首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphological characteristics of cholinergic neurons in the central nervous system (CNS) of the baboon (Papio papio) were studied by choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. The distributions of central cholinergic neurons as visualized by these two histochemical techniques were similar in most, but not all regions of the brain and spinal cord. Based upon these observations, central cholinergic neurons that are immunoreactive to ChAT and intensely stained for AChE by the pharmacohistochemical procedure can be divided into four major groups: (1) those in the caudate nucleus, putamen, nucleus accumbens and anterior perforated substance. These ChAT-containing and AChE-intense neurons are large and multipolar, and are scattered throughout these structures. (2) The rostral cholinergic column, which consists of a continuous mass of cholinergic perikarya situated in the medial septal nucleus, nucleus of the diagonal band, and nucleus basalis (Meynert). The ChAT-immunoreactive and AChE-intense cell bodies of the nucleus basalis are a prominent feature in the basal forebrain of the baboon. The labeled neurons are large, multipolar, and hyperchromic and show a tendency to aggregate in cell clusters. These cells are distributed within the full extent of the substantia innominata, often being associated with subcortical fiber networks such as the medullary laminae of the globus pallidus. (3) The caudal cholinergic column, which consists of a continuous group of cholinergic neurons in the caudal midbrain and pontine tegmentum. The rostral component of this group of cells is the nucleus tegmenti pedunculopontinus (subnucleus compacta) and it extends caudally to include the laterodorsal tegmental nucleus. Compared to that in other species the nucleus tegmenti pedunculopontinus in the baboon appears to occupy a relatively greater volume and is composed of a greater number of cholinergic neurons. The cells of the caudal column are large and hyperchromic. (4) Nuclei of origin of somatic and visceral efferents of the cranial nerves (III, IV, V, VI, VII, IX, X, XI, XII) and spinal nerves. In addition to these major cholinergic cell groups, a small population of ChAT-positive and AChE-intense cell bodies can be observed at the floor of the fourth ventricle and in lamina VII and X of the cervical cord. The present findings indicate that although some differences exist, the overall distribution and morphological features of cholinergic cell bodies identified in the baboon brain and spinal cord are similar to those demonstrated previously in investigations of the rhesus monkey and nonprimates.  相似文献   

2.
The cholinergic projections to the limbic telecephalon in the rat were investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry (pharmacohistochemical regimen). Propidium iodide or Evans Blue was infused into the olfactory bulb, hippocampus, dorsal retrohippocampal region, amygdala, and the entorhinal, perirhinal, pyriform, insular, and cingular cortices. Retrogradely transported fluorescent labels and ChAT and/or AChE were microscopically analyzed on the same brain section. Virtually all of the cholinergic projections to the limbic telencephalon derived from the basal forebrain cholinergic system composed of neurons associated with the medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, the subpallidal substantia innominata and its rostral extension into the regions of the ventral pallidum laterally and the lateral preoptic area medially, and the nucleus basalis. The cingulate cortex received a small cholinergic projection from the dorsolateral tegmental nucleus in the brainstem. All of the presumed cholinergic innervation of the olfactory bulb, hippocampus, and dorsal retrohippocampal area and the majority of cholinergic afferents to posterior cingulate and entorhinal cortices derived from the medial septal nucleus, vertical and horizontal limbs of the diagonal band, magnocellular preoptic area, and rostral substantia innominata. Putative cholinergic afferents to the amygdala and to pyriform, insular, perirhinal, and anterior cingulate cortices orginated from ChAT-positive cells concentrated more caudally in the basal forebrain cholinergic system. Within the basal forebrain, no simple topographic pattern emerged to explain the cholinergic innervation of the limbic telencephalon, although an essentially reverse rostrocaudal organization was observed for afferents to the cingular region. It was noted, however, that most regions of the limbic telencephalon received cholinergic input from rostral portions of the basal forebrain cholinergic system, an observation inviting speculation that anterior aspects of the basal forebrain provide cholinergic afferents primarily to limbic structures in the telencephalon whereas more caudal portions are the source of cholinergic fibers preferentially innervating non-limbic regions. Of the total number of projection neurons innervating a given region of the limbic telencephalon, a greater proportion was ChAT-positive if phylogenetically newer target structures were innervated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The timing of the final mitotic division of basal forebrain cholinergic neurons was studied by injecting [3H]thymidine into timed pregnant rats and processing the brains of their progeny as young adults for immunohistochemistry with a monoclonal antibody to choline acetyltransferase (ChAT) followed by autoradiography. ChAT-positive neurons located caudally in the basal forebrain were found to become postmitotic mostly on embryonic (E) days 12 and 13, whereas the peak final mitosis of more rostrally located ChAT-positive neurons occurred increasingly later, with the most rostral ChAT-immunoreactive neurons leaving their final mitotic cycles on E15 and E16. In all basal forebrain regions, cholinergic neurogenesis was complete by E17. These results indicate that the cholinergic neurons in the basal forebrain become postmitotic in a caudal-to-rostral gradient over about 5 days. The continuity of the gradient suggests that these cholinergic neurons may derive from the same germinal source.  相似文献   

4.
Although the distribution of cholinergic cells is remarkably similar across the vertebrate species, no data are available on more primitive species, such as cartilaginous fishes. To extend the evolutionary analysis of the cholinergic systems, we studied the distribution of cholinergic neurons in the brain and rostral spinal cord of Scyliorhinus canicula by immunocytochemistry using an antibody against the enzyme choline acetyltransferase (ChAT). Western blot analysis of brain extracts of dogfish, sturgeon, trout, and rat showed that this antibody recognized similar bands in the four species. Putative cholinergic neurons were observed in most brain regions, including the telencephalon, diencephalon, cerebellum, and brainstem. In the retrobulbar region and superficial dorsal pallium of the telencephalon, numerous small pallial cells were ChAT-like immunoreactive. In addition, tufted cells of the olfactory bulb and some cells in the lateral pallium showed faint immunoreactivity. In the preoptic-hypothalamic region, ChAT-immunoreactive (ChAT-ir) cells were found in the preoptic nucleus, the vascular organ of the terminal lamina, and a small population in the caudal tuber. In the epithalamus, the pineal photoreceptors were intensely positive. Many cells of the habenula were faintly ChAT-ir, but the neuropil of the interpeduncular nucleus showed intense ChAT immunoreactivity. In the pretectal region, ChAT-ir cells were observed only in the superficial pretectal nucleus. In the brainstem, the somatomotor and branchiomotor nuclei, the octavolateral efferent nucleus, and a cell group just rostral to the Edinger-Westphal (EW) nucleus contained ChAT-ir neurons. In addition, the trigeminal mesencephalic nucleus, the nucleus G of the isthmus, some locus coeruleus cells, and some cell populations of the vestibular nuclei and of the electroreceptive nucleus of the octavolateral region exhibited ChAT immunoreactivity. In the reticular areas of the brainstem, the nucleus of the medial longitudinal fascicle, many reticular neurons of the rhombencephalon, and cells of the nucleus of the lateral funiculus were immunoreactive to this antibody. In the cerebellum, Golgi cells of the granule cell layer and some cells of the cerebellar nucleus were also ChAT-ir. In the rostral spinal cord, ChAT immunoreactivity was observed in cells of the motor column, the dorsal horn, the marginal nucleus (a putative stretch-receptor organ), and in interstitial cells of the ventral funiculus. These results demonstrate for the first time that cholinergic neurons are distributed widely in the central nervous system of elasmobranchs and that their cholinergic systems have evolved several characteristics that are unique to this group.  相似文献   

5.
Cholinergic neurons in the retina of the tree shrew were identified immunocytochemically using a monoclonal antibody directed against choline acetyltransferase (ChAT). The chief result is that roughly 4 times as many ChAT-immunoreactive neurons are found in the inner nuclear layer (INL) as in the ganglion cell layer (GCL). In the INL, two classes of cholinergic neuron can be distinguished on the basis of soma size, one large and one small. The large neurons correspond closely in size and number to the displaced cholinergic neurons in the GCL, suggesting that these are the matching populations of cholinergic amacrine cells reported in other species. The small ChAT-immunoreactive neurons, on the other hand, which make up 60% of the total number of ChAT-positive neurons in the retina, appear to have no counterpart in the GCL. Whether these small neurons are a separate class of amacrine cell or some other cell type (e.g. bipolar, interplexiform, etc.) remains to be determined.  相似文献   

6.
The immunohistochemical localization of the neurotransmitter synthesizing enzymes choline acetyltransferase, tyrosine hydroxylase and dopamine-beta-hydroxylase was examined in the feline pontomesencephalic tegmentum. Examination of adjacent sections stained for either choline acetyltransferase, tyrosine hydroxylase or dopamine-beta-hydroxylase immunoreactivity, as well as individual sections doubly stained for both choline acetyltransferase and tyrosine hydroxylase immunoreactivity, unequivocally demonstrated that noradrenergic and cholinergic neurons were extensively intermingled in the brainstem tegmentum of the cat. This contrasts with the situation in various other species, where neurons utilizing these two neurotransmitters are discretely localized in distinct nuclei. Furthermore, the present studies demonstrate the existence of two types of choline acetyltransferase immunoreactive neurons in the feline tegmentum: the magnocellular neurons of the pedunculopontine and laterodorsal tegmental nuclei which stain histochemically for NADPH diaphorase, plus a population of small spindle-shaped neurons in the medial and lateral parabrachial nuclei which do not stain positively for NADPH diaphorase. The data are discussed with respect to several influential hypotheses of sleep cycle control.  相似文献   

7.
The cholinergic innervation of the interpeduncular nucleus was investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. Following propidium iodide or Evans Blue infusion into the interpeduncular nucleus, brains were processed for co-localization of transported fluorescent label and ChAT and AChE. Control infusions of tracers were made into the ventral tegmental area. In order to delimit the course of putative cholinergic afferents to the interpeduncular nucleus from extra-habenular sources, knife cuts surrounding the habenular nuclei were performed. Somata containing propidium iodide that were highly immunoreactive for ChAT were found primarily in the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, and the dorsolateral tegmental nucleus, also referred to as the laterodorsal tegmental nucleus. A few such co-labeled somata were also detected in the medial septal nucleus, substantia innominata, nucleus basalis, and pedunculopontine tegmental nucleus. A good correlation was observed between intensely-staining, AChE-containing and ChAT-positive neurons projecting to the interpeduncular nucleus from the aforementioned structures. Although the medial habenula contained numerous cells demonstrating transported label following interpeduncular infusion of fluorescent tracers, the ChAT-positivity associated with somata in that nucleus was weak compared to ChAT-like immunoreactivity in known cholinergic neurons in the basal forebrain and brainstem. Knife cuts that separated the habenular nuclei from the stria medullaris and neural regions lateral and posterior to those nuclei while leaving the fasciculus retroflexus intact resulted in a reduction of ChAT-like immunoreactivity in the medial habenular nucleus, fasciculus retroflexus, and interpeduncular nucleus. These data suggest (1) that the cholinergic innervation of the interpeduncular nucleus derives primarily from ChAT-positive cells in the basal forebrain and dorsolateral tegmental nucleus and (2) that putative cholinergic fibers having their origin in the medial habenula, if they exist, constitute a minor portion of the cholinergic input to the interpeduncular nucleus.  相似文献   

8.
A topographic map of the substance P and monoamine neurons in the ventrolateral medulla of the cat has been constructed from peroxidase anti-peroxidase immunohistochemically stained sections. The coordinates of this map use the foramen cecum of the medulla oblongata (i.e. the triangular depression at the junction between the caudal boundary of the pons and the rostral limit of the median fissure between the pyramidal tracts) as the zero point. Two distinct groups of substance P neurons have been found: a rostral group lies ventral to the facial nucleus and a caudal one is found ventrolateral to the inferior olivary nucleus. Two dopamine beta-hydroxylase-containing cell groups were identified that correspond to the A1 and A5 cell groups. The A5 cell group lies dorsal, lateral and caudal to superior olivary nucleus. The A1 cell group lies approximately 4.0-5.0 mm lateral to the midline at the level of the inferior olive; these cells lie mainly dorsolateral to the region of the magnocellular division of the lateral reticular nucleus. The B1 and B3 serotonin (5-hydroxytryptamine) cell groups of the ventrolateral medulla appear to form a continuous column with a rostral and a caudal swelling. The rostral group begins at the level of the facial nucleus (approximately 4 mm caudal to the foramen cecum) and is concentrated in the area just lateral to the pyramidal tract. It becomes reduced in size approximately 8.0 mm caudal to the foramen cecum, and then enlarges to form a caudal group (approximately 10 mm caudal to foramen cecum). Portions of this column overlap with the caudal substance P cell group. The C1 cell group lies in a restricted zone approximately 4.0 mm lateral to the midline at the level of the rostral part of the inferior olivary nucleus.  相似文献   

9.
The topographical distribution of cholinergic cell bodies has been studied in the rat brain and spinal cord by choline acetyltransferase (ChAT)-immunohistochemistry and acetylcholinesterase (AChE)-pharmacohistochemistry using diisopropylfluorophosphate (DFP). The ChAT-containing cells and the cells that stained intensely for AChE 4-8 hr after DFP were mapped in detail on an atlas of the forebrain (telencephalon, diencephalon) hindbrain (mesencephalon, rhombencephalon) and cervical cord (C2, C6). Striking similarities were observed between ChAT-positive cells and neuronal soma that stained intensely for AChE both in terms of cytoarchitectural characteristics, and with respect to the distribution of the labelled cells in many areas of the central nervous system (CNS). In the forebrain these areas include the caudatoputamen, nucleus accumbens, medial septum, nucleus of the diagonal band, magnocellular preoptic nucleus and nucleus basalis magnocellularis. In contrast, a marked discrepancy was observed in the hypothalamus and ventral thalamus where there were many neurons that stained intensely for AChE, but where there was an absence of ChAT-positive cells. No cholinergic perikarya were detected in the cerebral cortex, hippocampus, amygdala and dorsal diencephalon by either histochemical procedure. In the hindbrain, all the motoneurons constituting the well-established cranial nerve nuclei (III-VII, IX-XII) contained ChAT and exhibited intense staining for AChE. Further, a close correspondence was observed in the distribution of labeled neurons obtained by the two histochemical procedures in the midbrain and pontine tegmentum, including the laterodorsal tegmental nucleus, some areas in the caudal pontine and bulbar reticular formation, and the central gray of the closed medulla oblongata. On the other hand, AChE-intense cells were found in the nucleus raphe magnus, ventral part of gigantocellular reticular nucleus, and flocculus of the cerebellum, where ChAT-positive cells were rarely observed. According to both techniques, no positive cells were seen in the cerebellar nuclei, the pontine nuclei, or the nucleus reticularis tegmenti pontis. Large ventral horn motoneurons and, occasionally, cells in the intermediomedial zone of the cervical cord displayed ChAT-immunoreactivity and intense AChE staining. On the other hand, AChE-intense cells were detected in the dorsal portion of the lateral funiculus, but immunoreactive cells were not found in any portion of the spinal cord white matter.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The developmental stage at which a neuron becomes committed to a neurotransmitter phenotype is an important time in its ontogenetic history. The present study examines when choline acetyltransferase (ChAT) is first detected within each of four different subsets of cholinergic neurons previously identified in the cervical enlargement of the spinal cord: namely, motor neurons, partition cells, central canal cluster cells, and dorsal horn neurons. By examining the temporal sequence of embryonic development of these cholinergic neurons, we can infer the relationships between ChAT expression and other important developmental events. ChAT was first detected reliably on embryonic day 13 (E13) by both biochemical and immunocytochemical methods, and it was localized predominantly within motor neurons. A second group of primitive-appearing ChAT-positive cells was detected adjacent to the ventricular zone on E14. These neurons seemed to disperse laterally into the intermediate zone by E15, and, on the basis of their location, were tentatively identified as partition cells. A third group of primitive ChAT-immunoreactive cells was detected on E16, both within and around the ventral half of the ventricular zone. By E17, some members of this "U"-shaped group appeared to have dispersed dorsally and laterally, probably giving rise to dorsal horn neurons as well as dorsal central canal cluster cells. Other members of this group remained near the ventral ventricular zone, most likely differentiating into ventral central canal cluster cells. Combined findings from the present study and a previous investigation of neurogenesis (Phelps et al.: J. Comp. Neurol. 273:459-472, '88), suggest that premitotic precursor cells have not yet acquired the cholinergic phenotype because ChAT is not detectable until after the onset of neuronal generation for each of the respective subsets of cholinergic neurons. However, ChAT is expressed in primitive bipolar neurons located within or adjacent to the germinal epithelium. Transitional stages of embryonic development suggest that these primitive ChAT-positive cells migrate to different locations within the intermediate zone to differentiate into the various subsets of mature cholinergic neurons. Therefore, it seems likely that spinal cholinergic neurons are committed to the cholinergic phenotype at pre- or early migratory stages of their development. Our results also hint that the subsets of cholinergic cells may follow different migration routes. For example, presumptive partition cells may use radial glial processes for guidance, whereas dorsal horn neurons may migrate along nerve fibers of the commissural pathway. Cell-cell interactions along such diverse migratory pathways could play a role in determining the different morphological, and presumably functional, phenotypes expressed by spinal cholinergic neurons.  相似文献   

11.
NGF, a trophic polypeptide, is necessary for the normal development and survival of certain populations of neurons in the CNS and PNS. In the CNS, cholinergic neurons of the basal forebrain magnocellular complex (BFMC) are prominent targets of NGF. During rat development, NGF increases the activity of ChAT in these neurons. In adult rats with experimental injury of axons in the fimbria-fornix, NGF prevents degenerative changes in axotomized cholinergic BFMC neurons in the medial septal nucleus (MSN). Because the amino acid sequences of NGF and its receptor (NGF-R) are highly conserved across species, we hypothesized that mouse NGF would also prevent degeneration of cholinergic BFMC neurons in nonhuman primates. Therefore, the present study was designed to test whether fimbria-fornix lesions result in retrograde degenerative changes in basal forebrain cholinergic neurons in macaques, whether these changes are prevented by mouse NGF, and whether the protective effect of NGF is selective for cholinergic neurons of the basal forebrain. Following unilateral complete transection of the fornix, animals were allowed to survive for 2 weeks, during which time half of the subjects received intraventricular NGF in vehicle and the other half received vehicle alone. In animals receiving vehicle alone, there was a 55% reduction in the number of ChAT-immunoreactive cell bodies within the MSN ipsilateral to the lesion; loss of immunoreactive somata was more severe in caudal planes of the MSN. Remaining immunoreactive neurons appeared smaller than those in control, unoperated animals. In Nissl stains, there was no apparent loss of basophilic profiles in the MSN, but cells showed reduced size and intensity of basophilia. Treatment with NGF almost completely prevented reductions in the number and size of cholinergic neurons and had a significant general effect in preventing atrophy in basophilic magnocellular neurons of the MSN, though some basophilic neurons in the MSN did not appear to respond to NGF. Adjacent 7-microns-thick sections stained with ChAT and NGF-R immunocytochemistry revealed that these markers are strictly colocalized in individual neurons in the MSN in controls and in both groups of experimental animals. Thus, mouse NGF profoundly influences the process of axotomy-induced retrograde degeneration in cholinergic BFMC neurons in primates. The in vivo effectiveness of mouse NGF on primate BFMC neurons suggests that mouse or human recombinant NGF may be useful in ameliorating the ACh-dependent, age-associated memory impairments that occur in nonhuman primates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Although it is well known that magnocellular cholinergic basal forebrain neurons are trophically responsive to nerve growth factor (NGF) and contain NGF receptors (NGFr), the exact distribution of forebrain NGFr-immunoreactive neurons and the degree to which cholinergic neurons are colocalized with them have remained in question. In this study we employed a very sensitive double-labelling method and examined in the same tissue section the distribution and cellular features of NGFr-positive and choline acetyltransferase (ChAT)-immunolabelled neurons within the rat basal forebrain. Throughout this region the majority of magnocellular basal forebrain neurons were immunoreactive for both NGFr and ChAT. However, a small percentage of neurons in the ventral portion of the vertical limb of the diagonal band of Broca were immunoreactive only for NGFr, whereas a larger population of magnocellular neurons in the substantia innominata exhibited only ChAT immunoreactivity. No NGFr-immunoreactive cells were found associated with ChAT-positive neurons in the striatum, neocortex, or hippocampus, and no single-labelled NGFr-immunoreactive neurons were found outside the basal forebrain area, except for a large number of positive-labelled cells along the ventricular walls of the third ventricle. In addition to its function in maintaining the normal integrity of the basal forebrain and cholinergic, peripheral sympathetic, and neural-crest-derived sensory neurons, NGF may also have a role in the growth of these neurons after damage to the nervous system. To examine this postulate the hippocampus was denervated of its septal input and examined 8 weeks later. Two populations of neurons were found to have undergone collateral sprouting--namely, the midline magnocellular cholinergic neurons of the dorsal hippocampus and the sympathetic noradrenergic neurons of the superior cervical ganglion. Both of these neuronal populations also stained strongly for NGFr. In contrast, the small intrinsic cholinergic neurons of the hippocampus exhibited neither sprouting response nor staining for NGFr. In view of these results, we suggest that the differing sprouting responses demonstrated by these three neuronal populations may be due to their responsiveness to NGF, as indicated by the presence or absence of NGF receptors.  相似文献   

13.
The distribution of cholinergic neurons and fibers was studied in the brain and rostral spinal cord of the brown trout and rainbow trout by using an antiserum against the enzyme choline acetyltransferase (ChAT). Cholinergic neurons were observed in the ventral telencephalon, preoptic region, habenula, thalamus, hypothalamus, magnocellular superficial pretectal nucleus, optic tectum, isthmus, cranial nerve motor nuclei, and spinal cord. In addition, new cholinergic groups were detected in the vascular organ of the lamina terminalis, the parvocellular and magnocellular parts of the preoptic nucleus, the anterior tuberal nucleus, and a mesencephalic tegmental nucleus. The presence of ChAT in the magnocellular neurosecretory system of trout suggests that acetylcholine is involved in control of hormone release by neurosecretory terminals. In order to characterize the several cholinergic nuclei observed in the isthmus of trout, their projections were studied by application of 1,1;-dioctadecyl-3,3,3;, 3;-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as previously described in other teleost groups. In addition, other isthmic cholinergic nuclei of trout may be homologs of the mesopontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been preserved during evolution, together with characteristics exclusive to the group.  相似文献   

14.
Choline acetyltransferase (ChAT), the acetylcholine (ACh) synthesizing enzyme, has been localized immunocytochemically with a monoclonal antibody inlight and electron microscopic preparations of rat central nervous system (CNS). The antibody was an IgG1 subclass immunoglobulin that removed ChAT activity from solution. The specificity of the antibody and immunocytochemical methods has been confirmed by the demonstration of ChAT-positive neurons in a number of well-characterized cholinergic systems. For examples, ChAT-positive reaction product was present in the cell bodies of spinal and cranial nerve motoneurons, as well as in their axons and terminations as motor end-plates in skeletal muscle. In addition, the somata of preganglionic sympathetic and parasympathetic neurons were ChAT-positive. The specificity of staining was further supported by a lack of reaction in several groups of neurons thought to use neuroactive substances other than acetylcholine. No specific staining was observed in control specimens.The findings indicated that ChAT had an extensive intraneuronal distribution in many cholinergic neurons, being present in cell bodies, dendrites, axons and axon terminals. ChAT-positive somata were found in the medial septum and diagonal band, the medial habenula, and the basal nucleus of, the forebrain, 3 regions that are sources of cholinergic afferents to the hippocampus, interpeduncular nucleus and cerebral cortex, respectively. In addition, positively stained cell bodies were present within the cerebral cortex. ChAT-positive punctate structures were observed in the ventral horn of the spinal cord, where electron microscopic studies demonstrated that some of these structures were synaptic terminals. Other regions containing numerous ChAT-positive puncta included the hippocampus, the interpeduncular nucleus and the cerebral cortex. The light microscopic appeaance of these putative cholinergic terminals varied among different brain regions. Large punctate structures related to well-defined postsynaptic elements were characteristic of some regions, such as the ventral horn of the spinal cord, while smaller punctate structures and varicose fibers with a diffuse pattern of organization distinguished otther regions, such as the cerebral cortex.  相似文献   

15.
All studies to date of cholinergic systems of bony fishes have been done in teleosts. To gain further insight into the evolution of the cholinergic systems of bony fishes, we have studied the brain of a chondrostean fish, the Siberian sturgeon (Acipenser baeri, Brandt), by using an antibody against choline acetyltransferase (ChAT). This study showed the presence of ChAT-immunoreactive (ChAT-ir) neurons in the preoptic region (parvocellular and magnocellular preoptic nuclei and suprachiasmatic nucleus), the periventricular and tuberal hypothalamus, the saccus vasculosus, the dorsal thalamus, and the habenula. The mesencephalic tegmentum contained ChAT-ir cells in the torus semicircularis and torus lateralis. The isthmus contained several cholinergic populations: the nucleus isthmi, the lateral nucleus of the valvula, the secondary visceral nucleus, and the dorsal tegmental nucleus. The motor neurons of the cranial nerves and the spinal motor column were strongly immunoreactive. The medial (sensory) trigeminal nucleus also contained a ChAT-ir neuronal population. The distribution of ChAT-ir neurons in the sturgeon brain showed some notable differences with that observed in teleosts, such as the absence of cholinergic cells in the telencephalon and the optic tectum. Several brain regions were richly innervated by ChAT-ir fibers, particularly the telencephalon, optic tectum, thalamus, posterior tubercle, and interpeduncular nucleus. The hypothalamo-hypophyseal tract, the tract of the saccus vasculosus, the fasciculus retroflexus, and an isthmo-mesencephalo-thalamic tract were the most conspicuous cholinergic bundles. Comparative analysis of these results suggests that teleosts have conserved most traits of the cholinergic system of the sturgeon, having acquired new cholinergic populations during evolution.  相似文献   

16.
17.
Descending projections from cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei, collectively referred to as the pontomesencephalotegmental (PMT) cholinergic complex, were studied by use of the fluorescent retrograde tracers fluorogold, true blue, or Evans Blue in combination with choline acetyltransferase (ChAT) immunohistochemistry of acetylcholinesterase (AChE) pharmacohistochemistry. Pedunculopontine somata positive for ChAT or staining intensely for AChE were retrogradely labeled with fluorescent tracers following infusions into the motor nuclei of cranial nerves 5, 7, and 12. ChAT-positive cells in both the pedunculopontine and laterodorsal tegmental nuclei demonstrated projections to the vestibular nuclei, the spinal nucleus of the 5th cranial nerve, deep cerebellar nuclei, pontine nuclei, locus ceruleus, raphe magnus nucleus, dorsal raphe nucleus, median raphe nucleus, the medullary reticular nuclei, and the oral and caudal pontine reticular nuclei. Fluorescent tracers used in combination with AChE pharmacohistochemistry corroborated these projections and, in addition, provided evidence for cholinergic pontomesencephalic projections to the lateral reticular nucleus and inferior olive. The majority of retrogradely labeled neurons demonstrating ChAT-like immunoreactivity were found ipsilateral to the injection site, but, in all cases, tracer-containing cholinergic cells contralateral to the infused side of the brain were detected also. More retrogradely labeled cells containing ChAT were observed in the pedunculopontine tegmental than in the laterodorsal tegmental nucleus following tracer injections at all sites with the exceptions of the locus ceruleus and dorsal raphe nucleus where the converse profile was observed. None of the pedunculopontine or laterodorsal tegmental cells immunopositive for ChAT or stained intensely for AChE contained retrogradely transported tracers following dye infusions into the cerebellar cortex or cervical spinal cord. Triple-label experiments using two tracers infused into different sites in the same animal revealed that individual ChAT-immunoreactive cells in the PMT cholinergic complex projected to more than one hindbrain site in some cases and had ascending projections as well. Certain ChAT-positive somata in the pedunculopontine and laterodorsal tegmental nuclei were found in close association with several fiber tracts, including the superior cerebellar peduncle, lateral lemniscus, dorsal tegmental tract, and medial longitudinal fasciculus.  相似文献   

18.
Immunoreactivity for choline acetyltransferase (ChAT) was analyzed in unoperated cats and in cats in which stereotaxic lesions were made in the pedunculopontine and laterodorsal tegmental nuclei. The fine reaction product revealed moderate to dense ChAT-immunoreactive fiber plexuses throughout the telencephalon, diencephalon, and midbrain. A pontomesencephalic origin of cholinergic innervation to virtually every nucleus of the diencephalon, as well as to various midbrain and basal telencephalic sites was indicated in the cats with lesions, in which the optical density of ChAT-immunoreactivity was significantly decreased as compared to controls. Pontomesencephalic lesions produced no changes, however, in the density of ChAT staining in the cerebral cortex, basolateral amygdala, or caudate nucleus. In addition to ChAT-positive terminal fiber arborizations which were widely distributed, cholinergic fibers-of-passage were traced in the unoperated and operated feline brains. The general course of ChAT fibers cut in cross-section was followed in successive transverse levels, and although pathways originating from the pedunculopontine nucleus demonstrated orientations in every direction, many demonstrated a rostral course. A particularly dense aggregate of ascending ChAT-positive fibers was localized in the dorsolateral sector of the pedunculopontine area which could be followed at more rostral levels into the central tegmental fields and the compact part of the substantia nigra. From the central tegmental fields, numerous ChAT-immunopositive fibers cut in cross-section continued to course rostrally in the intralaminar, reticular and lateroposterior nuclei of the thalamus, and a distinct bundle of ChAT fibers coursing dorsolaterally was observed medial to the optic tract ascending to the lateral geniculate. ChAT fibers with dorsolateral orientations were additionally observed in the zona incerta, ventral anterior thalamus, and ansa lenticularis on route to the reticular thalamus, the globus pallidus, and the substantia innominata. Pathways consisting of fibers traced from ChAT-containing cells in the laterodorsal tegmental nucleus could be traced to medial structures such as the periaqueductal gray, ventral tegmental area and dorsal raphe. Medially placed ChAT fibers were additionally followed through the ventral tegmental area, the midline thalamus, and the hypothalamus, up to the medial and lateral septal nuclei. The trajectories of the ascending cholinergic pathways from the pontomesencephalon are discussed in relation to locally generated electrophysiological responses in the cat.  相似文献   

19.
The present study focused on cholinergic neurons in the lateral septal region of the raccoon detected by choline acetyltransferase (ChAT)-immunostaining. For comparison of the cholinergic neurons of the medial and lateral septal nuclei, soma sizes were measured, and several antibodies were applied that differentially characterize these cells in several species: low-affinity neurotrophin receptor p75 (p75(NTR)), calbindin-D(28k) (CALB), and constitutive nitric oxide synthase (cNOS). To compare the basic organization of the raccoon septum with that in other mammals, parvalbumin (PARV) immunocytochemistry and Wisteria floribunda-agglutinin (WFA) lectin histochemistry also were used in double-staining experiments. The ChAT-immunoreactive neurons of the rostral lateral septum are arranged in laminae. Accumulations of cholinergic varicosities, often clearly ensheathing noncholinergic neurons, occupy small territories of the rostral septum. Such regions become larger in the caudal septum. They are assumed to correspond to the septohippocampal and septofimbrial nuclei of the rat. In contrast to the large medial septal cholinergic neurons of the raccoon that contain p75(NTR), CALB, and cNOS, the cholinergic neurons of the lateral septum are smaller and do not express these markers. A further peculiarity is that the region of the lateral septum that contains cholinergic neurons corresponds to WFA-labelled extracellular matrix zones that contain chondroitin sulfate proteoglycans. In addition to clustered thread- or ring-like accumulations of the WFA, sparsely labelled perineuronal nets surround the lateral septal cholinergic neurons. Similar to other species that have been investigated, perineuronal nets are completely absent around cholinergic cells of the medial septum. The PARV-containing neurons of this region, however, are enwrapped by perineuronal nets as they are in the rat. Within the medial septum, the PARV-containing neurons are restricted to ventral bilateral territories that are devoid of cholinergic cells. In this respect, they differ from the more vertically arranged PARV-containing medial septal cells in rodents and primates. Apart from striking differences in numbers and distribution patterns, the raccoon lateral septal cholinergic neurons resemble those detected by Kimura et al. (Brain Res [1990] 533:165-170) in the ventrolateral septal region of rat and monkey. Their participation in the functions of the lateral septum remains to be elucidated.  相似文献   

20.
Acetylcholinesterase (AChE) has been localized by histochemistry in the superior colliculus and in the tegmentum of the caudal midbrain and rostral pons of the rat. The pattern of AChE localization in the superior colliculus was characterized by homogeneous staining in the superficial layers and patchlike staining in the intermediate gray layer. In the tegmentum, AChE was localized in the pedunculopontine nucleus (PPN), beginning rostrally at the caudal pole of the substantia nigra and extending caudally to the level of the parabrachial nuclei, and in the lateral dorsal tegmental nucleus (LDTN) of the central gray. The localization of AChE in these nuclei overlapped the distribution of neurons stained by immunohistochemistry using an antibody to choline acetyltransferase (ChAT), the synthesizing enzyme of the neurotransmitter acetylcholine. Other neighboring areas that were stained with AChE, but that did not contain ChAT-immunoreactive neurons, included the microcellular tegmental nucleus and the ventral tegmental nucleus. Neurons in the PPN and LDTN were determined to be potential sources of the cholinergic projection to the intermediate gray layer of the rat superior colliculus by double labelling with retrograde transport of horseradish peroxidase (HRP) combined with the immunohistochemical localization of ChAT. Three populations of neurons were identified. A predominantly ipsilateral ChAT-immunoreactive population was located in the pars compacta subdivision of PPN (PPNpc). Retrograde HRP-labelled neurons in the pars dissipata subdivision of the PPN (PPNpd), located ventral to the superior cerebellar peduncle (SCP) at the level of the inferior colliculus, composed a second population that was predominantly contralateral but was not ChAT immunoreactive. A third population of retrogradely labelled neurons was predominantly ipsilateral and ChAT immunoreactive and was located in the LDTN. These findings compared favorably with the full extent of the projection from this tegmental region revealed by retrograde transport of HRP from the superior colliculus when more compatible fixation and chromogen procedures were used. The results suggest that the PPN and the LDTN are two sources of the cholinergic input to the superior colliculus. Since the PPN also has extensive efferent, and afferent, connections with basal-ganglia-related structures, this cholinergic excitatory input to the superior colliculus, like the GABA-ergic inhibitory input from the substantia nigra pars reticulata, may provide the basis for an additional influence of the basal ganglia on visuomotor behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号