首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase (PAH) and increased levels of phenylalanine. PAH requires the cofactor BH(4) to function and the rate-limiting step in the synthesis of BH(4) is GTP cyclohydrolase I (GTP-CH). The skin is a potential target tissue for PKU gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin, to metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed a higher copy number of transgenes in keratinocytes and also a higher metabolic capacity.  相似文献   

2.
We previously proposed a novel disease entity, tetrahydrobiopterin (BH4)-responsive phenylalanine hydroxylase (PAH) deficiency, in which administration of BH4 reduced elevated levels of serum phenylalanine [J. Pediatr. 135 (1999) 375-378]. Subsequent reports indicate that the prevalence of BH4-responsive PAH deficiency is much higher than initially anticipated. Although growing attention surrounds treatment with BH4, little is known about the mechanism of BH4 responsiveness. An early report indicates that BH4 concentration in rat liver was 5 microM where Km for BH4 of rat PAH was estimated to be 25 microM in an oxidation experiment using a liver slice, suggesting relative insufficiency of BH4 in liver in vivo. In the present study, we developed a breath test for mice using [1-13C]phenylalanine in order to examine the BH4 responsiveness of normal PAH in vivo. The reliability of the test was verified using BTBR mice and its mutant strain lacking PAH activity, Pahenu2. BH4 supplementation significantly enhanced 13CO2 production in C57BL/6 mice when phenylalanine was pre-loaded. Furthermore, BH4 apparently activated PAH in just 5 min. These observations suggest that submaximal PAH activity occurs at the physiological concentrations of BH4 in vivo, and that PAH activity can be rapidly enhanced by supplementation with BH4. Thus, we propose a possible hypothesis that the responsiveness to BH4 in patients with PAH deficiency is due to the fact that suboptimal physiological concentrations of BH4 are normally present in hepatocytes and the enhancement of the residual activity may be associated with a wide range of mutations.  相似文献   

3.
BH(4) administration results in the reduction of blood phenylalanine level in patients with tetrahydrobiopterin (BH(4))-responsive phenylalanine hydroxylase (PAH) deficiency. The mechanism underlying BH(4) response remains unknown. Here, we studied the effects of BH(4) and phenylalanine on in vivo PAH activity of normal controls using the phenylalanine breath test (PBT) by converting l-[1-(13)C] phenylalanine to (13)CO(2). Phenylalanine oxidation rates were expressed as Delta(13)C ((13)CO(2)/(12+13)CO(2), per thousand) and cumulative recovery rates over 120min (CRR(120), %; total amount of (13)CO(2)/the administered dose of (13)C-phenylalanine). Under physiological conditions of blood phenylalanine, BH(4) administration reduced the Delta(13)C peak from 40.8 per thousand to 21.6 per thousand and CRR(120) from 16.9% to 10.2%. Under high blood phenylalanine conditions, administration of BH(4) increased the Delta(13)C peak from 30.7 per thousand to 46.0 per thousand, while the CRR(120) was similar between phenylalanine (19.9%) and phenylalanine+BH(4) (21.1%) groups. Corrected Delta(13)C and CRR(120) were calculated against serum phenylalanine levels to remove the effects of phenylalanine loading. After BH(4) administration, the corrected Delta(13)C peak increased from 82.7 per thousand to 112.6 per thousand, while the corrected CRR(120) was similar (47.6% and 45.6%). These results indicate that phenylalanine worked as a regulator of in vivo PAH by serving as both a substrate and an activator for the enzyme. Excessive dosages of BH(4) inhibited PAH under normal phenylalanine conditions and activated PAH under conditions of high phenylalanine. The regulation system is therefore designed to maintain phenylalanine levels in the human body. Appropriate BH(4) supplementation must be reviewed in patients with BH(4)-responsive PAH deficiency.  相似文献   

4.
Tetrahydrobiopterin (BH(4)) is a required cofactor for the enzymatic activity of phenylalanine hydroxylase (PAH) and is synthesized de novo from GTP in several tissues. Heterologous expression of PAH in tissues other than liver is a potential novel therapy for human phenylketonuria that is completely dependent upon BH(4) supply in the PAH-expressing tissue. Previous experiments with liver PAH-deficient transgenic mice that expressed PAH in skeletal muscle demonstrated transient correction of hyperphenylalaninemia only with hourly parenteral BH(4) administration. In this report, the fate of intravenously administered BH(4) is examined. The conclusions are that (1) BH(4) administered intravenously is rapidly taken up by liver and kidney, and (2) uptake of BH(4) into muscle is relatively low. The levels of BH(4) achieved in skeletal muscle following IV injection are only 10% of the amount expected were BH(4) freely and equally distributed across all tissues. The half-life of BH(4) in muscle is approximately 30 min, necessitating repeated injections to maintain muscle BH(4) content sufficient to support phenylalanine hydroxylation. The efficacy of heterologous muscle-directed gene therapy for the treatment of PKU will likely be limited by the BH(4) supply in PAH-expressing muscle.  相似文献   

5.
Tetrahydrobiopterin (BH4) responsive forms of phenylketonuria (PKU) have been recognized since 1999. Subsequent studies have shown that patients with PKU, especially those with mild mutations, respond with lower blood phenylalanine (Phe) concentrations following oral administration of 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4). To determine the incidence of BH4 responding PKU patients in the United States and characterize their phenylalanine hydroxylase (PAH) mutations, a study was undertaken at UTMB in Galveston and the Children's Hospital of Los Angeles on 38 patients with PKU. Patients were screened by a single oral dose of BH4, 10 mg/kg and blood Phe and tyrosine were determined at 0, 4, 8, and 24 h. Twenty-two individuals (58%) responded with marked decrease in blood Phe (>30%) at 24h. Some of the patients that responded favourably were clinically described as having Classical PKU. Blood tyrosine concentrations did not change significantly. Twenty subjects with PKU, responsive and non-responsive to BH4, were enrolled in a second study to evaluate blood Phe response to ascending single doses of BH4 with 10, 20, and 40 mg/kg and to evaluate multiple daily doses, for 7 days each, with 10 and 20 mg/kg BH4. The 7-day trial showed a sustained decrease in blood Phe in 14 of 20 patients taking 20 mg/kg BH4 (70%). Of these 14 patients, 10 (71%) responded with a significant decrease in blood Phe following 10 mg/kg BH4 daily. To understand the mechanism of response to BH4, the kinetics and stability of mutant PAH were studied. We found that mutant PAH responds with increase in the residual enzyme activity following BH4 administration. The increase in activity is multi-factorial caused by increased stability, chaperone effect, and correction of the mutant Km. These studies indicate that BH4 can be of help to patients with PKU, including some considered to have Classical PKU. The PKU population in US is heterogeneous and mutations can be varied so mutations need to be characterized and response to BH4 tested. It is more likely that mutations with residual activity should respond to BH4, therefore the clinical definition of "Classical PKU" should be reconciled with the residual activity of PAH mutations.  相似文献   

6.
The activity of phenylalanine hydroxylase (PAH) is regulated by the levels of both the substrate (L-Phe) and the natural cofactor (6R)-tetrahydrobiopterin (BH4). It has recently been observed that many PAH mutants associated with BH4-responsive phenylketonuria display abnormal kinetic and regulatory properties as shown by standard kinetic analyses. In this work, we have developed a high-sensitive and high-throughput activity assay based on isothermal titration calorimetry (ITC) in order to study the kinetic properties of wild-type PAH (wt-PAH) and the BH4-responsive c.204A>T (p.R68S) mutant at physiological and superphysiological concentrations of L-Phe and BH4. Compared to wt-PAH, the p.R68S mutant showed reduced apparent and equilibrium binding affinity for the natural cofactor and increased affinity and non-cooperative response for L-Phe, together with a strong substrate inhibition that is alleviated at high BH4 concentrations. For both wt-PAH and mutant, the apparent affinity for BH4 decreases at increasing L-Phe concentrations, and the affinity for the substrate also depends on the cofactor concentration. Our results indicate that the activity landscape for wt and mutant enzymes is more complex than expected from standard kinetic analyses and highlight the applicability of this ITC-based assay to characterize the activity and regulation of PAH at a wide range of substrate and cofactor concentrations. Moreover, the results aid to understand the activity dynamics of wild-type and mutant PAH under physiological and pathological conditions, as well as BH4-responsiveness in certain PKU mutations.  相似文献   

7.
The human epidermis has the full machinery for autocrine L-phenylalanine turnover to L-tyrosine in keratinocytes and melanocytes. Phenylalanine hydroxylase (PAH) activities increase linearly with inherited skin colour (skin phototype I-VI, Fitzpatrick classification) yielding eightfold more activities in black skin compared to white skin. Moreover, UVB irradiation (1 MED) significantly increases epidermal PAH activities 24 h after exposure. Importantly, L-phenylalanine uptake and turnover in the pigment forming melanocytes is vital for initiation of melanogenesis. In this context it was shown that the uptake of this amino acid is regulated by calcium. The depigmentation disorder vitiligo provides a unique model to follow impaired L-phenylalanine turnover in the skin as well as in serum because affected individuals hold an impaired epidermal 6BH4 de novo synthesis/recycling and regulation including low epidermal PAH activities. After overnight fasting and oral loading with L-phenylalanine (100 mg/kg body weight), 29.6% of 970 patients tested (n=287/970) yielded serum phenylalanine/tyrosine ratios >or=4 and 35.3% (n=342/970) had mild to moderate hyperphenylalaninaemia (HPA), while 9.3% (n=90/970) had both serum L-phenylalanine levels >or=2.0 mg/dl and phe/tyr ratios >or=4.0. Isolated HPA was found in 26% (n=252/970), whereas 20.3% had only increased ratios (n=197/970). None of the patients had phenylketonuria and the family history for this metabolic disease was negative. The IQ followed normal Gaussian distribution. In vitro L-phenylalanine uptake/turnover studies on primary epidermal melanocytes originating from these patients demonstrated a significantly decreased calcium dependent L-phenylalanine uptake and turnover compared to healthy control cells. Based on our observation, we would like to propose that phenylalanine uptake/turnover is under tight control by calcium which in turn could offer an additional novel mechanism in the aetiology of HPA.  相似文献   

8.
The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH(4) cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH(4) concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH(4) loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH(4) ratio. Finally, evaluation of data from BH(4) loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH(4)-responsive PAH deficiency.  相似文献   

9.
Tetrahydrobiopterin (BH4) supplementation in patients with BH4-responsive phenylalanine hydroxylase (PAH) deficiency is an alternative to low-phenylalanine diet. To further investigate hepatic BH4-responsiveness, oral administration of 50 mg BH4/kg/day for 5 weeks was performed in wild-type mice. We observed a 2-fold increase in PAH protein by quantitative Western blot analysis and a 1.7-fold increase in enzyme activity, but no change in Pah-mRNA expression by quantitative real-time PCR analysis in treated mice compared to controls. Our findings support the proposed chemical-chaperone effect of BH4 to protect PAH.  相似文献   

10.
Tetrahydrobiopterin (BH4) responsive hyperphenylalaninemia (HPA) with a mutant phenylalanine hydroxylase (PAH) gene was found during neonatal screening for PKU. This study determined blood BH4 and phenylalanine in two patients with hyperphenylalaninemia following oral load with BH4 10 mg/kg. Our patients underwent neonatal screening for PKU, had normal biopterin metabolism and their PAH mutations were determined. Peak plasma biopterin levels in Case 1, which were reached at between 2 and 4h after loading, were 612, 297, and 178 nmol/L at age 30 days, 55 days, and 19 months, respectively, and the maximum phenylalanine decreasing rates, which were found at 24h, were 54, 16, and 4%, respectively. In Case 2, peak plasma biopterin levels were 747 and 327 nmol/L at age 20 and 55 days, respectively, and the maximum phenylalanine decreasing rates were 39 and 32%, respectively. In the BH4 loading test, the peaks of BH4 in both patients lowered ( approximately 50%), on the same dose schedule of BH4, as patients got older.  相似文献   

11.
Since 1999 an increasing number of patients with phenylalanine hydroxylase (PAH) deficiency are reported to be able to decrease their plasma phenylalanine (Phe) concentrations after a 6R-tetrahydrobiopterin (BH(4)) challenge. The majority of these patients have mild PKU or MHP (mild hyperphenylalaninemia) and harbour at least one missense mutation in the PAH gene associated with this phenotype. The rate of decrease and the lowest achieved Phe level vary between patients with different genotypes but appears to be similar in patients with the same genotype. A number of the mutations associated with BH(4)-responsiveness have been studied in an 'in vitro' eukaryotic cell expression system leading to biosynthesis of a mutant PAH enzyme with some residual activity. Patients bearing mutations that cause severe structural distortion in the expressed protein (loss of function mutations), leading to undetectable PAH activity, are not responsive to BH(4). These observations suggest that residual PAH activity (in vitro) is a prerequisite for BH(4)-responsiveness. However, an in vitro residual PAH activity is not a guarantee for in vivo BH(4)-responsiveness. Mechanisms behind this responsiveness could be relieve of decreased binding affinity for BH(4), BH(4)-mediated increase of PAH gene expression or stabilization of the mutant enzyme protein by BH(4). BH(4)-responsive PAH-deficient patients have only been reported since 1999. For the western countries this is explained by the fact that the manufacturer changed the diastereoisomeric purity of the BH4 preparation from 69% of the natural 6R-BH4 (31% of 6S-BH4) to 99.5% 6R-BH4. The new findings on BH(4)-responsiveness may be of clinical relevance because these patients can be treated with BH(4) with concomitant relief or withdrawal of the burdensome PKU diet. These observations warrant further clinical studies to assess efficacy, optimal dosage, and safety of BH(4) treatment in this group. The data strongly emphasize the necessity of the BH(4) loading test in patients detected in the newborn PKU screening.  相似文献   

12.
BackgroundIn patients with phenylketonuria, stability of blood phenylalanine and tyrosine concentrations might influence brain chemistry and therefore patient outcome. This study prospectively investigated the effects of tetrahydrobiopterin (BH4), as a chaperone of phenylalanine hydroxylase on diurnal and day-to-day variations of blood phenylalanine and tyrosine concentrations.MethodsBlood phenylalanine and tyrosine were measured in dried blood spots (DBS) four times daily for 2 days (fasting, before lunch, before dinner, evening) and once daily (fasting) for 6 days in a randomized cross-over design with a period with BH4 and a period without BH4. The sequence was randomized. Eleven proven BH4 responsive PKU patients participated, 5 of them used protein substitutes during BH4 treatment. Natural protein intake and protein substitute dosing was adjusted during the period without BH4 in order to keep DBS phenylalanine levels within target range. Patients filled out a 3-day food diary during both study periods. Variations of DBS phenylalanine and Tyr were expressed in standard deviations (SD) and coefficient of variation (CV).ResultsBH4 treatment did not significantly influence day-to-day phenylalanine and tyrosine variations nor diurnal phenylalanine variations, but decreased diurnal tyrosine variations (median SD 17.6 μmol/l, median CV 21.3%, p = 0.01) compared to diet only (median SD 34.2 μmol/l, median CV 43.2%). Consequently, during BH4 treatment diurnal phenylalanine/tyrosine ratio variation was smaller, while fasting tyrosine levels tended to be higher.ConclusionBH4 did not impact phenylalanine variation but decreased diurnal tyrosine and phenylalanine/tyrosine ratio variations, possibly explained by less use of protein substitute and increased tyrosine synthesis.  相似文献   

13.
Recently, BH(4)-responsive phenylalanine hydroxylase (PAH) deficiency was reported in patients with specific mutations in the PAH gene, and it was suggested that BH(4) responsiveness may be determined by the respective genotypes. We now report on three patients with PAH deficiency and the same genotype but different responses to standardized BH(4) loading. Our results suggest that BH(4) responsiveness in PAH deficiency is at least partly independent from PAH genotype.  相似文献   

14.
We report the results of tetrahydrobiopterin (BH4) loading tests in 10 German patients with mild phenylketonuria. A significant decline of phenylalanine values after application of BH4 was observed in all but one patients. Molecular genetic analyses revealed a range of different PAH gene mutations. Re-testing of one patient previously reported as non-responsive to BH4 loading showed a moderate response with a higher dose of BH4. Nevertheless, there appear to be kinetic differences in phenylalanine hydroxylation in patients with the same genotype. Non-responsiveness to 20 mg/kg BH4 was observed only in a single patient who was compound heterozygous for the novel mutation R176P (c.527G>C) and the common null-mutation P281L. In summary, our data are in line with recent reports indicating that BH4 sensitivity is a normal feature of most mild forms of PAH deficiency but may be influenced by other factors.  相似文献   

15.
目的探讨四氢生物喋呤(BH4)负荷试验在高苯丙氨酸血症(HPA)鉴别诊断中的应用价值。方法自2005年5月到2007年4月,51例HPA患儿采用口服BH4(20mg/kg)负荷试验。对其中血苯丙氨酸(Phe)浓度小于600μmol/L患儿采用口服Phe—BH4联合负荷试验,结合尿喋呤分析、血红细胞二氢喋呤还原酶(DHPR)活性测定。结果(1)在BH4负荷试验中,不同类型HPA患儿的血Phe浓度表现出各不相同的改变。51例HPA患儿中,共鉴别出5例BH4缺乏症,10例BH4反应性苯丙氨酸羟化酶(PAH)缺乏症,36例BH4无反应性苯丙氨酸羟化酶(PAH)缺乏症。(2)在17例中度苯丙酮尿症(PKU)患儿中,9例(52.9%)为BH4反应性PAH缺乏症。结论BH4负荷试验在HPA早期鉴别诊断中十分重要,部分中度PKU对BH4有反应,可使用BH4替代治疗。  相似文献   

16.
Hyperphenylalaninemia caused by phenylalanine hydroxylase (PAH) deficiency requires lifelong rigorous diet starting in early infancy to prevent severe neurodevelopmental handicap. In a considerable number of children with mild hyperphenylalaninemia, long-term tetrahydrobiopterin (BH4) treatment significantly improves phenylalanine (phe) tolerance, but it has never been investigated in classic phenylketonuria (PKU). We performed a BH4-loading test in 40 consecutive infants with phe serum concentrations exceeding 240 microM, who had been detected by newborn screening programs. Eighteen out of 40 infants were found to be BH4 responsive. Five of them, responding to the neonatal BH4-loading test, showed a phe tolerance of less than 20 mg/kg/day and a phe pretreatment level of >1000 microM. They were treated with BH4 (20 mg/kg/day) over a period of 24 months. All five children had a sustained response to BH4, allowing substantial easing of dietary restrictions. Before BH4 treatment daily phe tolerance was 18-19 mg/kg, increasing to 30-80 mg/kg on BH4 treatment and decreasing again to 12-17 mg/kg after termination of BH4 treatment. Mutation analysis revealed compound heterozygosity for a putative null and a variant PAH mutation in four patients and homozygosity for a variant PAH mutation in one patient. We conclude that BH4 sensitivity is not restricted to mild hyperphenylalaninemia and that long-term BH4 treatment may also improve phenylalanine tolerance in a considerable number of children with a more severe PKU phenotype.  相似文献   

17.
Interpretations of the development of phenylalanine hydroxylase (PAH) in rat liver have been controversial, and the mechanism of ontogenic changes have not yet been elucidated. Fetal PAH activity at a gestational age of 21 days appeared to reach 32% that of adult male level at birth. The in vivo effectiveness of fetal PAH activity was correlated with enhancement of blood tyrosine, while amino-transferase activity appeared only after birth. No sex difference was noted in weaning rats, whereas, in adult females, PAH activity was only 42% that of males. Investigating hormonal influences on liver PAH activity we noted no change of enzyme activity following hydrocortisone, ACTH and estradiol treatment. However, 4 days of testosterone treatment in weaning female rats increased PAH activity (X1.7). Therefore, testosterone could explain increased PAH activity in adult males.  相似文献   

18.
目的通过对不同类型高苯丙氨酸血症(hyperphenylalaninemia,HPA)临床特点的分析,探讨我国南、北方四氢生物蝶呤(tetrahydrobiopterin,BH4)反应性苯丙氨酸羟化酶(phenylalanine hydroxylase,PAH)缺乏症患者对BH4的反应性。方法(1)108例HPA患儿,男63例、女45例,平均年龄7.05个月。所有患者都进行口服BH4负荷试验,同时进行尿蝶呤谱分析、红细胞二氢蝶啶还原酶测定。对其中血苯丙氨酸(phenylalanine,Phe)浓度〈600μmol/L者给予口服Phe-BH4联合负荷试验。(2)根据患儿父母双方祖籍,以长江为界将诊断为BH4反应性PAH缺乏症的患儿分为南、北两组。比较南、北方组BH4反应性PAH缺乏症患儿在BH4负荷试验中血Phe浓度的变化。结果(1)HPA中诊断BH4反应性PAH缺乏症36人(33.3%),BH4无反应性苯丙酮尿症(phenlketonuria,PKU)49人(45.4%),四氢生物蝶呤缺乏症(BH4D)23人(21.3%)。BH4反应性PAH缺乏症血Phe浓度8h、24h时分别平均下降了49.24%和65.35%。(2)36例BH4反应性患者分为南方组23人、北方组13人。南、北方组BH4反应性患儿服药后24h时血Phe浓度均值分别为(217.02±189.03)μmol/L和(458.75±342.54)μmol/L(P〈0.05),而两者在服药后2h、4h、8h、24h时血Phe浓度下降的百分数差异均无统计学意义(P〉0.05)。结论部分因PAH缺乏引起的PKU患儿口服BH420mg/kg后24h,血Phe浓度较服药前下降30%以上,其中绝大多数为轻、中度HPA(血Phe120~1200μmol/L),少数为经典型PKU(血Phe〉1200μmol/L)。本研究中我国南方组BH4反应性PAH缺乏症服药24h时血Phe浓度较北方组低,但是南、北方患者对药物的总体反应性差异无统计学意义。  相似文献   

19.
Hyperphenylalaninemia (HPA), due to a deficiency of phenylalanine hydroxylase (PAH) enzyme, is caused by mutations in the PAH gene. Molecular analysis in 23 Italian patients with PAH deficiency identified two novel (P281R, L287V) and 20 previously described genetic lesions in the PAH gene. The detection of the A403V amino acid substitution in combination with null mutations in patients with BH4-responsive PAH deficiency leads us to correlate it with BH4 responsiveness.  相似文献   

20.
The structural basis of phenylketonuria.   总被引:11,自引:0,他引:11  
The human phenylalanine hydroxylase gene (PAH) (locus on human chromosome 12q24.1) contains the expressed nucleotide sequence which encodes the hepatic enzyme phenylalanine hydroxylase (PheOH). The PheOH enzyme hydroxylates the essential amino acid l-phenylalanine resulting in another amino acid, tyrosine. This is the major pathway for catabolizing dietary l-phenylalanine and accounts for approximately 75% of the disposal of this amino acid. The autosomal recessive disease phenylketonuria (PKU) is the result of a deficiency of PheOH enzymatic activity due to mutations in the PAH gene. Of the mutant alleles that cause hyperphenylalaninemia or PKU 99% map to the PAH gene. The remaining 1% maps to several genes that encode enzymes involved in the biosynthesis or regeneration of the cofactor ((6R)-l-erythro-5,6,7,8-tetrahydrobiopterin) regenerating the cofactor (tetrahydrobiopterin) necessary for the hydroxylation reaction. The recently solved crystal structures of human phenylalanine hydroxylase provide a structural scaffold for explaining the effects of some of the mutations in the PAH gene and suggest future biochemical studies that may increase our understanding of the PKU mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号