首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cetuximab is a human/mouse chimeric IgG1 monoclonal antibody (mAb) to epidermal growth factor receptor, approved for colorectal carcinoma treatment in combination with chemotherapy. The immune-mediated effects elicited by its human fraction of crystallization moiety might critically contribute to the overall anti-tumor effectiveness of the antibody. We therefore investigated cetuximab ability to promote colon cancer cell opsonization and phagocytosis by human dendritic cells (DCs) that are subsequently engaged in antigen-cross presentation to cytotoxic T-lymphocyte (CTL) precursors. Human colon cancer cell lines were evaluated for susceptibility to DC-mediated phagocytosis before and after treatment with chemotherapy ± cetuximab in vitro. Human DCs loaded with control or drug-treated cetuximab-coated colon cancer cells were used to in vitro generate cytotoxic T cell clones from peripheral blood mononuclear cells of human leucocyte antigen-A(*)02.01(+) donors. T-cell cultures were characterized for immune-phenotype and tumor-antigen specific CTL activity. The results confirmed that treatment of tumor cells with irinotecan + L-folinate + 5-flurouracil (ILF) or with gemcitabine + ILF increased tumor antigen expression. Moreover, malignant cells exposed to chemotherapy and cetuximab were highly susceptible to phagocytosis by human DCs and were able to promote their activation. The consequent DC-mediated cross-priming of antigens derived from mAb-covered/drug-treated cancer cells elicited a robust CTL anti-tumor response. On the basis of our data, we suggest a possible involvement of CTL-dependent immunity in cetuximab anti-cancer effects.  相似文献   

2.
5-Fluorouracil (5-FU) is a pyrimidine antimetabolite active against colorectal carcinoma and other malignancies of the digestive tract. Over-expression or mutation of thymidylate synthase (TS), the target enzyme of the 5-FU metabolite, 5-fluorodeoxyuridine monophosphate, is strictly correlated with cancer cell resistance to 5-FU. On this basis we investigated whether TS is a potential target for active specific immunotherapy of human colon carcinoma, which acquires resistance to 5-FU. Three TS-derived epitope peptides which fit defined amino acid consensus motifs for HLA-A2.1 binding were synthesized and investigated for their ability to induce human TS-specific cytotoxic T cell (CTL) responses in vitro. CTL lines specific for each peptide were established by stimulating peripheral blood mononuclear cells (PBMC) from an HLA-A2.1+ healthy donor with autologous dendritic cells loaded with TS peptide. Specific CTL lines showed HLA-A2.1-restricted cytotoxicity in vitro to HLA-A2.1+ target cells pulsed with the specific TS peptide and to HLA-class I matching colon carcinoma target cells over-expressing TS enzyme after exposure to 5-FU. Recognition by CTL lines suggests that these TS peptides may be potential candidates for use in a peptide-based vaccine against 5-FU resistant colon carcinoma.  相似文献   

3.
Abstract

5-Fluorouracil (5-FU) is a pyrimidine antimetabolite active against colorectal carcinoma and other malignancies of the digestive tract. Over-expression or mutation of thymidylate synthase (TS), the target enzyme of the 5-FU metabolite, 5-fluorodeoxyuridine monophosphate, is strictly correlated with cancer cell resistance to 5-FU. On this basis we investigated whether TS is a potential target for active specific immunotherapy of human colon carcinoma, which acquires resistance to 5-FU. Three TS-derived epitope peptides which fit defined amino acid consensus motifs for HLA-A2.1 binding were synthesized and investigated for their ability to induce human TS-specific cytotoxic T cell (CTL) responses In Vitro. CTL lines specific for each peptide were established by stimulating peripheral blood mononuclear cells (PBMC) from an HLA-A2.1 + healthy donor with autologous dendritic cells loaded with TS peptide. Specific CTL lines showed HLA-A2.1-restricted cytotoxicity In Vitro to HLA-A2.1+ target cells pulsed with the specific TS peptide and to HLA-class I matching colon carcinoma target cells over-expressing TS enzyme after exposure to 5-FU. Recognition by CTL lines suggests that these TS peptides may be potential candidates for use in a peptide-based vaccine against 5-FU resistant colon carcinoma.  相似文献   

4.
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.  相似文献   

5.
Epithelial cell adhesion molecule (Ep-CAM) derived antigenic peptides have been identified that can be recognized by cytotoxic T lymphocytes (CTL) in a major histocompatibility complex (MHC) class I restricted fashion. Thus, altered expression of Ep-CAM in a variety of human tumors might render a potential target for T cell mediated therapy. We have examined, whether the novel HLA-A*0201 restricted peptide ILYENNVIT (184-192) corresponding to Ep-CAM and one heteroclitic modified variant peptide previously demonstrated to be immunogenic in the human system can elicit antigen specific CTL responses in HLA-A2 positive patients with history of Ep-CAM expressing cancer of lung and colon. Specific CTL recognition of T2 target cells pulsed with the native peptide as well as of the lung cancer cell line A549 indicates that an appropriate T cell repertoire can be expanded from peripheral blood from patients in clinical remission and with advanced cancer. Despite an overall low frequency, peptide specific precursor CTLs could be readily expanded from peripheral blood from 6/8 patients that were diagnosed previously with Ep-CAM expressing lung cancer and 4/8 control individuals (2/5 healthy donors and 2/3 colon cancer patients). CTLs from three of five lung cancer patients tested also lyzed the HLA-A2(+) and Ep-CAM expressing lung cancer cell line A549. We did not detect an increased frequency of pCTLs after peripheral blood monocytes (PBMCs) were stimulated with the heteroclitic compound peptide. The results of our study indicate that Ep-CAM specific precursor CTL can be expanded in vitro and a specific T cell response against this epitope can be elicited in patients at various stages of lung cancer.  相似文献   

6.
The aim of antitumor immunotherapy is to induce CTL responses against autologous tumors. Previous work has shown that fusion of human dendritic cells and autologous tumor cells induce CTL responses against autologous tumor cells in vitro. However, in the clinical setting of patients with colorectal carcinoma, a major difficulty is the preparation of sufficient amounts of autologous tumor cells. In the present study, autologous dendritic cells from patients with colorectal carcinoma were fused to allogeneic colorectal tumor cell line, COLM-6 (HLA-A2(-)/HLA-24(-)), carcinoembryonic antigen (CEA)(+), and MUC1(+) as an alternative strategy to deliver shared colorectal carcinoma antigens to dendritic cells. Stimulation of autologous T cells by the fusion cells generated with autologous dendritic cells (HLA-A2(+) and/or HLA-A24(+)) and allogeneic COLM-6 resulted in MHC class I- and MHC class II-restricted proliferation of CD4(+) and CD8(+) T cells, high levels of IFN-gamma production in both CD4(+) and CD8(+) T cells, and the simultaneous induction of CEA- and MUC1-specific CTL responses restricted by HLA-A2 and/or HLA-A24. Finally, CTL induced by dendritic cell/allogeneic COLM-6 fusion cells were able to kill autologous colorectal carcinoma by HLA-A2- and/or HLA-A24-restricted mechanisms. The demonstration of CTL activity against shared tumor-associated antigens using an allogeneic tumor cell line, COLM-6, provides that the presence of alloantigens does not prevent the development of CTL with activity against autologous colorectal carcinoma cells. The fusion of allogeneic colorectal carcinoma cell line and autologous dendritic cells could have potential applicability to the field of antitumor immunotherapy through the cross-priming against shared tumor antigens and provides a platform for adoptive immunotherapy.  相似文献   

7.
Toward the development of a novel cancer immunotherapy, we have previously identified several tumor-associated antigens (TAAs) and the epitopes recognized by human histocompatibility leukocyte (HLA)-A2/A24-restricted cytotoxic T lymphocyte (CTL). In this study, we tried to identify a TAA of lung cancer (LC) and its HLA-A2 restricted CTL epitopes to provide a target antigen useful for cancer immunotherapy of LC. We identified a novel cancer testis antigen, cell division cycle associated gene 1 (CDCA1), overexpressed in nonsmall cell LC using a cDNA microarray analysis. The expression levels of CDCA1 were also increased in the majority of small cell LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers. We used HLA-A2.1 transgenic mice to identify the HLA-A2 (A*0201)-restricted CDCA1 epitopes recognized by mouse CTL, and we investigated whether these peptides could induce CDCA1-reactive CTLs from the peripheral blood mononuclear cells (PBMCs) of HLA-A2-positive donors and a NSCLC patient. Consequently, we found that the CDCA1(65-73) (YMMPVNSEV) peptide and CDCA1(351-359) (KLATAQFKI) peptide could induce peptide-reactive CTLs in HLA-A2.1 transgenic mice. In HLA-A2(+) donors, in vitro stimulation of PBMC with these peptides could induce peptide-reactive CTLs which killed tumor cell lines endogenously expressing both HLA-A2 and CDCA1. As a result, CDCA1 is a novel cancer-testis antigen overexpressed in LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers, and CDCA1 may therefore be an ideal TAA useful for the diagnosis and immunotherapy of these cancers.  相似文献   

8.
A p53 peptide-specific CTL line was generated through stimulation with autologous monocyte-derived dendritic cells (DC) pulsed with wild-type HLA-A2 binding p53 derived peptides. A p53 peptide-specific CD8(+) CTL line was established from a healthy HLA-A2 positive donor. The CTL line was characterized with respect to specificity, affinity and killing of cell lines derived from p53 mutated spontaneous tumors. The CTL line demonstrated lysis of p53(139-147) pulsed target cells and cold target inhibition experiments as well as antibody blocking confirmed that the killing was epitope-specific, HLA-A2 restricted and dependent on CD8-binding. Interestingly, the affinity of the CTL line was only in the micromole per liter range and target cells pulsed with less than 0.01 microM peptide were not recognized. Furthermore, 3 HLA-A2(+) p53 mutated tumor cell lines were efficiently lysed by the CTL line, indicating that this novel p53 peptide epitope is endogenously processed and presented by the HLA-A2 molecules of the tumor cells. In conclusion, CTL reactivity towards a wild-type p53 peptide was revealed through induction with DC pulsed with a pool of HLA-A2 binding p53 peptides. In addition, the CTL line, which expressed relatively low affinity for the HLA-A2/peptide complex, was able to kill 3 different HLA-A2(+) p53 mutated tumor cell lines. The present and our previous observations expand the number of p53-derived peptides suitable for vaccination protocols for cancer patients with p53 positive tumors.  相似文献   

9.
The human HER-2/neu gene encodes a 185 kDa transmembrane glycoprotein recognized by MHC class I-restricted CTLs. Here, we report that HER-2/neu peptide CTL epitopes can also be recognized by cytotoxic NK-T lymphocytes. Unfractionated peptides derived from HLA-A2(+), HER-2/neu(+) tumor cells acid cell extract (ACE), collected from patients with metastatic ovarian cancer, were used as antigen to generate in vitro cytotoxic effectors. ACE was able to elicit from cancer patients' PBMCs both alphabetaTCR(+)CD3(+)CD56(-) and alphaTCR(+)CD3(+)CD56(+) (NK-T) CTLs that lysed ACE-sensitized T2 cells in an HLA-A2-restricted manner. The same CTL lines also recognized T2 cells pulsed with HER-2/neu-derived CTL peptide epitopes, a HER-2/neu-transfected HLA-A2(+) cell line and autologous tumor cells. alphaTCR(+)CD3(+)CD56(+) CTL lines also exhibited NK-like cytotoxicity against autologous tumor cells. CTL clones were isolated from alphaTCR(+)CD3(+)CD56(+) bulk cultures displaying both MHC- and non-MHC-restricted cytotoxicity, thus confirming the dual cytolytic function of such cells. Our data demonstrate that ACE from metastatic ovarian tumors can be used as multiepitope vaccines for generating in vitro, besides classical CTLs, NK-T cells exerting efficient MHC- and non-MHC-restricted cytotoxicity against autologous tumor targets. Such NK-T cells expressing dual cytotoxic activity may prove advantageous in cancer immunotherapy.  相似文献   

10.
Human metastatic colorectal carcinomas (CRCAs) express carcinoembryonic antigen (CEA) and/or MUC1 tumor-associated antigens as potential targets for the induction of active specific immunity. In the present study, freshly isolated metastatic CRCA cells were successfully fused with immature autologous human monocyte-derived dendritic cells (DCs). The created heterokaryons (DC/CRCA) coexpress the CRCA-derived CEA and MUC1 antigens and DC-derived MHC class II and costimulatory molecules. The fusion cells were functional in stimulating the proliferation of autologous T cells. In addition, both CD4(+) and CD8(+) T cells were activated by fusion cells, as demonstrated by the production of high levels of IFN-gamma. More importantly, coculture of fusion cells with patient-derived peripheral blood mononuclear cells (PBMCs) resulted in the induction of antigen-specific cytotoxic T lymphocytes (CTLs). CTLs were effective at lysis of not only autologous CRCA cells but also the CEA and/or MUC1-positive and HLA partially matched target cells. Antigen-specific CTL responses were confirmed by tetrameric analysis. Coculture of PBMCs with fusion cells resulted in increased frequency of CEA- and MUC1-specific CTLs simultaneously. Taken together, these results indicate that freshly isolated human metastatic CRCA cells expressing the CEA and/or MUC1 may represent a potential partner for the creation of DC/tumor fusion cells targeting induction of antigen-specific CTL responses. Our report demonstrates the simultaneous induction of CRCA-specific CTL responses restricted by HLA-A2 and -A24.  相似文献   

11.
Peptide vaccination for cancer immunotherapy requires an ideal immune response induced by epitope peptides derived from tumor-associated antigens (TAA). Heparanase is broadly expressed in various advanced tumors. Accumulating evidence suggests that heparanase can serve as a universal TAA for tumor immunotherapy. However, due to the low immunogenicity of peptide vaccines, an ideal immune response against tumors usually cannot be elicited in patients. To increase the immunogenicity of peptide vaccines, we designed three 4-branched multiple antigenic peptides (MAP) on the basis of the human leukocyte antigen (HLA)-A2-restricted cytotoxic T lymphocyte (CTL) epitopes of human heparanase that we identified previously as antigen carriers. Our results show that MAP vaccines based on the HLA-A2-restricted CLT epitopes of human heparanase were capable of inducing HLA-A2-restricted and heparanase-specific CTL in vitro and in mice. Moreover, compared with their corresponding linear peptides, heparanase MAP vaccines elicited much stronger lysis of tumor cells by activating CD8(+) T lymphocytes and increasing the releasing of IFN-γ. However, these heparanase-specific CTLs did not lyse heparanase-expressing autologous lymphocytes and dendritic cells, which confirm the safety of these MAP vaccines. Therefore, our findings indicate that MAP vaccines based on CTL epitopes of human heparanase can be used as potent immunogens for tumor immunotherapy because of advantages such as broad spectrum, high effectiveness, high specificity, and safety.  相似文献   

12.
The graft-versus-leukemia effect of allogeneic stem-cell transplantation is believed to be mediated by T-cell recognition of minor histocompatibility antigens on recipient cells. For minor histocompatibility antigens HA-1 and HA-2, normal cell expression is restricted to hemopoietic cells, and boosting the immune response to these antigens may potentiate graft-versus-leukemia effect without accompanying graft-versus-host disease. To increase efficacy, expansion of HA-1- or HA-2-specific CTL before transplantation is desirable. However, primary HA-1- or HA-2-specific CTL expanded in vitro are often of low avidity. An alternative approach is to prime specific CTL responses in vivo by vaccination. Clearly, donor vaccination must be safe and specific. We have developed DNA fusion vaccines able to induce high levels of epitope-specific CTL using linked CD4(+) T-cell help. The vaccines incorporate a domain of tetanus toxin (DOM) fused to a sequence encoding a candidate MHC class I binding peptide. This design generates antitumor CD8(+) T-cell responses and protective immunity in preclinical models. For clinical application, we constructed vaccines encoding HLA-A*0201-restricted peptides from human HA-1 and HA-2, which were fused to DOM, and tested their performance in HLA-A*0201-transgenic mice. Priming induced epitope-specific, IFNgamma-producing CD8(+) T cells with cytotoxic function boosted to high levels with electroporation. Strikingly, these mouse T cells efficiently killed human lymphoblastoid cell lines expressing endogenous HA-1 or HA-2. High avidity is indicated by the independence of cytolysis from CD8/MHC class I interaction. These safe epitope-specific vaccines offer a potential strategy to prime HA-1- or HA-2-specific CTL in transplant donors before adoptive transfer.  相似文献   

13.
Tumor vaccines using dendritic cells (DCs) have been shown to induce antitumor CTL responses. The choice of the tumor antigen preparation used for DC loading is still an unresolved issue. We compared DCs pulsed with cell lysates, whole apoptotic tumor cells or their supernatants of the HLA-A2(+) human pancreatic carcinoma cell line Panc-1 for their capacity to activate T cells. Monocyte-derived DCs from HLA-A2(+) donors were pulsed with tumor antigen, matured subsequently, and cocultured with autologeous peripheral blood mononuclear cells. After three weekly restimulations with DCs, T-cell activation was assessed by intracellular IFN-gamma staining and cytotoxicity assays. Compared with lysate, pulsing DCs with the supernatant of apoptotic tumor cells induced a higher frequency of activated CTLs and T-helper cells, as well as an enhanced MHC class I-restricted tumor cell lysis. No activation of natural killer (NK) or gammadelta T cells was detected. Pulsing DCs with whole apoptotic tumor cells induced an even more pronounced lytic effect. However, in this case, MHC class-I blocking was only partially effective, and unrelated cell lines were also killed. IFN-gamma staining revealed activation of CTLs and T-helper cells, as well as NK and gammadelta T cells. Trans-well cultures of NK cells, apoptotic tumor cells, and DCs showed that NK cell activation was dependent on direct cell-to-cell contact with tumor cells and the presence of interleukin-12 produced by DCs. These results indicate that the choice of antigen preparation is a critical determinant in the induction of antitumor immunity. Tumor vaccines consisting of DCs and apoptotic tumor cells may be able to activate CTLs, as well as effector cells of the innate immune system.  相似文献   

14.
Parathyroid hormone-related protein (PTH-rP), a secreted protein produced by prostate carcinoma and other epithelial cancers, is considered a key agent for the development of bone metastases. We investigated the construct GC90/IRIV, composed of immunopotentiating reconstituted influenza virosomes (IRIV) containing PTH-rP gene plasmids (GC90), as a potential tool for human anticancer immunotherapy into humanised mice transgenic for HLA-A(*)02.01, the human-beta2 microglobulin, and the human CD8alpha molecule. Intranasal administration of GC90/IRIV resulted in the induction of a PTH-rP-specific multiepitope cytotoxic T-cell (CTL) response. Cytotoxic T cells derived from vaccinated mice were capable of lysing in vitro syngenic murine PTH-rP transfectants and human HLA-A((*))02.01(+)/PTH-rP(+) prostate carcinoma LNCaP cells as well. The immune response capacity and the absence of any sign of toxicity and/or autoimmunity in vivo suggest the GC90/IRIV vaccine as a valid tool for active specific immunotherapy of human cancers and metastases overexpressing PTH-rP.  相似文献   

15.
PURPOSE: Tumor-derived exosomes are proposed as a new type of cancer vaccine. Heat shock proteins are potent Th1 adjuvant, and heat stress can induce heat shock protein and MHC-I expression in tumor cells, leading to the increased immunogenicity of tumor cells. To improve the immunogenicity of exosomes as cancer vaccine, we prepared exosomes from heat-stressed carcinoembryonic antigen (CEA)-positive tumor cells (CEA+/HS-Exo) and tested the efficacy of these exosomes in the induction of CEA-specific antitumor immunity. EXPERIMENTAL DESIGN: First, we identified the composition of CEA+/HS-Exo and observed their effects on human dendritic cell maturation. Then, we evaluated their ability to induce a CEA-specific immune response in vivo in HLA-A2.1/Kb transgenic mice and CEA-specific CTL response in vitro in HLA-A*0201+ healthy donors and HLA-A*0201+CEA+ cancer patients. RESULTS: CEA+/HS-Exo contained CEA and more heat shock protein 70 and MHC-I and significantly induced dendritic cell maturation. Immunization of HLA-A2.1/Kb transgenic mice with CEA+/HS-Exo was more efficient in priming a CEA-specific CTL, and the CTL showed antitumor effect when adoptively transferred to SW480-bearing nude mice. Moreover, in vitro incubation of lymphocytes from HLA-A*0201+ healthy donors and HLA-A*0201+CEA+ cancer patients with CEA+/HS-Exo-pulsed autologous dendritic cells induces HLA-A*0201-restricted and CEA-specific CTL response. CONCLUSIONS: Our results show that CEA+/HS-Exo has superior immunogenicity than CEA+/Exo in inducing CEA-specific CTL response and suggest that exosomes derived from heat-stressed tumor cells may be used as efficient vaccine for cancer immunotherapy.  相似文献   

16.
PURPOSE: For identification of CTL epitopes useful for cancer vaccines, it is crucial to determine whether cognate epitopes are presented on the cell surface of target cancer cells through natural processing of endogenous proteins. For this purpose, we tried to use the cellular machinery of both mice and human to define naturally processed CTL epitopes derived from two "cancer germ line" genes, MAGE-A4 and SAGE. EXPERIMENTAL DESIGN: We vaccinated newly produced HLA-A2402 transgenic mice with DNA plasmids encoding target antigens. Following screening of synthesized peptides by splenic CD8(+) T cells of vaccinated mice, we selected candidate epitopes bound to HLA-A2402. We then examined whether human CD8(+) T cells sensitized with autologous CD4(+) PHA blasts transduced by mRNA for the cognate antigens could react with these selected peptides in an HLA-A2402-restricted manner. RESULTS: After DNA vaccination, murine CD8(+) T cells recognizing MAGE-A4(143-151) or SAGE(715-723) in an HLA-A2402-restricted manner became detectable. Human CTLs specific for these two peptides were generated after sensitization of HLA-A2402-positive CD8(+) T cells with autologous CD4(+) PHA blasts transduced with respective mRNA. CTL clones were cytotoxic toward tumor cell lines expressing HLA-A2402 and cognate genes. Taken together, these CTL epitopes defined in HLA-A24 transgenic mice are also processed and expressed with HLA-A2402 in human cells. The presence of SAGE(715-723)-specific precursors was observed in HLA-A2402-positive healthy individuals. CONCLUSIONS: Two novel HLA-A2402-restricted CTL epitopes, MAGE-A4(143-151) and SAGE(715-723), were identified. Our approach assisted by cellular machinery of both mice and human could be widely applicable to identify naturally processed CTL epitopes.  相似文献   

17.
INTRODUCTION: Mammaglobin-A(mam-A) is expressed in over 80% of human breast tumors. We recently reported that mam-A DNA vaccination resulted in breast cancer immunity in a preclinical model. Here we investigated whether mam-A HLA-class-I tetramers could be used to monitor and define the role of CD8(+)cytotoxic T-lymphocytes(CTL) in mediating breast cancer immunity following mam-A DNA vaccination. STUDY DESIGN: Mam-A DNA vaccination was performed in HLA-A2(+)huCD8(+ )transgenic mice. HLA-A2 tetramers carrying the immunodominant mamA2.1 peptide were used to monitor CD8(+)CTL. Human breast cancer colonies were developed in immunodeficient SCID-beige mice. ELISPOT was used to correlate frequency of mamA2.1 tetramer(+)CD8(+)T cells and IFN-gamma production [spots per million cells (spm)] in human subjects. RESULTS: Vaccination of HLA-A2(+)huCD8(+) mice with mam-A DNA vaccine, but not empty vector, led to the expansion of mamA2.1 tetramer(+)CD8(+)T-cells in peripheral blood (<0.5% pre-vaccination compared to >2.0% post-vaccination). CD8(+)T cells from vaccinated mice specifically lysed UACC-812(HLA-A2(+)/mam-A(+), 25% lysis) but not MDA-MB-415(HLA-A2(-)/mam-A(+)) or MCF-7(HLA-A2(+)/mam-A(-)) breast cancer cells. Adoptive transfer of purified CD8(+)T cells from vaccinated mice into immunodeficient SCID-beige mice with established human breast cancer colonies led to tetramer(+)CD8(+ )T-cell infiltration with regression of UACC-812 but not MCF-7 tumors. HLA-A2(+) breast cancer patients revealed increased frequency of mamA2.1 tetramer(+)CD8(+ )T-cells compared to normal controls (2.86 +/- 0.8% vs. 0.71 +/- 0.1%, P = 0.01) that correlated with the IFN-gamma response to mamA2.1 peptide (48.1 +/- 20.9 vs. 2.9 +/- 0.8 spm, P = 0.03). CONCLUSIONS: CD8(+ )T-cells are crucial in mediating breast cancer immunity following mam-A DNA vaccination. Mam-A HLA-class-I tetramers can be effectively used to monitor development of CD8(+ )T-cells following mam-A vaccination.  相似文献   

18.
Bone metastases are one of the most common events in patients with prostate carcinoma. PTH-rP, a protein produced by prostate carcinoma and other epithelial cancers, is a key agent for the development of bone metastases. A PTH-rP-derived peptide, designated PTR-4 was identified, which is capable to bind HLA-A2.1 molecules and to generate PTH-rP-specific cytotoxic T cell (CTL) lines from healthy HLA-A2.1(+) individual peripheral-blood-mononuclear-cells (PBMC). In this model, we investigated the in vitro possibility of generating an efficient PTH-rP specific CTL response by cyclical stimulations with IL-2 and PTR-4 peptide-pulsed autologous dendritic cells (DC), of HLA-A2.1(+) tumour infiltrating lymphocytes (TIL) derived from a patient with metastatic prostate carcinoma. A T cell line generated in this way (called TM-PTR-4) had a CD3(+), CD5(+), CD4(-), CD8(+), CD45(Ro+), CD56(-) immunophenotype and a HLA-A2.1 restricted cytotoxic activity to PTR-4-peptide pulsed CIR-A2 (HLA-A2.1(+)) target cells, PTH-rP(+)/HLA-A2.1(+) CIR-A2 transfected with PTH-rP gene, prostate carcinoma LNCaP cells, and autologous metastatic prostate cancer cells (M-CaP). These lymphocytes were not cytotoxic to HLA-A2.1(+) targets not producing PTH-rP, such as peptide-unpulsed CIR-A2 and colon carcinoma SW-1463, cell lines. Our results provide evidence that PTR-4 peptide-pulsed autologous DC may break the tolerance of human TIL against the autologous tumour by inducing a PTH-rP-specific CTL immune reaction. In conclusion PTR-4 peptide-pulsed autologous DC may be a promising approach for vaccine-therapy and antigen-specific CTL adoptive immunotherapy of hormone-resistant prostrate cancer.  相似文献   

19.
We have performed genome-wide exploration by using cDNA microarray profiling, and successfully identified a new tumor-associated antigen (TAA) that can induce potent cytotoxic T lymphocytes (CTLs) specific to tumor cells. In our preceding study, we identified multiple new genes by using gene expression profiling with a genome-wide cDNA microarray containing 23,040 genes. Among them, we selected RNF43 (ring finger protein 43) as a promising candidate for a TAA expressed by colon cancer cells. In this study, we examined whether the RNF43 protein contains antigenic epitope peptides restricted to HLA-A*0201 or HLA-A*2402. The CTL clones were successfully induced with stimulation by using the peptides binding to HLA-A*0201 (ALWPWLLMA and ALWPWLLMAT) and HLA-A*2402 (NSQPVWLCL), and these CTL clones showed the cytotoxic activity specific to not only the peptide-pulsed targets but also the tumor cells expressing RNF43 and respective HLAs. Lytic activities mediated by two HLA-A2-restricted epitopes were marginal, whereas tumor lysis mediated by the HLA-A24 epitope was clearly better. These findings might be caused by the poor natural presentation of RNF43-11(IX) and RNF43-11(X) by tumors or poor T-cell receptor avidity for these specific epitopes. These results strongly suggest that RNF43 is a new TAA of colon cancer. Furthermore, these results also suggest that our strategy might be a promising one to efficiently discover clinically useful TAAs.  相似文献   

20.
Local radiation of tumor masses is an established modality for the therapy of a range of human tumors. It has recently been recognized that doses of radiation, lower than or equal to those that cause direct cytolysis, may alter the phenotype of target tissue by up-regulating gene products that may make tumor cells more susceptible to T-cell-mediated immune attack. Previously, we demonstrated that radiation increased Fas (CD95) gene expression in carcinoembryonic antigen (CEA)-expressing murine tumor cells, which consequently enhanced their susceptibility to CEA-specific CTL-mediated killing. The present study was designed to determine whether these phenomena also occur with human tumor cells. Here, 23 human carcinoma cell lines (12 colon, 7 lung, and 4 prostate) were examined for their response to nonlytic doses of radiation (10 or 20 Gy). Seventy-two hours postirradiation, changes in surface expression of Fas (CD95), as well as expression of other surface molecules involved in T-cell-mediated immune attack such as intercellular adhesion molecule 1, mucin-1, CEA, and MHC class I, were examined. Twenty-one of the 23 (91%) cell lines up-regulated one or more of these surface molecules postirradiation. Furthermore, five of five irradiated CEA(+)/A2(+) colon tumor cells lines demonstrated significantly enhanced killing by CEA-specific HLA-A2-restricted CD8(+) CTLs compared with nonirradiated counterparts. We then used microarray analysis to broaden the scope of observed changes in gene expression after radiation and found that many additional genes had been modulated. These up-regulated gene products may additionally enhance the tumor cells' susceptibility to T-cell-mediated immune attack or serve as additional targets for immunotherapy. Overall, the results of this study suggest that nonlethal doses of radiation can be used to make human tumors more amenable to immune system recognition and attack and form the rational basis for the combinatorial use of cancer vaccines and local tumor irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号