents in the same cells, enhancing NMDA currents and inhibiting GABA currents. Thus simultaneous activation of D1, NMDA, and GABA receptors could predispose medium-sized spiny neurons toward excitation. Taken together, the present findings indicate that the unique potentiation of NMDA receptor function by activation of the D1 receptor signaling cascade can be controlled by multiple mechanisms and has major influences on neuronal function.  相似文献   

6.
Nocjar C  Roth BL  Pehek EA 《Neuroscience》2002,111(1):163-176
Considerable evidence suggests that a dysfunction of the dopamine and serotonin (5-hydroxytryptamine or 5-HT) neurotransmitter systems contributes to a diverse range of pathological conditions including schizophrenia, depression and drug abuse. Recent electrophysiological and behavioral studies suggest that 5-HT modulates dopaminergic neurons in the ventral tegmental area via activation of 5-HT(2A) receptors. It is currently unknown if 5-HT(2A) receptors mediate their actions on dopaminergic neurons in the ventral tegmental area via direct or indirect mechanisms. This study investigated whether 5-HT(2A) receptors were localized on dopamine cells within the A10 dopamine subnuclei of the rat, including the ventral tegmental area. We discovered that 5-HT(2A) receptor-like immunoreactivity colocalized with tyrosine hydroxylase, a marker for dopamine neurons, throughout the A10 dopamine cell population. Colocalization was most prominent in rostral and mid A10 regions, including the paranigral, parabrachial, and interfascicular subnuclei. Though more rare, non-dopaminergic neurons also expressed 5-HT(2A) receptor immunoreactivity in the ventral tegmental area. Additionally, although a dense population of 5-HT(2A) immunoreactive cells was observed in the rostral dorsal raphe nucleus, rarely were these cells immunoreactive for tyrosine hydroxylase. The linear raphe A10 dopamine subdivisions also displayed a low degree of 5-HT(2A) receptor and tyrosine hydroxylase colocalization.These findings provide an anatomical basis for the physiological modulation of dopamine neurons in the rostral ventral tegmental area either directly, by 5-HT(2A) receptors localized on dopamine cells, or indirectly, through a non-dopaminergic mechanism. Interestingly, 5-HT(2A) receptors were expressed on dopamine neurons in several A10 subnuclei that project to mesolimbic forebrain regions implicated in drug addiction, and recent evidence indicates that ventral tegmental area 5-HT(2A) receptor activation may modulate reward-related behavior in rodents. 5-HT(2A) receptors were also expressed on dopamine cells in A10 subnuclei that project to forebrain areas that have been implicated in schizophrenia, and atypical antipsychotic drugs have high affinities for 5-HT(2A) receptors. Thus, findings in this study could have important implications for understanding 5-HT and dopamine circuitry dysfunction in schizophrenia.  相似文献   

7.
Interactions between dopamine and glutamate receptors are essential for the prefrontal cortical (PFC) and hippocampal cognitive functions. In order to understand the molecular basis of dopamine/glutamate interactions in rat PFC and hippocampus, we investigated (a) the effect of in vitro dopamine D1 receptor stimulation on glutamate N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits' phosphorylation and (b) the signal transduction pathway underlying these interactions, by examining the involvement of D1–extracellular regulated kinase 1/2 (ERK1/2) and D1/protein kinase A (PKA)/dopamine- and cyclic AMP-regulated phosphoprotein-32 (DARPP-32) signaling pathways. Furthermore, we compared the D1/NMDA/AMPA receptor interactions seen in PFC and hippocampus with those appearing in striatum, in which the D1 receptors' density is the highest within the mammalian brain. Our results showed that stimulation of D1 receptor by the specific agonist SKF38393 (10 μM) in PFC and hippocampal slices significantly increased the phosphorylation state of NR1ser897 and NR2Bser1303 subunits of NMDA receptor and of the GLUR1 (ser831 and ser845) subunit of AMPA receptor, as well as of ERK1/2, but not of DARPP-32. Interestingly, co-stimulation of D1 and NMDA receptors with an ineffective dose of SKF38393 (2 μM) and NMDA (5 μM) respectively, elevated further the phosphorylation level of NMDA and AMPA receptor subunits, as well as of ERK1/2, but not of DARPP-32. The D1- and D1/NMDA-induced phosphorylations were totally inhibited by SL327 (specific ERK1/2 inhibitor). Conversely, in striatal slices our data confirm that the D1-mediated phosphorylation of NMDA and AMPA receptor subunits relies on D1/PKA/DARPP-32 signaling. In conclusion, in PFC and hippocampus: (a) a strong synergistic interaction of D1 and NMDA receptors exists, which results in a significant ERK1/2 pathway activation, (b) the D1 and the D1/NMDA receptor-induced phosphorylation of NMDA and AMPA receptor subunits seems to rely on ERK1/2 signaling and could to some extent underlie the enhancement of NMDA and AMPA receptor currents mediated by D1 receptor activation.  相似文献   

8.
Lessard A  Pickel VM 《Neuroscience》2005,135(4):1309-1323
Neurokinin-1 receptors show activity-dependent changes in their surface distributions that are critical in spinal pain mechanisms, and also may play an important role in the motor and affective behaviors influenced by dopaminergic projections from the substantia nigra and ventral tegmental area. To determine the relevant sites for neurokinin-1 receptor activation in these midbrain regions, we examined the electron microscopic immunolabeling of neurokinin-1 receptors and the dopamine-synthesizing enzyme, tyrosine hydroxylase in normal rats. We also examined whether neurokinin-1 receptor distributions in one or both regions are affected by (1) startle-evoking intense auditory stimulation or (2) acute administration of apomorphine, a dopamine D1/D2 agonist that enhances startle while paradoxically reducing the prepulse inhibition produced by low intensity conditioning stimuli in rat models of schizophrenia. In each region, neurokinin-1 immunogold was located on the plasma membrane and endomembranes of somatodendritic profiles with or without tyrosine hydroxylase. As compared with controls, animals receiving intense auditory stimulation either alone or together with smaller low intensity prepulses showed a significant increase in neurokinin-1-plasmalemmal labeling in non-dopaminergic dendrites of both regions, and a reduction in this labeling in dopaminergic dendrites of the ventral tegmental area. Both effects were diminished following apomorphine administration. In absence of the intense auditory stimulation, however, apomorphine increased neurokinin-1-immunogold particles on the plasma membrane of the non-dopaminergic dendrites exclusively in the substantia nigra. Our results are the first to show that neurokinin-1 receptors have plasmalemmal distributions in dopaminergic and non-dopaminergic neurons that can be differentially modified by startle-evoking auditory stimulation. They suggest that while apomorphine can independently affect neurokinin-1 receptor trafficking in substantia nigra motor circuits, its effects on neurokinin-1 receptor distributions in the ventral tegmental area are exclusively dependent on sensory activation.  相似文献   

9.
目的 探讨DARPP-32在大鼠全脑的表达分布特点.方法 应用免疫组织化学染色技术对大鼠脑内DARPP-32的表达分布进行观察.结果 免疫组织化学染色结果显示,强阳性的DARPP-32染色大部分分布于基底节区和前嗅皮质区,主要分布在伏隔核、尾壳核及杏仁核复合体的神经元胞体内,以及苍白球、腹侧苍白球、脚间核及黑质网状部的...  相似文献   

10.
The activity of dopamine neurons in the ventral tegmental area is modulated by excitatory (glutamatergic) and inhibitory (GABAergic) afferents. GABA, released by intrinsic neurons and by projection neurons originating in the nucleus accumbens and other regions, inhibits dopamine neurons via activation of GABA(A) and GABA(B) receptor subtypes. Using in vivo microdialysis in freely moving rats, we investigated the role of ventral tegmental area GABA(B) receptors in modulating levels of dopamine and glutamate within the ventral tegmental area, both in naive rats and in rats treated repeatedly with saline or amphetamine (5 mg/kg i.p., for 5 days). In naive rats, administration of a potent and selective GABA(B) receptor antagonist (CGP 55845A) into the ventral tegmental area elicited a concentration-dependent increase in dopamine levels, but did not alter glutamate levels. In rats tested 3 days after discontinuing repeated amphetamine administration, 50 microM CGP 55845A increased dopamine levels to a greater extent than in saline controls. This difference was no longer present in rats tested 10-14 days after discontinuing repeated amphetamine injections. CGP 55845A (50 microM) had no effect on glutamate levels in the ventral tegmental area of saline-treated rats. However, it produced a robust increase in glutamate levels in rats tested 3 days, but not 10-14 days, after discontinuing repeated amphetamine injections.These results suggest that somatodendritic dopamine release is normally under strong tonic inhibitory control by GABA(B) receptors. Repeated amphetamine administration enhances GABA(B) receptor transmission in the ventral tegmental area during the early withdrawal period, increasing inhibitory tone on both dopamine and glutamate levels. This is the first demonstration, in an intact animal, that drugs of abuse alter GABA(B) receptor transmission in the ventral tegmental area.  相似文献   

11.
Adenosine is known to modulate the function of neostriatal neurons. Adenosine acting on A(2A) receptors increases the phosphorylation of dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) at Thr34 (the cAMP-dependent protein kinase [PKA] site) in striatopallidal neurons, and opposes dopamine D2 receptor signaling. In contrast, the role of adenosine A(1) receptors in the regulation of dopamine/DARPP-32 signaling is not clearly understood. Here, we investigated the effect of adenosine A(1) receptors on D(1), D(2) and A(2A) receptor signaling using mouse neostriatal slices. An A(1) receptor agonist, 2-chloro-N(6)-cyclopentyladenosine (100 nM), caused a transient increase, followed by a transient decrease, in DARPP-32 Thr34 phosphorylation. Our data support the following model for the actions of the A(1) receptor agonist. The A(1) receptor-induced early increase in Thr34 phosphorylation was mediated by presynaptic inhibition of dopamine release, and the subsequent removal of tonic inhibition by D(2) receptors of A(2A) receptor/G(olf)/cAMP/PKA signaling. The A(1) receptor-induced late decrease in Thr34 phosphorylation was mediated by a postsynaptic G(i) mechanism, resulting in inhibition of D(1) and A(2A) receptor-coupled G(olf)/cAMP/PKA signaling in direct and indirect pathway neurons, respectively. In conclusion, A(1) receptors play a major modulatory role in dopamine and adenosine receptor signaling.  相似文献   

12.
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32–positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor–mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95–dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.  相似文献   

13.
The dopaminergic innervation of the avian telencephalon.   总被引:4,自引:0,他引:4  
The present review provides an overview of the distribution of dopaminergic fibers and dopaminoceptive elements within the avian telencephalon, the possible interactions of dopamine (DA) with other biochemically identified systems as revealed by immunocytochemistry, and the involvement of DA in behavioral processes in birds. Primary sensory structures are largely devoid of dopaminergic fibers, DA receptors and the D1-related phosphoprotein DARPP-32, while all these dopaminergic markers gradually increase in density from the secondary sensory to the multimodal association and the limbic and motor output areas. Structures of the avian basal ganglia are most densely innervated but, in contrast to mammals, show a higher D2 than D1 receptor density. In most of the remaining telencephalon D1 receptors clearly outnumber D2 receptors. Dopaminergic fibers in the avian telencephalon often show a peculiar arrangement where fibers coil around the somata and proximal dendrites of neurons like baskets, probably providing them with a massive dopaminergic input. Basket-like innervation of DARPP-32-positive neurons seems to be most prominent in the multimodal association areas. Taken together, these anatomical findings indicate a specific role of DA in higher order learning and sensory-motor processes, while primary sensory processes are less affected. This conclusion is supported by behavioral findings which show that in birds, as in mammals, DA is specifically involved in sensory-motor integration, attention and arousal, learning and working memory. Thus, despite considerable differences in the anatomical organization of the avian and mammalian forebrain, the organization of the dopaminergic system and its behavioral functions are very similar in birds and mammals.  相似文献   

14.
15.
Onn SP  Lin M  Liu JJ  Grace AA 《Neuroscience》2008,151(3):802-816
The roles of dopamine and cyclic-AMP regulated phosphoprotein-32 (DARPP-32) in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wild-type (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared with baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked excitatory postsynaptic potentials (EPSPs) in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic inhibitory potentials (IPSPs) were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits.  相似文献   

16.
The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2-lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.  相似文献   

17.
Changes in striatal dopamine turnover and levels of tyrosine hydroxylase messenger RNA were examined in mice injected with D2 selective doses of fluphenazine-N-mustard, an irreversible blocker of dopaminergic receptors. The animals were killed at different times after acute and repeated injections of the drug and dopamine turnover was assessed by measuring dopamine and its metabolite, dihydroxyphenylalanine, in the striatum. Tyrosine hydroxylase mRNA was measured at the single-cell level in neurons of the substantia nigra pars compacta and the ventral tegmental area with quantitative in situ hybridization histochemistry. Acute treatment with fluphenazine-N-mustard induced an increase in both striatal dopamine turnover and the level of tyrosine hydroxylase mRNA in the substantia nigra but not the ventral tegmental area. After two days of repeated drug injections (twice daily), tyrosine hydroxylase mRNA was decreased in the substantia nigra despite the persistence of an elevated dopamine turnover in the striatum. The decrease in mRNA was still observed after four days of repeated treatment while, at that time, turnover values were not different from control. No changes were observed in the ventral tegmental area. The initial increase in tyrosine hydroxylase mRNA in substantia nigra pars compacta suggests that activation of nigrostriatal neurons triggers a very rapid increase in genomic expression of the enzyme. The following decrease in mRNA levels precedes desensitization to the effects of the drug on dopamine turnover, further illustrating a lack of correspondence between increased neurotransmission and levels of tyrosine hydroxylase mRNA in catecholaminergic neurons of the central nervous system.  相似文献   

18.
Dopamine is a critical determinant of neostriatal function, but its impact on intrastriatal GABAergic signaling is poorly understood. The role of D(1) dopamine receptors in the regulation of postsynaptic GABA(A) receptors was characterized using whole cell voltage-clamp recordings in acutely isolated, rat neostriatal medium spiny neurons. Exogenous application of GABA evoked a rapidly desensitizing current that was blocked by bicuculline. Application of the D(1) dopamine receptor agonist SKF 81297 reduced GABA-evoked currents in most medium spiny neurons. The D(1) dopamine receptor antagonist SCH 23390 blocked the effect of SKF 81297. Membrane-permeant cAMP analogues mimicked the effect of D(1) dopamine receptor stimulation, whereas an inhibitor of protein kinase A (PKA; Rp-8-chloroadenosine 3',5' cyclic monophosphothioate) attenuated the response to D(1) dopamine receptor stimulation or cAMP analogues. Inhibitors of protein phosphatase 1/2A potentiated the modulation by cAMP analogues. Single-cell RT-PCR profiling revealed consistent expression of mRNA for the beta1 subunit of the GABA(A) receptor-a known substrate of PKA-in medium spiny neurons. Immunoprecipitation assays of radiolabeled proteins revealed that D(1) dopamine receptor stimulation increased phosphorylation of GABA(A) receptor beta1/beta3 subunits. The D(1) dopamine receptor-induced phosphorylation of beta1/beta3 subunits was attenuated significantly in neostriata from DARPP-32 mutants. Voltage-clamp recordings corroborated these results, revealing that the efficacy of the D(1) dopamine receptor modulation of GABA(A) currents was reduced in DARPP-32-deficient medium spiny neurons. These results argue that D(1) dopamine receptor stimulation in neostriatal medium spiny neurons reduces postsynaptic GABA(A) receptor currents by activating a PKA/DARPP-32/protein phosphatase 1 signaling cascade targeting GABA(A) receptor beta1 subunits.  相似文献   

19.
Putative dopaminergic (pDAergic) ventral tegmental area neurons play an important role in brain pathways related to addiction. Extended exposure of pDAergic neurons to moderate concentrations of dopamine (DA) results in a time-dependent decrease in sensitivity of pDAergic neurons to DA inhibition, a process called dopamine inhibition reversal (DIR). We have shown that DIR is mediated by phospholipase C and conventional protein kinase C through concurrent stimulation of D2 and D1-like receptors. In the present study, we further characterized this phenomenon by using extracellular recordings in brain slices to examine whether DIR is linked to phosphatidylinositol (PI) or adenylate cyclase (AC) second-messenger pathways. A D1-like dopaminergic agonist associated with PI turnover (SKF83959), but not one linked to AC (SKF83822), promoted reversal of inhibition produced by quinpirole, a dopamine D2-selective agonist. Other neurotransmitter receptors linked to PI turnover include serotonin 5-HT(2), α(1)-adrenergic, neurotensin, and group I metabotropic glutamate (mGlu) receptors. Both serotonin and neurotensin produced significant reversal of quinpirole inhibition, but agonists of α(1)-adrenergic and group I mGlu receptors failed to significantly reverse quinpirole inhibition. These results indicate that some agonists that stimulate PI turnover can facilitate desensitization of D2 receptors but that there may be other factors in addition to PI that control that interaction.  相似文献   

20.
The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABAB receptors. Stimulation of the GABAB receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 μM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABAB receptor agonist baclofen (100 and 200 μM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABAB receptor stimulation seems to be behaviorally relevant. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号