首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor beta‐3 (TGF‐β3) has been shown to decrease scar formation after scheduled topical applications to the cutaneous wounds. This study aimed to continuously deliver TGF‐β3, during the early phase of wound healing, by engineering a dermal equivalent (DE) using TGF‐β3 expressing bone marrow stromal cells (BM‐SCs) and human dehydrated amniotic membrane (hDAM). To engineer a DE, rat BM‐SCs were seeded on the hDAM and TGF‐β3 was transiently transfected into the BM‐SCs using a plasmid vector. Pieces of the dermal equivalent were transplanted onto the full‐thickness excisional skin wounds in rats. The process of wound healing was assessed by image analysis, Manchester Scar Scale (MSS), and histopathological studies 7, 14, 21, and 85 days after the excision. The results confirmed accurate construction of recombinant pcDNA3.1‐TGF‐β3 expression system and showed that the transfected BM‐SCs seeded on hDAM expressed TGF‐β3 mRNA and protein from day 3 through day 7 after transfection. After implantation of the DE, contraction of the wounds was measured from day 7 through 21 and analyzed by linear regression, which revealed that the rate of wound contraction in all experimental groups was similar. Histologic evaluation demonstrated that transfected BM‐SCs decreased retention and recruitment of the cells during the early stage of wound healing, decreased the formation of vascular structures and led to formation of uniformly parallel collagen bundles. MSS scores showed that TGF‐β3 secreting cells significantly improved the cosmetic appearance of the healed skin and decreased the scar formation. From these results, it could be concluded that transient secretion of TGF‐β3, during the early phase of healing, by BM‐SCs seeded on hDAM can improve the cosmetic appearance of the scar in cutaneous wounds without negatively affecting the process of wound repair.  相似文献   

2.
Wound healing in oral mucosa is fast and results in little scar formation as compared with skin. The biological mechanisms underlying this property are poorly understood but may provide valuable information about the factors that promote wound regeneration. Small leucine‐rich proteoglycans (SLRPs) decorin, biglycan, fibromodulin and lumican are extracellular matrix molecules that regulate collagen fibrillogenesis, inhibit transforming growth factor‐β (TGF‐β) activity and reduce scarring. In the present study, we analyzed accumulation of SLRPs and TGF‐β during non‐scarring human oral mucosal wound healing. Biopsies were collected from healthy volunteers from unwounded tissue and from standardized experimental wounds 3–60 days postwounding. Localization of SLRPs, TGF‐β1 and TGF‐β3 was analyzed by immunohistochemical staining and quantitated by image analysis. Double immunostaining was used to study localization of SLRPs or active TGF‐β in distinct cells. Decorin, biglycan, fibromodulin, and TGF‐β isoforms showed significantly increased accumulation in the wound extracellular matrix and distinct wound cells while the abundance of lumican in the extracellular matrix was strongly reduced during wound healing. Localization and abundance of fibromodulin, lumican, and TGF‐β isoforms was also spatiotemporally regulated in the wound epithelium. The findings suggest that SLRPs regulate wound reepithelialization and connective tissue regeneration during oral mucosal wound healing.  相似文献   

3.
4.
5.
Mesenchymal stem cells (MSCs) derived from umbilical cord s (UC‐MSCs) have been shown to enhance cutaneous wound healing by means of the paracrine activity. Fibroblasts are the primary cells involved in wound repair. The paracrine effects of UC‐MSCs on dermal fibroblasts have not been fully explored in vitro or in vivo. Dermal fibroblasts were treated with conditioned media from UC‐MSCs (UC‐MSC‐CM). In this model, UC‐MSC‐CM increased the proliferation and migration of dermal fibroblasts. Moreover, adult dermal fibroblasts transitioned into a phenotype with a low myofibroblast formation capacity, a decreased ratio of transforming growth factor‐β1,3 (TGF‐β1/3) and an increased ratio of matrix metalloproteinase/tissue inhibitor of metalloproteinases (MMP/TIMP). Additionally, UC‐MSC‐CM‐treated wounds showed accelerated healing with fewer scars compared with control groups. These observations suggest that UC‐MSC‐CM may be a feasible strategy to promote cutaneous repair and a potential means to realise scarless healing.  相似文献   

6.
Transforming growth factor‐β inducible early gene (TIEG) is induced by transforming growth factor‐β (TGF‐β) and acts as the primary response gene in the TGF‐β/Smad pathway. TGF‐β is a multifunctional growth factor that affects dermal wound healing; however, the mechanism of how TGF‐β affects wound healing is still not well understood because of the complexity of its function and signaling pathways. We hypothesize that TIEG may play a role in dermal wound healing, with involvement in wound closure, contraction, and reepithelialization. In this study, we have shown that TIEG1 knockout (TIEG1–/–) mice have a delay in wound closure related to an impairment in wound contraction, granulation tissue formation, collagen synthesis, and reepithelialization. We also found that Smad7 was increased in the wounds and appeared to play a role in this wound healing model in TIEG1–/– mice.  相似文献   

7.
Scar formation, with persistent alteration of the normal tissue structure, is an undesirable and significant result of both wound healing and fibrosing disorders. There are few strategies to prevent or to treat scarring. The transforming growth factor beta (TGF‐β) superfamily is an important mediator of tissue repair. Each TGF‐β isoform may exert a different effect on wound healing, which may be context‐dependent. In particular, TGF‐β1 may mediate fibrosis in adults’ wounds, while TGF‐β3 may promote scarless healing in the fetus and reduced scarring in adults. Thus, TGF‐β3 may offer a scar‐reducing therapy for acute and chronic wounds and fibrosing disorders.  相似文献   

8.
Exposed to inflammatory factors or cytokines, fibroblasts appear to play additional roles beyond the deposition of extracellular matrix. It has been reported that tumor necrosis factor‐α (TNF‐α) induces the production of matrix metalloproteinase‐2 (MMP‐2) and transforming growth factor‐β1 (TGF‐β1) in fibroblasts. In this study, we demonstrated that the active MMP‐2 secreted by lung fibroblasts reached the peak level at 12 hours after TNF‐α treatment, whereas, by adding anti‐TGF‐β1 antibody in the culture medium, the MMP‐2 production in response to TNF‐α was maintained at high levels after 24 hours of treatment. We also confirmed that TNF‐α induced up‐regulation of active TGF‐β1 and exogenous TGF‐β1 induced down‐regulation of MMP‐2 synthesis in lung fibroblasts. Moreover, an increased MMP‐2 level was observed in a rat model with pulmonary inflammation and fibrosis induced by bleomycin‐A5. This revealed that MMP‐2 in the lung reached the peak level when TNF‐α reached the peak level at the 7th day, and then MMP‐2 decreased along with an increase in the TGF‐β1 level. Taken together, our results demonstrate that TNF‐α induced an increase of MMP‐2 and TGF‐β1 in lung fibroblasts, and the TGF‐β1 attenuated the up‐regulation of MMP‐2. This suggests that MMP‐2 secreted from fibroblasts modulated by TNF‐α/TGF‐β1 might play an important role in pulmonary inflammation and fibrosis.  相似文献   

9.
Scarless wound healing is a unique and intrinsic capacity of the fetal skin that is not fully understood. Further insight into the underlying mechanisms of fetal wound healing may lead to new therapeutic approaches promoting adult scarless wound healing. Differences between fetal and adult wound healing are found in the extracellular matrix, the inflammatory reaction and the levels of growth factors present in the wound. This review focuses specifically on transforming growth factor β (TGF‐β), as this growth factor is prominently involved in wound healing and fibroblast‐to‐myofibroblast differentiation. Although fetal fibroblasts do respond to TGF‐β, they lack a proliferative and a contractile response and display short‐lived myofibroblast differentiation, autocrine response, and collagen up‐regulation in comparison with adult fibroblasts. Curiously, prolonged TGF‐β activation is associated with fibrosis, and therefore, this short‐lived response in fetal fibroblasts might contribute to scarless healing. This review gives an overview of the current knowledge on TGF‐β signaling and the intracellular TGF‐β signaling pathway in fetal fibroblasts. Furthermore, this review also describes the various components that regulate the cellular TGF‐β response and hypothesizes about the possible roles these components might play in the altered response of fetal fibroblasts to TGF‐β.  相似文献   

10.
The myofibroblast, a major component of granulation tissue, is a key cell during wound healing, tissue repair and connective tissue remodelling. Persistence of myofibroblasts within a fibrotic lesion leads to excessive scarring impairing function and aesthetics. Various wound‐healing cytokines can be modulated by topical application of active agents to promote optimal wound healing and improve scar quality. Thus, the myofibroblast may represent an important target for wound‐healing modulation to improve the evolution of conditions such as hypertrophic scars. The purpose of this work is to study the modulation of myofibroblasts and integrin αvβ3 in a full thickness wound performed on rabbits treated with different topical agents using: (1) saline, (2) Tegaderm occlusive dressing (3) silver sulfadiazine and (4) moist exposed burn ointment (MEBO). The reepithelialisation was 4 days faster in the MEBO group compared with the other therapies with less oedema formation, delayed contraction, less inflammatory cells and the lowest transepidermal water loss (TEWL) resulting in a soft scar. Although α‐smooth muscle actin (α‐SMA) was the highest around day 12 in the MEBO group, wound contraction and myofibroblast's activity were the least for the same period probably because of a downregulation of the integrin αvβ3. It seems that the effect of MEBO could be more pronounced on force transmission rather then on force generation. Greater insight into the pathology of scars may translate into non surgical treatments in the future and further work in myofibroblast biology will eventually result in efficient pharmacological tools, improving the evolution of healing and scar formation.  相似文献   

11.
Connective tissue growth factor (CCN2/CTGF) and transforming growth factor β1 (TGF‐β1) are important regulators of skin wound healing, but controversy remains regarding their expression in epithelial cell lineages. Here, we investigate the expression of CCN2 in keratinocytes during reepithelialisation and its regulation by TGF‐β1. CCN2 was detected in the epidermis of healing full‐thickness porcine wounds. Human keratinocytes were incubated with or without 10 ng/ml TGF‐β1, and signalling pathways were blocked with 10‐μM SIS3 or 20‐μM PD98059. Semi‐quantitative real‐time PCR was used to study CCN2 mRNA expression, and western blot was used to measure CCN2, phosphorylated‐ERK1/2, ERK1/2, phosphorylated‐Smad3 and Smad2/3 proteins. CCN2 was transiently expressed in neoepidermis at the leading edge of the wound in vivo. In vitro, CCN2 expression was induced by TGF‐β1 at 2 hours (7·5 ± 1·9‐fold mRNA increase and 3·0 ± 0·6‐fold protein increase) and 12 hours (5·4 ± 1·9‐fold mRNA increase and 3·3 ± 0·6‐fold protein increase). Compared with inhibiting the SMAD pathway, inhibiting the mitogen‐activated protein kinase (MAPK) pathway was more effective in reducing TGF‐β1‐induced CCN2 mRNA and protein expression. Inhibition of the MAPK pathway had minimal impact on the activity of the SMAD pathway. CCN2 is expressed in keratinocytes in response to tissue injury or TGF‐β1. In addition, TGF‐β1 induces CCN2 expression in keratinocytes through the ras/MEK/ERK pathway. A complete understanding of CCN2 expression in keratinocytes is critical to developing novel therapies for wound healing and cutaneous malignancy.  相似文献   

12.
Catabolic inflammatory cytokines are prevalent in osteoarthritis (OA). The purpose of this study was to evaluate an autologous protein solution (APS) as a potential chondroprotective agent for OA therapy. APS was prepared from platelet‐rich plasma (PRP). The APS solution contained both anabolic (bFGF, TGF‐β1, TGF‐β2, EGF, IGF‐1, PDGF‐AB, PDGF‐BB, and VEGF) and anti‐inflammatory (IL‐1ra, sTNF‐RI, sTNF‐RII, IL‐4, IL‐10, IL‐13, and IFNγ) cytokines but low concentrations of catabolic cytokines (IL‐1α, IL‐1β, TNFα, IL‐6, IL‐8, IL‐17, and IL‐18). Human articular chondrocytes were pre‐incubated with the antagonists IL‐1ra, sTNF‐RI, or APS prior to the addition of recombinant human IL‐1β or TNFα. Following exposure to inflammatory cytokines, the levels of MMP‐13 in the culture medium were evaluated by ELISA. MMP‐13 production stimulated in chondrocytes by IL‐1β or TNFα was reduced by rhIL‐1ra and sTNF‐RI to near basal levels. APS was also capable of inhibiting the production of MMP‐13 induced by both IL‐1β and TNFα. The combination of anabolic and anti‐inflammatory cytokines in the APS created from PRP may render this formulation to be a potential candidate for the treatment of inflammation in patients at early stages of OA. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1320–1326, 2011  相似文献   

13.
The importance of stromal‐epithelial interactions in wound healing is well established. These interactions likely involve autocrine and paracrine action of multiple growth factors, including members of the TGF‐ß family. TGF‐ß1, ß2 and ß3 isoforms signal by sequentially binding to the TGF‐ß type II and type I receptors, respectively. We address the role of TGF‐ß signaling in dermal fibroblasts using a conditional fibroblastic TGF‐ß type II receptor knockout mouse model (termed FßKO). We found that the loss of TGF‐ß signaling in the dermal fibroblasts results in accelerated excision‐wound closure compared with similar wounds in wild type mice. The mechanism of the altered rate of re‐epitheliaization in the FßKO mice was examined with regard to keratiocyte motility and proliferation. The migration of keratinocytes through collagen I coated 8 μm pore filters in the presence or absence of fibroblast‐conditioned media was tested. These experiments showed increased keratinocyte migration when incubated with FßKO dermal fibroblast conditioned media compared to media conditioned in wild type fibroblasts. Immuno‐histochemical staining of paraffin embedded intact skin indicated both wild type and FßKO mice had similar low levels of keratinocyte proliferation, based on Ki67 staining. In healing wounds, only the distal wound edges of wild type mice were proliferative. In contrast, the FßKO mice exhibited elevated proliferation across the length of the wound, including the leading edge of epithelial closure. Together our results suggest TGF‐ß signaling by the dermal fibroblasts suppresses re‐epithelialization of excision wounds by regulating keratinocyte motility and proliferation through paracrine mechanisms.
Funding: DOD BC99184 and NIH CA85492.  相似文献   

14.
Fibroblast growth factor (FGF) 9 is secreted by both mesothelial and epithelial cells, and plays important roles in organ development and wound healing via WNT/β‐catenin signaling. The aim of this study was to evaluate FGF9 expression and FGF‐WNT/β‐catenin signaling during wound healing of the skin. We investigated FGF9 expression and FGF‐WNT/β‐catenin signaling after laser ablation of mouse skin and adult human skin, as well as in cultured normal human epidermal keratinocytes (NHEKs) upon stimulation with recombinant human (rh) FGF9 and rh‐transforming growth factor (TGF)‐β1. Our results showed that laser ablation of both mouse skin and human skin leads to marked overexpression of FGF9 and FGF9 mRNA. Control NHEKs constitutively expressed FGF9, WNT7b, WNT2, and β‐catenin, but did not show Snail or FGF receptor (FGFR) 2 expression. We also found that FGFR2 was significantly induced in NHEKs by rhFGF9 stimulation, and observed that FGFR2 expression was slightly up‐regulated on particular days during the wound healing process after ablative laser therapy. Both WNT7b and WNT2 showed up‐regulated protein expression during the laser‐induced wound healing process in mouse skin; moreover, we discerned that the stimulatory effect of rhFGF9 and rhTGF‐β1 activates WNT/β‐catenin signaling via WNT7b in cultured NHEKs. Our data indicated that rhFGF9 and/or rhTGF‐β1 up‐regulate FGFR2, WNT7b, and β‐catenin, but not FGF9 and Snail; pretreatment with rh dickkopf‐1 significantly inhibited the up‐regulation of FGFR2, WNT7b, and β‐catenin. Our results suggested that FGF9 and FGF‐WNT/β‐catenin signaling may play important roles in ablative laser‐induced wound healing processes.  相似文献   

15.
The balance between matrix metalloproteinases and their endogenous tissue inhibitors (TIMPs) is an important component in effective wound healing. The biologic action of these proteins is linked in part to the stoichiometry of TIMP/matrix metalloproteinases/surface protein interactions. We recently described the effect of a glycosylphosphatidylinositol (GPI) anchored version of TIMP‐1 on dermal fibroblast biology. Here, cell proliferation assays, in vitro wound healing, electrical wound, and impedance measurements were used to characterize effects of TIMP‐1‐GPI treatment on primary human epidermal keratinocytes. TIMP‐1‐GPI stimulated keratinocyte proliferation, as well as mobilization and migration. In parallel, it suppressed the migration and matrix secretion of dermal myofibroblasts, and reduced their secretion of active TGF‐β1. Topical application of TIMP‐1‐GPI in an in vivo excisional wound model increased the rate of wound healing. The agent positively influenced different aspects of wound healing depending on the cell type studied. TIMP‐1‐GPI counters potential negative effects of overactive myofibroblasts and enhances the mobilization and proliferation of keratinocytes essential for effective wound healing. The application of TIMP‐1‐GPI represents a novel and practical clinical solution for facilitating healing of difficult wounds.  相似文献   

16.
Denatured dermis, a part of dermis in burned skin, has the ability to restore its normal morphology and functions after their surrounding microenvironment is improved. However, the cellular and molecular mechanisms by which the denatured dermis could improve wound healing are still unclear. This study aimed to investigate the role of nucleolin during the recovery of heat‐denatured human dermal fibroblasts. Nucleolin mRNA and protein expression were significantly increased time‐dependently during the recovery of heat‐denatured human dermal fibroblasts (52 °C, 30 seconds). Heat‐denaturation promoted a time‐dependent cell proliferation, migration, chemotaxis, and scratched wound healing during the recovery of human dermal fibroblasts. These effects were prevented by knockdown of nucleolin expression with small interference RNA (siRNA), whereas overexpression of nucleolin enhanced cell proliferation, migration, and chemotaxis of human dermal fibroblasts with heat‐denaturation. In addition, the expression of transforming growth factor‐beta 1(TGF‐β1) was significantly increased during the recovery of heat‐denatured dermis and human dermal fibroblasts. TGF‐β1 expression was up‐regulated by nucleolin in human dermal fibroblasts. The results suggest that nucleolin expression is up‐regulated, and play an important role in promoting cell proliferation, migration, and chemotaxis of human dermal fibroblasts during the recovery of heat‐denatured dermis with a mechanism probably related to TGF‐β1.  相似文献   

17.
18.
Hypertrophic scar formation is an unfavorable condition which is difficult to predict, prevent or treat. Although much research has been done on understanding hypertrophic scar formation, the exact underlying molecular mechanism has not been fully elucidated. Hypertrophic scars younger than 6 months are known to over‐express tTGase. It has been shown that treatment of hypertrophic scars with topical 1, 4 DAB 2HCl inhibited ε(γ‐glutamyl) lysine cross‐linking 1 . In the current study, 12 paired scar biopsies, either treated or untreated with 1, 4 DAB 2HCl were examined for the presence of ε(γ‐glutamyl) lysine cross‐linking by fluorescence immunohistochemistry. In situ tTGase enzyme activity, expression of latent tissue TGF‐β binding protein‐1 (LTBP‐1) and fibronectin were also examined. Scars showed a marked reduction of ε(γ‐glutamyl) lysine cross‐linking following treatment with 1, 4 DAB 2HCl. Although the treated samples did not show any change in expression of tTGase, its in situ activity was noticeably reduced. Treated samples also demonstrated down‐regulation of fibronectin and LTBP‐1. Results suggest that topical treatment of hypertrophic scars with 1,4 DAB 2HCl not only reduced ε(γ‐glutamyl) lysine cross‐linking but also reduced tTGase activity, expression of fibronectin and LTBP‐1 1 which are known to play a role in extracellular matrix storage of transforming grown factor‐β(TGF‐β), responsible for wound healing and scar formation. 4Dolynchuk KN. Wound Rep Reg 1996; 4(1): 16–20. 5Verderio E, Gaudry C et al. J. Histochem 1999; 47(11): 1417–1432.  相似文献   

19.
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM‐derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC‐based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double‐deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full‐thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin‐induced diabetes in the presence or absence of tail‐vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb‐EPC) counts when compared with wild‐type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC‐deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM‐derived EPCs play a significant role during wound neovascularization and that the SCF‐based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.  相似文献   

20.
Platelet‐rich plasma (PRP) has generated substantial interest for tendon and ligament regeneration because of the high concentrations of growth factors in platelet α‐granules. This study compared the temporal release of growth factors from bone marrow aspirate (BMA), PRP, and lyophilized platelet product (PP), and measured their effects on tendon and ligament gene expression. Blood and BMA were collected and processed to yield PRP and plasma. Flexor digitorum superficialis tendon (FDS) and suspensory ligament (SL) explants were cultured in 10% plasma in DMEM (control), BMA, PRP, or PP. TGF‐β1 and PDGF‐BB concentrations were determined at 0, 24, and 96 h of culture using ELISA. Quantitative RT‐PCR for collagen types I and III (COL1A1, COL3A1), cartilage oligomeric matrix protein (COMP), decorin, and matrix metalloproteinases‐3 and 13 (MMP‐3, MMP‐13) was performed. TGF‐β1 and PDGF‐BB concentrations were highest in PRP and PP. Growth factor quantity was unchanged in BMA, increased in PRP, and decreased in PP over 4 days. TGF‐β1 and platelet concentrations were positively correlated. Lyophilized PP and PRP resulted in increased COL1A1:COL3A1 ratio, increased COMP, and decreased MMP‐13 expression. BMA resulted in decreased COMP and increased MMP‐3 and MMP‐13 gene expression. Platelet concentration was positively correlated with COL1A1, ratio of COL1A1:COL3A1, and COMP, and negatively correlated with COL3A1, MMP‐13, and MMP‐3. White blood cell concentration was positively correlated with COL3A1, MMP3, and MMP13, and negatively correlated with a ratio of COL1A1:COL3A1, COMP, and decorin. These findings support further in vivo investigation of PRP and PP for treatment of tendonitis and desmitis. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 1033–1042, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号