首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spray freeze-drying (SFD), which includes spray-freezing into droplets and dynamic vacuum drying, presents a promising alternative approach to manufacture dried pharmaceuticals more efficiently than conventional vial freeze-drying. Without reliable predictive models for the SFD conditions of interest, any respective process development still relies on empirical approaches. In this work, we propose an improved modeling framework to describe the fast freezing (<1 s) that sub-millimeter droplets undergo in the present SFD process. The modeled freezing rate accounts for both the kinetics of ice growth and droplet heat transfer mechanisms. Computational fluid dynamics (CFD) simulations and experiments on bulk spray-freezing are combined to refine and validate the proposed reduced-order model. While this study is limited to water-sucrose solutions, the present modeling approach can be extended to other pharmaceutical excipients. For the cooling rates of interest, model results indicate that droplets with initial sucrose concentration higher than 20% w/w will transit to a glassy state before completion of crystallization and, consequently, devitrification is expected during post spray-freezing manipulation of the bulk material. In practice, such compact model does not only allow quantification of process parameters that cannot be measured in real time but also enable the choice of optimal spraying conditions for production of free-flowing, high-quality frozen droplets that meet the target product profile.  相似文献   

2.
Spray freeze-drying is an evolving technology that combines the benefits of spray-drying and conventional lyophilization techniques to produce drug substance and drug product as free-flowing powders. The high surface-to-volume ratio associated to the submillimeter spray-frozen particles contributes to shorter drying and reconstitution times. The formation of frozen particles is the most critical part of this dehydration technique because it defines the properties of final product. Based on a previously proposed and validated model, the current goal is to understand the role of various controllable parameters in the spray-freezing process. More specifically, given a set of spraying conditions, the model is used to predict the minimum distance required to cool and freeze the droplets below a temperature that prevents coalescence and product agglomeration. A parametric study is carried out to map the operational limit conditions of the actual spray-freezing column apparatus under consideration. For the spray freeze-drying conditions of interest, model simulations indicate that convection contributes to at least 80% of the total droplet heat transfer and, consequently, that freezing column gas temperature and droplet diameter are the most important process parameters affecting the freezing distance.  相似文献   

3.
The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase (LDH) formulation. The determined normalized dried layer mass transfer resistance for the LDH formulation is expressed as RpN=4.344+10.85l. The operational templates Tbmax and primary drying time were also generated by simulation. The cycle run for the LDH formulation using the Edwards production dryer verified that the cycle developed in a laboratory freeze-dryer was transferable at the production scale.  相似文献   

4.
Monitoring a vial freeze-drying process without interfering with product dynamics is a challenging issue. This article presents a novel device constituted by an infrared camera designed to be placed inside the drying chamber, able to monitor the temperature of the vials, very close to that of the product inside. By this way it is possible to estimate the ending point of the primary drying, the heat transfer coefficient to the product (Kv), and the resistance of the dried product to vapor flux (Rp). Experiments were carried out in a pilot-scale freeze-dryer, processing 5% and 10% sucrose solutions at different values of shelf temperature and chamber pressure, using both thermocouples and the IR camera to track product dynamics. Results evidence that the measurements (of temperature) and the estimates (of the ending point of the main drying and of Kv and Rp) obtained using the 2 systems are very close, thus validating the IR camera as an effective process analytical technologies for the freeze-drying process. Besides, it was shown that the presence of the IR camera in the chamber is not responsible for any additional heating to the product and that monitored vials are representative of the majority of the vials of the batch.  相似文献   

5.
No HeadingPurpose. To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment.Methods. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature.Results. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product temperature. It was found that the MTM results serve as an excellent indicator of the end point of primary drying. Further, we find that the rate of water desorption during secondary drying may be accurately measured by a variation of the basic MTM procedure. Thus, both the end point of secondary drying and real-time residual moisture may be obtained during secondary drying.Conclusions. Manometric temperature measurement and the expert system for good practices in freeze drying does allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment.  相似文献   

6.
During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate the heat transfer of a set of vials located at the edge and in the center of the shelf. The design features considered included the vials loading configurations, the thermal characteristics, and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls, or the geometry of the drying chamber. The model developed turned out to be a powerful tool for cycle development and scale-up.  相似文献   

7.
This article describes a procedure to facilitate scale-up for the primary drying phase of lyophilization using a combination of empirical testing and numerical modeling. Freeze dry microscopy is used to determine the temperature at which lyophile collapse occurs. A laboratory scale freeze-dryer equipped with manometric temperature measurement is utilized to characterize the formulation-dependent mass transfer resistance of the lyophile and develop an optimized laboratory scale primary drying phase of the freeze-drying cycle. Characterization of heat transfer at both lab and pilot scales has been ascertained from data collected during a lyophilization cycle involving surrogate material. Using the empirically derived mass transfer resistance and heat transfer data, a semi-empirical computational heat and mass transfer model originally developed by Mascarenhas et al. (Mascarenhas et al., 1997, Comput Methods Appl Mech Eng 148: 105-124) is demonstrated to provide predictive primary drying data at both the laboratory and pilot scale. Excellent agreement in both the sublimation interface temperature profiles and the time for completion of primary drying is obtained between the experimental cycles and the numerical model at both the laboratory and pilot scales. Further, the computational model predicts the optimum operational settings of the pilot scale lyophilizer, thus the procedure discussed here offers the potential to both reduce the time necessary to develop commercial freeze-drying cycles by eliminating experimentation and to minimize consumption of valuable pharmacologically active materials during process development.  相似文献   

8.
Recently, an innovative continuous freeze-drying concept for unit doses was proposed, based on spinning the vials during freezing. An efficient heat transfer during drying is essential to continuously process these spin frozen vials. Therefore, the applicability of noncontact infrared (IR) radiation was examined. The impact of several process and formulation variables on the mass of sublimed ice after 15 min of primary drying (i.e., sublimation rate) and the total drying time was examined. Two experimental designs were performed in which electrical power to the IR heaters, distance between the IR heaters and the spin frozen vial, chamber pressure, product layer thickness, and 5 model formulations were included as factors. A near-infrared spectroscopy method was developed to determine the end point of primary and secondary drying. The sublimation rate was mainly influenced by the electrical power to the IR heaters and the distance between the IR heaters and the vial. The layer thickness had the largest effect on total drying time. The chamber pressure and the 5 model formulations had no significant impact on sublimation rate and total drying time, respectively. This study shows that IR radiation is suitable to provide the energy during the continuous processing of spin frozen vials.  相似文献   

9.
INTRODUCTION: Theoretical models of the freeze-drying process are potentially useful to guide the design of a freeze-drying process as well as to obtain information not readily accessible by direct experimentation, such as moisture distribution and glass transition temperature, Tg, within a vial during processing. Previous models were either restricted to the steady state and/or to one-dimensional problems. While such models are useful, the restrictions seriously limit applications of the theory. An earlier work from these laboratories presented a nonsteady state, two-dimensional model (which becomes a three-dimensional model with an axis of symmetry) of sublimation and desorption that is quite versatile and allows the user to investigate a wide variety of heat and mass transfer problems in both primary and secondary drying. The earlier treatment focused on the mathematical details of the finite element formulation of the problem and on validation of the calculations. The objective of the current study is to provide the physical rational for the choice of boundary conditions, to validate the model by comparison of calculated results with experimental data, and to discuss several representative pharmaceutical applications. To validate the model and evaluate its utility in studying distribution of moisture and glass transition temperature in a representative product, calculations for a sucrose-based formulation were performed, and selected results were compared with experimental data. THEORETICAL MODEL: The model is based on a set of coupled differential equations resulting from constraints imposed by conservation of energy and mass, where numerical results are obtained using finite element analysis. Use of the model proceeds via a "modular software package" supported by Technalysis Inc. (Passage/ Freeze Drying). This package allows the user to define the problem by inputing shelf temperature, chamber pressure, container properties, product properties, and numerical analysis parameters required for the finite element analysis. Most input data are either available in the literature or may be easily estimated. Product resistance to water vapor flow, mass transfer coefficients describing secondary drying, and container heat transfer coefficients must normally be measured. Each element (i.e., each small subsystem of the product) may be assigned different values of product resistance to accurately describe the nonlinear resistance behavior often shown by real products. During primary drying, the chamber pressure and shelf temperature may be varied in steps. During secondary drying, the change in gas composition from pure water to mostly inert gas is calculated by the model from the instantaneous water vapor flux and the input pumping capacity of the freeze dryer. RESULTS: Comparison of the theoretical results with the experiment data for a 3% sucrose formulation is generally satisfactory. Primary drying times agree within two hours, and the product temperature vs. time curves in primary drying agree within about +/-1 degrees C. The residual moisture vs. time curve is predicted by the theory within the likely experimental error, and the lack of large variation in moisture within the vial (i.e., top vs. side vs. bottom) is also correctly predicted by theory. The theoretical calculations also provide the time variation of "Tg-T" during both primary and secondary drying, where T is product temperature and Tg is the glass transition temperature of the product phase. The calculations demonstrate that with a secondary drying protocol using a rapid ramp of shelf temperature, the product temperature does rise above Tg during early secondary drying, perhaps being a factor in the phenomenon known as "cake shrinkage." CONCLUSION: The theoretical results of in-process product temperature, primary drying time, and moisture content mapping and history are consistent with the experimental results, suggesting the theoretical model should be useful in process development and "trouble-shooting" applications.  相似文献   

10.
In spray freeze-drying (SFD), the solution is typically dispersed into a gaseous cold environment producing frozen microparticles that are subsequently dried via sublimation. This technology can potentially manufacture bulk lyophilized drugs at higher rates compared with conventional freeze-drying in trays and vials because small frozen particles provide larger surface area available for sublimation. Although drying in SFD still has to meet the material collapse temperature requirements, the final characteristics of the respective products are mainly controlled by the spray-freezing dynamics. In this context, the main goal of this work is to present a single droplet spray-freezing model and validate it with previously published simulations and experimental data. For the investigated conditions, the droplet temperature evolutions predicted by the model agree with experiments within an error of ±10%. The proposed engineering-level modeling framework is intended to assist future development of efficient SFD processes and support scale up from laboratory to commercial scale equipment.  相似文献   

11.
The evolution of product temperature and of residual ice content in the various vials of a batch during a freeze-drying process can be significantly affected by local conditions around each vial. In fact, vapor fluid dynamics in the drying chamber determines the local pressure that, taking into account the heat flow from the shelf and, eventually, radiation from chamber surfaces, is responsible for the sublimation rate and product temperature. These issues have to be taken into account when using mathematical simulation to predict the evolution of the product as a consequence of the operating conditions (recipe design), as well as during the scale-up of a recipe obtained in a small-scale equipment to a large-scale unit. In this framework, a dual-scale model can significantly improve the understanding for pharmaceuticals freeze-drying processes: it couples a three-dimensional model, describing the fluid dynamics in the chamber, and a second mathematical model, either mono- or bi-dimensional, describing the drying of the product in each vial. Thus, it can be profitably used to gain knowledge about process dynamics, and to improve the design of the equipment, as well as the performance of the control system of the process. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4337-4350,  相似文献   

12.
Introduction. Theoretical models of the freeze-drying process are potentially useful to guide the design of a freeze-drying process as well as to obtain information not readily accessible by direct experimentation, such as moisture distribution and glass transition temperature, Tg, within a vial during processing. Previous models were either restricted to the steady state and/or to one-dimensional problems. While such models are useful, the restrictions seriously limit applications of the theory. An earlier work from these laboratories presented a nonsteady state, two-dimensional model (which becomes a three-dimensional model with an axis of symmetry) of sublimation and desorption that is quite versatile and allows the user to investigate a wide variety of heat and mass transfer problems in both primary and secondary drying. The earlier treatment focused on the mathematical details of the finite element formulation of the problem and on validation of the calculations. The objective of the current study is to provide the physical rational for the choice of boundary conditions, to validate the model by comparison of calculated results with experimental data, and to discuss several representative pharmaceutical applications. To validate the model and evaluate its utility in studying distribution of moisture and glass transition temperature in a representative product, calculations for a sucrose-based formulation were performed, and selected results were compared with experimental data. Theoretical Model. The model is based on a set of coupled differential equations resulting from constraints imposed by conservation of energy and mass, where numerical results are obtained using finite element analysis. Use of the model proceeds via a “modular software package” supported by Technalysis Inc. (Passage?/Freeze Drying). This package allows the user to define the problem by inputing shelf temperature, chamber pressure, container properties, product properties, and numerical analysis parameters required for the finite element analysis. Most input data are either available in the literature or may be easily estimated. Product resistance to water vapor flow, mass transfer coefficients describing secondary drying, and container heat transfer coefficients must normally be measured. Each element (i.e., each small subsystem of the product) may be assigned different values of product resistance to accurately describe the nonlinear resistance behavior often shown by real products. During primary drying, the chamber pressure and shelf temperature may be varied in steps. During secondary drying, the change in gas composition from pure water to mostly inert gas is calculated by the model from the instantaneous water vapor flux and the input pumping capacity of the freeze dryer. Results. Comparison of the theoretical results with the experiment data for a 3% sucrose formulation is generally satisfactory. Primary drying times agree within two hours, and the product temperature vs. time curves in primary drying agree within about ± 1°C. The residual moisture vs. time curve is predicted by the theory within the likely experimental error, and the lack of large variation in moisture within the vial (i.e., top vs. side vs. bottom) is also correctly predicted by theory. The theoretical calculations also provide the time variation of “Tg–T” during both primary and secondary drying, where T is product temperature and Tg is the glass transition temperature of the product phase. The calculations demonstrate that with a secondary drying protocol using a rapid ramp of shelf temperature, the product temperature does rise above Tg during early secondary drying, perhaps being a factor in the phenomenon known as “cake shrinkage”. Conclusion. The theoretical results of in-process product temperature, primary drying time, and moisture content mapping and history are consistent with the experimental results, suggesting the theoretical model should be useful in process development and “trouble-shooting” applications.  相似文献   

13.
A simple device for the improvement of freeze-drying efficiency is described. The device is an aluminum foil bag which contains a small amount of glycerin. The device can be either reusable or disposable. When placed on a freeze-drying tray the liquid is about 1 mm thick. When vials are placed on the device it conforms to the shape of the vial bottoms. Since both the aluminum foil and the glycerin are better heat conductors than a vacuum, the device improves heat transfer from the shelf to the vial. Drying times obtained with and without the device are compared for different sizes as well as different types of vials. In most cases the use of the device reduces the drying time by nearly a factor of two. The use of the device also increases vial-to-vial uniformity and minimizes the effect of spillage.  相似文献   

14.
为提高注射用还原型谷胱甘肽的稳定性及缩短冻干周期,以冻千时间、产品外观、水分等关键质量属性为指标,对溶剂和干燥温度进行了单因素优化.最终确定采用1%叔丁醇的水溶液作溶剂溶解谷胱甘肽和碳酸氢钠,预冻时隔板温度为-50℃,维持3h至药物全部冻实,再控制一次干燥温度为-36℃,真空度为20 Pa,维持21 h待溶剂完全升华,...  相似文献   

15.
Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.  相似文献   

16.
No HeadingPurpose. To study i) phase transitions in raffinose solution in the frozen state and during freeze-drying and ii) evaluate the impact of raffinose crystallization on the recovery of protein activity in reconstituted lyophiles.Methods. X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) were used to study the frozen aqueous solutions of raffinose pentahydrate. Phase transitions during primary and secondary drying were monitored by simulating the entire freeze-drying process, in situ, in the sample chamber of the diffractometer. The activity of lactate dehydrogenase (LDH) in reconstituted lyophiles was determined spectrophotometrically.Results. Raffinose formed a kinetically stable amorphous freeze-concentrated phase when aqueous solutions were frozen at different cooling rates. When these solutions were subjected to primary drying without annealing, raffinose remained amorphous. Raffinose crystallized as the pentahydrate when the solutions were annealed at a shelf temperature of –10°C. Primary drying of these annealed systems resulted in the dehydration of raffinose pentahydrate to an amorphous phase. The phase separation of the protein from the amorphous raffinose in these two systems during freeze-drying resulted in a significant reduction in the recovery of LDH activity, even though the lyophile was amorphous.Conclusions. Annealing of frozen aqueous raffinose solutions can result in solute crystallization, possibly as the pentahydrate. The crystalline pentahydrate dehydrates during primary drying to yield an amorphous lyophile. Raffinose crystallization during freeze-drying is accompanied by a significant loss of protein activity.  相似文献   

17.
This study is aimed at characterizing and understanding different modes of heat and mass transfer in glass syringes to develop a robust freeze-drying process. Two different holder systems were used to freeze-dry in syringes: an aluminum (Al) block and a plexiglass holder. The syringe heat transfer coefficient was characterized by a sublimation test using pure water. Mannitol and sucrose (5% w/v) were also freeze-dried, as model systems, in both the assemblies. Dry layer resistance was determined from manometric temperature measurement (MTM) and product temperature was measured using thermocouples, and was also determined from MTM. Further, freeze-drying process was also designed using Smart freeze-dryer to assess its application for freeze-drying in novel container systems. Heat and mass transfer in syringes were compared against the traditional container system (i.e., glass tubing vial). In the Al block, the heat transfer was via three modes: contact conduction, gas conduction, and radiation with gas conduction being the dominant mode of heat transfer. In the plexiglass holder, the heat transfer was mostly via radiation; convection was not involved. Also, MTM/Smart freeze-drying did work reasonably well for freeze-drying in syringes. When compared to tubing vials, product temperature decreases and hence drying time increases in syringes.  相似文献   

18.
The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.  相似文献   

19.
In a previous study, heat transfer coefficients of different 10?mL tubing and molded vials were determined gravimetrically via sublimation tests with pure water. Contrary to "conventional wisdom", only small differences in K(v) values between tubing and molded vials were found in the pressure range relevant for pharmaceutical freeze-drying. In order to investigate the impact of these relatively small differences on the primary drying time of an actual product, freeze-drying experiments with 5% gentamicin sulfate solution as a model system were performed at 68, 100 and 200 mTorr. The primary drying times of the API in recently developed molded (EasyLyo?), tubing (TopLyo?) and polymer vials (TopPac?) were compared. At 68 and 100 mTorr the primary drying time of the drug in the glass vials only differed by 3% to 4%, while the polymer vial took around 9% longer. At 200 mTorr, the API in the EasyLyo? vials dried approximately 15% faster compared to the other vial types. The present study suggest that molded vials that have been modified in design to have better heat transfer properties can achieve drying times comparable to tubing vials.  相似文献   

20.
Purpose To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. Methods The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, , of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Results Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Conclusions Plots of m(t) versust and versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号