首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The aims of this study were twofold. First, to evaluate the effectiveness of selected polymers in inhibiting solution crystallization of celecoxib. Second, to compare the release rate and crystallization tendency of celecoxib amorphous solid dispersions (ASDs) formulated with a single polymer, or binary polymer combinations.

Methods

The effectiveness of polymers, polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS), in maintaining supersaturation of celecoxib solutions was evaluated by performing nucleation induction time measurements. Crystallization kinetics of ASD suspensions were monitored using Raman spectroscopy. Dissolution experiments were carried out under non-sink conditions.

Results

Pure amorphous celecoxib crystallized rapidly through both matrix and solution pathways. Matrix and solution crystallization was inhibited when celecoxib was molecularly mixed with a polymer, resulting in release of the drug to form supersaturated solutions. Cellulosic polymers were more effective than PVP in maintaining supersaturation. Combining a cellulosic polymer and PVP enabled improved drug release and stability to crystallization.

Conclusions

Inclusion of an effective solution crystallization inhibitor as a minor component in ternary dispersions resulted in prolonged supersaturation following dissolution. This study shows the feasibility of formulation strategies for ASDs where a major polymer component is used to achieve one key property e.g. release, while a minor polymer component is added to prevent crystallization.
  相似文献   

2.
Purpose To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Methods Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. Results It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (T g) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. Conclusions In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.  相似文献   

3.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

4.
Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance.  相似文献   

5.
目的:为了提高难溶性药物阿瑞匹坦(Aprepitant,APR)的溶解度,解决其酸中溶出、碱中结晶沉淀的问题,选择不同功能的聚合物载体,采用热熔挤出技术制备三元固体分散体,并对其进行性能考察;方法:采用溶剂-熔融法制备二元固体分散体,以溶出度和溶出速度为指标,筛选具有增溶功能的载体材料。通过介质转移法考察各聚合物在不同浓度的药物溶液中的抑晶性能,筛选出最佳的沉淀抑制剂。确定药载比,将APR、溶出促进剂及沉淀抑制剂以不同比例混合,采用热熔挤出技术制备三元固体分散体,以溶出度和抑晶时间为指标,优选出三元固体分散体处方。经XRD确认药物在载体中的存在状态,考察该三元固体分散体在模拟肠液中的动态溶解度和加速条件下的物理稳定性。结果:亲水性聚合物PVP K30制备的二元固体分散体溶出速度快,增溶效果佳,肠溶性聚合物HPMCAS显示出优越的抑晶作用,延长了APR的过饱和点,质量比为1:1:3(APR:PVP K30:HPMCAS)的三元固体分散体在酸中迅速完全释放(120min溶出95%),相对于原料药显著提高了溶出度和溶出速率,当介质pH转为6.8后,三元固体分散体完全释放并在6h内维持溶液处于高过饱和的稳定状态,药物以无定形形式存在于载体基质中,同时能在加速条件下保持至少三个月的无定形状态。结论:基于不同聚合物的理化特性,本研究制备的三元固体分散体通过协调溶出速率和结晶抑制效果,不仅显著提高APR的溶解度,并能解决APR在胃中溶出、肠中沉淀析晶的问题,具有良好的溶出特性。  相似文献   

6.
To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.  相似文献   

7.
The main aim of the study was to investigate the mechanisms of the stabilizing effect of poly(vinylpyrrolidone) (PVP) on amorphous albendazole (ABZ). Solid dispersions of ABZ with PVP polymers and with a copolymer containing poly(vinylacetate) (PVP/VA) were prepared using the solvent casting method. The effects of PVP molecular weight, composition and content on the crystallization of ABZ from the amorphous state were investigated using differential scanning calorimetry. Stability of the amorphous drug with respect to isothermal crystallization was studied at different polymer concentrations and storage temperatures. Solid dispersions were found to be X-ray amorphous and exhibited a single glass transition temperature (Tg). Onset of crystallization and extent of inhibition increased with concentration and molecular weight of the homopolymer. In spite of its having a higher molecular weight, replacement of about 40% of vinylpyrrolidone monomers with vinylacetate groups (as in the copolymer) resulted in reduced inhibition of crystallization. ABZ crystallized from the amorphous state in the absence of polymer even when stored below the Tg. The solvent casting method greatly reduced the requirement for polymer to achieve X-ray amorphous solid dispersions. Such dispersions exhibited a significant increase in induction time and reduction in the rate of crystallization at polymer concentrations as low as 5% and at temperatures as high as 70 degrees C. Factors other than mobility, such as drug-polymer hydrogen bonding' were also found to be involved in crystallization inhibition.  相似文献   

8.
Miscibility is an important indicator of physical stability against crystallization of amorphous solid dispersions (ASDs). Currently available methods for miscibility determination have both theoretical and practical limitations. Here we report a method of miscibility determination based on the overlap concentration, c*, which can be conveniently determined from the viscosity-composition diagram. The determined c* values for ASDs of two model drugs, celecoxib and loratadine, with four different grades of polyvinylpyrrolidone (PVP), were correlated strongly with the physical stability of ASDs. This result suggests potential application of the c* concept in guiding the design of stable high drug loaded ASD formulations. A procedure is provided to facilitate broader adoption of this methodology. The procedure is easy to apply and widely applicable for thermally stable binary drug/polymer combinations.  相似文献   

9.
The objective of this study was to investigate the effect of different polymeric carriers in solid dispersions with an active pharmaceutical ingredient (API) on their water vapour sorption equilibria and the influence of the API–polymer interactions on the dissolution rate of the API. X-ray diffraction, scanning electron microscopy (SEM), moisture sorption analysis, infrared (IR) spectroscopy and dissolution tests were performed on various API–polymer systems (Valsartan as API with Soluplus, PVP and Eudragit polymers) after production of amorphous solid dispersions by spray drying. The interactions between the API and polymer molecules caused the water sorption isotherms of solid dispersions to deviate from those of ideal mixtures. The moisture sorption isotherms were lower in comparison with the isotherms of physical mixtures in all combinations with Soluplus and PVP. In contrast, the moisture sorption isotherms of solid dispersions containing Eudragit were significantly higher than the corresponding physical mixtures. The nature of the API–polymer interaction was explained by shifts in the characteristic bands of the IR spectra of the solid dispersions compared to the pure components. A correlation between the dissolution rate and the water sorption properties of the API–polymer systems has been established.  相似文献   

10.
To clarify the contribution of drug-polymer interaction to the physical stability of amorphous solid dispersions, we studied the crystallization rates of nitrendipine (NTR) enantiomers with identical physicochemical properties in the presence of hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP) and polyvinylpyrrolidone (PVP). The overall crystallization rate at 60°C and the nucleation rate at 50-70°C of (+)-NTR were lower than those of (-)-NTR in the presence of 10-20% HPMC or HPMCP. In contrast, similar crystallization profiles were observed for the NTR enantiomers in solid dispersions containing PVP. The similar glass transition temperatures for solid dispersions of (-)-NTR and (+)-NTR suggested that the molecular mobility of the amorphous matrix did not differ between the enantiomers. These results indicate that the interaction between the NTR enantiomers and HPMC or HPMCP is stereoselective, and that differences in the stereoselective interaction create differences in physical stability between (-)-NTR and (+)-NTR at 50-70°C. However, no difference in physical stability between the enantiomers was obvious at 40°C. Loss of the difference in physical stability between the NTR enantiomers suggests that the stereoselective interaction between NTR and the polymers may not contribute significantly to the physical stabilization of amorphous NTR at 40°C.  相似文献   

11.
Amorphous solid dispersions (ASDs) are widely utilized in the pharmaceutical industry for bioavailability enhancement of low solubility drugs. The important factors governing the dissolution behavior of these systems are still far from adequately understood. As a consequence, it is of interest to investigate the behavior of these systems during the dissolution process. The purpose of this research was twofold. First, the degree of supersaturation generated upon dissolution as a function of drug-polymer composition was investigated. Second, an investigation was conducted to correlate physical behavior upon dissolution with polymer loading. Felodipine and indomethacin were selected as model drugs and hydroxypropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were used to form the dispersions. Diffusion and nuclear magnetic resonance spectroscopy experiments revealed that the extent of bulk supersaturation generated on dissolution of the ASD did not depend on the drug-polymer ratio. Interestingly, the maximum supersaturation generated was similar to the predicted amorphous solubility advantage. However, dynamic light scattering measurements revealed that particles on the submicron scale were generated during dissolution of the solid dispersions containing 90% polymer, whereas solid dispersions at a 50% polymer loading did not yield these nanoparticles. The nanoparticles were found to result in anomalous concentration measurements when using in situ ultraviolet spectroscopy. The supersaturation generated upon dissolution of the solid dispersions was maintained for biologically relevant timeframes for the HPMC dispersions, whereas PVP appeared to be a less effective crystallization inhibitor.  相似文献   

12.
The physical stability of amorphous molecular level solid dispersions will be influenced by the miscibility of the components. The goal of this work was to understand the effects of temperature and relative humidity on the miscibility of a model amorphous solid dispersion. Infrared spectroscopy was used to evaluate drug–polymer hydrogen bonding interactions in amorphous solid dispersions of felodipine and poly(vinyl pyrrolidone) (PVP). Samples were analyzed under stressed conditions: high temperature and high relative humidity. The glass transition temperature (Tg) of select systems was studied using differential scanning calorimetry (DSC). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to further investigate moisture-induced changes in solid dispersions. Felodipine-PVP solid dispersions showed evidence of adhesive hydrogen bonding interactions at all compositions studied. The drug–polymer intermolecular interactions were weakened and/or less numerous on increasing the temperature, but persisted up to the melting temperature of the drug. Changes in the hydrogen bonding interactions were found to be reversible with changes in temperature. In contrast, the introduction of water into amorphous molecular level solid dispersions at room temperature irreversibly disrupted interactions between the drug and the polymer resulting in amorphous-amorphous phase separation followed by crystallization. DSC, AFM, and TEM results provided further evidence for the occurrence of moisture induced immiscibility. In conclusion, it appears that felodipine-PVP solid dispersions are susceptible to moisture-induced immiscibility when stored at a relative humidity ≥75%. In contrast, the solid dispersions remained miscible on heating. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:169–185, 2010  相似文献   

13.
The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.  相似文献   

14.
The feasibility of forming solid molecular dispersions of poorly water-soluble drugs in crosslinked poly(2-hydroethyl methacrylate) (PHEMA) hydrogel has recently been reported by our group. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of amorphous solid dispersions (ASDs) of indomethacin (IND) in crosslinked PHEMA hydrogels as compared with those based on conventional water-soluble polymer carriers. Our results show that under non-sink conditions, the initial solubility enhancement is higher for ASDs based on polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose acetate succinate (HMPCAS), but the ability to maintain this solubility enhancement at longer times is better for ASDs based on PHEMA over a period of 24h with the extent of solubility enhancement of IND ASDs in PHEMA falling between those in PVP and HPMCAS at 10.0% IND loading after 6h and outperforming those in PVP and HPMCAS at 32.9% IND loading after 8h. The observed kinetic solubility profiles reflect the fact that the amorphous IND is released from PHEMA by a different mechanism than those from water-soluble polymer carriers. In this case, the dissolution of IND ASD from water-soluble PVP and HPMCAS is almost instantaneous, resulting in an initial surge of IND concentration followed by a sharp decline due to the nucleation and crystallization events triggered by the rapid build-up of drug supersaturation. On the other hand, the dissolution of IND ASD from insoluble crosslinked PHEMA hydrogel beads is less rapid as it is regulated by a feedback-controlled diffusion mechanism, thus avoiding a sudden surge of supersaturation in the dissolution medium. The absence of an apparent decline in drug concentration during dissolution from IND-PHEMA ASD further reflects the diminished nucleation and crystallization events during IND dissolution from hydrogel-based solid molecular dispersions. Based on the XRD analyses, a threshold IND loading level of about 34% in PHEMA has been identified, above which amorphous to crystalline transition tends to occur. Also, by selecting the appropriate particle sizes, immediate to controlled release of IND from IND-PHEMA ASD can be readily achieved as the release rate increases with decreasing PHEMA bead size. Furthermore, a robust physical stability has been demonstrated in IND-PHEMA ASD with no drug precipitation for up to 8 months at IND loadings below 16.7% under direct open cup exposure to accelerated stability conditions (40°C/75% RH).  相似文献   

15.
Abstract

We have investigated the physical stability of amorphous curcumin dispersions and the role of curcumin–polymer intermolecular interactions in delaying crystallization. Curcumin is an interesting model compound as it forms both intra and intermolecular hydrogen bonds in the crystal. A structurally diverse set of amorphous dispersion polymers was investigated; poly(vinylpyrrolidone), Eudragit E100, carboxymethyl cellulose acetate butyrate, hydroxypropyl methyl cellulose (HPMC) and HPMC-acetate succinate. Mid-infrared spectroscopy was used to determine and quantify the extent of curcumin–polymer interactions. Physical stability under different environmental conditions was monitored by powder X-ray diffraction. Curcumin chemical stability was monitored by UV-Vis spectroscopy. Isolation of stable amorphous curcumin was difficult in the absence of polymers. Polymers proved to be effective curcumin crystallization inhibitors enabling the production of amorphous solid dispersions; however, the polymers showed very different abilities to inhibit crystallization during long-term storage. Curcumin intramolecular hydrogen bonding reduced the extent of its hydrogen bonding with polymers; hence most polymers were not highly effective crystallization inhibitors. Overall, polymers proved to be crystallization inhibitors, but inhibition was limited due to the intramolecular hydrogen bonding in curcumin, which leads to a decrease in the ability of the polymers to interact at a molecular level.  相似文献   

16.
The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound–polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends (“solid dispersions”) were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X‐ray powder diffraction and was studied as a function of time. Mid‐infrared (IR) spectroscopy was used to investigate resveratrol–polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol–polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid–base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long‐term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol.  相似文献   

17.
The purpose of the present study was to investigate the impact of intermolecular forces on the stability of the amorphous state of loperamide and two of its fragment molecules (4-dimethylamino-N,N-dimethyl-2,2-diphenyl-butyramide (F1) and 4-(4-chlorophenyl)-4-piperidinol (F2)) in solid dispersions with PVP-K30 and PVP-VA64. The stability of originally homogeneous and amorphous dispersions was investigated under different storage conditions. The chemical stability of the compounds was evaluated with HPLC. TGA-analysis was used in order to assess the amount of water in the samples, whereas MT-DSC-measurements were performed to investigate changes in the physical state of the compounds caused by the storage procedure. TGA-analysis reveals a higher uptake of water in humid conditions of the dispersions with PVP-K30 in comparison to those with PVP-VA64, hereby reflecting the more hydrophilic nature of the former polymer. This water acts as a plasticizing agent resulting in an increased mobility and decreased glass transition temperature. Since the degree of supersaturation and the molecular mobility have an influence on the stability of the amourphous state, both parameters were assessed. With respect to the degree of supersaturation of the compounds in the dispersions, the materials seem to be very much alike. Therefore it was postulated that the induction of crystallization in the F1/polymer dispersions stored at high RH (52%) is due to higher molecular mobility of this compound in the dispersions in comparison to F2. The hydrogen bonds that are being formed between F2 and the polymers reduce its mobility and secure this compound from crystallization upon storage, thus indicating the importance of specific interactions with respect to stability issues of solid dispersions. No hydrogen bonds are formed between F1 and the polymers. As a result, the stability of the amorphous state of the compound is being compromised and crystallization takes place. Loperamide, that also does not form hydrogen bonds with the polymers, is less susceptible to crystallization due to its intrinsic good glass forming properties.  相似文献   

18.
Purpose To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Methods Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (T g) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Results Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Conclusions Variations in the physical stability of the two compounds could not be explained by differences in T g. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.  相似文献   

19.
Moisture sorption by polymeric carriers used for the development of amorphous solid dispersions (ASDs) plays a critical role in the physical stability of dispersed drugs since moisture may decrease glass transition temperature (Tg) and thereby increase molecular mobility of drugs leading to their crystallization. To assist the selection of appropriate polymers for ASDs, we conducted moisture sorption by five types of cellulosic polymers, namely, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), and ethyl cellulose (EC), as functions of relative humidity (10 to 90% RH) and temperature (25 and 40 °C). The moisture sorption was in the order of HPC>HPMC>HPMCP>HPMCAS>EC, and there was no significant effect of the molecular weights of polymers on moisture uptake. There was also less moisture sorption at 40 °C than that at 25 °C. Glass transition temperatures (Tg) of the polymers decreased with the increase in moisture content. However, the plasticizing effect by moisture on HPC could not be determined fully since, despite being amorphous, there were very little baseline shifts in DSC scans. There was also very shallow baseline shift for HPMC at >1% moisture content. In contrast, Tg of HPMCAS and HPMCP decreased in general agreement with the Gordon-Taylor/Kelley-Bueche equation, and EC was semicrystalline having both Tg and melting endotherm, with only minor effect of moisture on Tg. The results of the present investigation would lead to a systematic selection of polymeric carriers for ASDs.  相似文献   

20.
Amorphous solid dispersions are used as a strategy to improve the bioavailability of poorly water-soluble compounds. When formulating with a polymer, it is important not only for the polymer to stabilize against crystallization in the solid state, but also to improve the dissolution profile through inhibiting crystallization from the supersaturated solution generated by dissolution of the amorphous material. In this study, the dissolution profiles of solid dispersions of felodipine formulated with poly(vinylpyrrolidone) (PVP), hydroxypropyl methylcellulose (HPMC) or hydroxypropyl methylcellulose acetate succinate (HPMCAS) were compared. In addition, concentration versus time profiles were evaluated for the supersaturated solutions of felodipine in the presence and absence of the polymers. HPMCAS was found to maintain the highest level of supersaturation for the greatest length of time for both the dissolution and solution crystallization experiments, whereas PVP was found to be the least effective crystallization inhibitor. All polymers appeared to reduce the crystal growth rates of felodipine at an equivalent supersaturation and this mechanism most likely contributes to the enhanced solution concentration values observed during dissolution of the amorphous solid dispersions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号