首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular recordings were used to study the electrophysiological properties of rat subicular neurons in a brain slice preparation in vitro. Cells were classified as bursting neurons (n = 102) based on the firing pattern induced by depolarizing current pulses. The bursting response recorded at resting membrane potential (−66.1 ± 6.2 mV, mean ± SD n = 94) was made up of a cluster of fast action potentials riding on a slow depolarization and was followed by an afterhyperpolarization. Tonic firing occurred at a membrane potential of approximately −55 mV. A burst also occurred upon termination of a hyperpolarizing current pulse. Tetrodotoxin (TTX, 1 μM) blocked the burst and decreased or abolished the underlying slow depolarization. These effects were not induced by the concomitant application of the Ca2+ channel blockers Co2+ (2 mM) and Cd2+ (1 mM). Subicular bursting neurons displayed voltage- and time-dependent inward rectifications of the membrane during depolarizing and hyperpolarizing current pulses. The inward rectification in the depolarizing direction was abolished by TTX, while that in the hyperpolarizing direction was blocked by extracellular Cs+ (3 mM), but not modified by Ba2+ (0.5–1 mM), TTX, or Co2+ and Cd2+. Tetraethylammonium (10 mM)-sensitive, outward rectification became apparent in the presence of TTX. These results suggest that neurons in the rat subiculum can display voltage-dependent bursts of action potentials as well as membrane rectification in the depolarizing and hyperpolarizing directions. These results also indicate that activation of a voltage-gated Na+ conductance may be instrumental in the initiation of bursting activity. Hippocampus 7:48–57, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Ionic currents were investigated by a patch clamp technique in a clonal strain of pituitary (GH3) cells, using the whole cell configuration with Cs+ internal solution. Depolarizing pulses positive to 0 mV from a holding potential of −50 mV activated the voltage-dependent L-type Ca2+ current (ICa,L) and late outward current. Upon repolarization to the holding potential, a slowly decaying inward tail current was also observed. This inward tail current upon repolarization following a depolarizing pulse was found to be enhanced by Bay K 8644, but blocked by nifedipine or tetrandrine. This current was eliminated by Ba2+ replacement of external Ca2+ as the charge carrier through Ca2+ channels, removal of Ca2+ from the bath solution, or buffering intracellular Ca2+ with EGTA (10 mM). The reversal potential of inward tail current was approximately −25 mV. When intracellular Cl was changed, the reversal potential of the Ca2+-activated currents was not shifted. Thus, this current is elicited by depolarizing pulses that activate ICa,L and allow Ca2+ influx, and is referred to as Ca2+-activated nonselective cationic current (ICAN). Without including EGTA in the patch pipette, the slowly decaying inward current underlying the long-lasting depolarizing potential after Ca2+ spike was also observed with a hybrid current–voltage protocol. Thus, the present studies clearly indicate that Ca2+-activated nonselective cationic channels are expressed in GH3 cells, and can be elicited by the depolarizing stimuli that lead to the activation of ICa,L.  相似文献   

3.
ATP increased the cytosolic Ca2+ concentration ([Ca]i) in nucleus accumbens neurons acutely dissociated from rat brain. The ATP response was dependent on external Ca2+ and Na+, and was blocked by voltage-dependent Ca2+ channel blockers. The results suggest that the ATP-induced depolarization increases Ca2+ influx resulting in the increase in [Ca]i.  相似文献   

4.
The effect of a dihydropyridine Ca2+ antagonist, cilnidipine, on voltage-dependent Ca2+ channels was studied in acutely dissociated rat CA1 pyramidal neurons using the nystatin-perforated patch recording configuration under voltage-clamp conditions. Cilnidipine had no effect on low-voltage-activated (LVA) Ca2+ channels at the low concentrations under 10−6 M. On the other hand, cilnidipine inhibited the high-voltage-activated (HVA) Ca2+ current (ICa) in a concentration-dependent manner and the inhibition curve showed a step-wise pattern; cilnidipine selectively reduced only L-type HVA ICa at the low concentrations under 10−7 and 10−6 M cilnidipine blocked not only L- but also N-type HVA ICa. At the high concentration over 10−6 M cilnidipine non-selectively blocked the T-type LVA and P/Q- and R-type HVA Ca2+ channels. This is the first report that cilnidipine at lower concentration of 10−6 M blocks both L- and N-type HVA ICa in the hippocampal neurons.  相似文献   

5.
The basic membrane characteristics of neurons in layers II and III of the medial entorhinal cortex (MEA) were recorded using the intracellular current clamp technique in in vitro slices of the rat brain. Two types of cells were distinguished according to the presence of a time-dependent inward rectification (SAG current) with hyperpolarizing current pulses. The cells in which this inward rectification was not observed (No-SAG cells) had a larger input resistance, a more negative resting membrane potential and a more depolarized firing threshold. They more often displayed a strongly adapting firing pattern, and their action potentials had a slower decay rate and lacked a depolarizing afterpotential, compared with the SAG cells. SAG cells typically had a prominent rebound depolarization at the end of a hyperpolarizing current and membrane potential oscillations (7 Hz) upon subthreshold depolarizations. Cs+ blocked the time-dependent inward rectification. The rebound depolarization persisted, even in the presence of tetrodotoxin. Biocytin labelling showed that layer III consisted mainly of pyramidal-shaped cells. Most layer III cells were of the No-SAG type. All cells in layer II, stellate and pyramidal cells, were classified as SAG cells. We conclude that the cells in MEA layers II and III display different electroresponsiveness, but that this appears to be more related to the layer where they are located than to a specific morphology. As layer III consisted mainly of cells of the No-SAG type, we suggest that layer III cells are less excitable than the SAG type layer II cells.  相似文献   

6.
Measurement of the change in cell membrane capacitance (Cm) along with the change in IK(Ca) was used to investigate the effects of bradykinin and caffeine on the secretory process in rat adrenal chromaffin cells. In a Ca2+-free external solution, bradykinin (100 nM) caused a transient increase in Cm with a concurrent change in IK(Ca). Extracellular application of neomycin as an inhibitor of phospholipase C activity reversibly inhibited the bradykinin-activated event, implying an IP3-mediated increase of submembrane-free Ca2+. The increases in Cm and IK(Ca) caused by bradykinin were transient even with the sustained application of bradykinin. Caffeine also caused exocytosis in the Ca2+-free solution, and this was irreversibly blocked by ryanodine (1 μM) in a use-dependent manner. Caffeine-sensitive intracellular Ca2+ stores were also depleted in several seconds and recovered by an influx of external Ca2+. The sequential application of bradykinin and caffeine showed that these are likely to activate Ca2+ release from the same or distinct but rapidly equilibrating intracellular Ca2+ stores. The single cell assay of exocytosis and the increase in IK(Ca) revealed cell-to-cell variability in bradykinin- and caffeine-induced exocytotic response. Our results suggest that Ca2+ release from intracellular stores potentially increases submembrane Ca2+ concentration and modulates simultaneously two submembrane Ca2+-dependent processes, exocytosis and IK(Ca), in rat adrenal chromaffin cells.  相似文献   

7.
The Ca2+ channel blocking action of synthetic ω-conotoxin (ωCTX) was studied on isolated frog dorsal root ganglion neurons using a ‘concentration clamp’ technique which enabled internal perfusion and rapid external solution change. At 100 nM, ωCTX showed a time-dependent depression of Ca2+ current (ICa). At higher concentrations, ωCTX exhibited a dose-dependent depression of ICa amplitude without changing the current-voltage relationship. Increases in external Ca2+ concentration partly overcame the inhibitory action of ωCTX on the ICa amplitude. At 10 μM ωCTX totally blocked ICa without effect on the Na+ current. It was likely that ωCTX had high selectivity for the Ca2+ channel.  相似文献   

8.
Type-I cells (from rabbit embryos) in primary culture were studied in voltage-clamp experiments using the whole cell arrangement of the patch-clamp technique. With a pipette solution containing 130 mM K+ and 3 mM Mg-ATP, large outward currents were obtained positive to a threshold of about −30 mV by clamping cells from −50 mV to different test pulses (−80 to 50 mV). Negative to −30 mV, the slope conductance was low (outward rectification). The outward currents were blocked by external Cs+ (5 mM) and partially blocked by TEA (5 mM) and Co2+ (1 mM). The initial part of the outward currents during depolarizing voltage pulses exhibited a transient Ca2+ inward component partially superimposed to a Ca2+-dependent outward current. Inward currents were further characterized by replacing K+ with Cs+ in the intra- and extracellular solution in order to minimize the outward component and by using 1.8 mM Ca2+ or 10.8 mM Ba2+ as charge carrier. Slow-inactivating inward currents were recorded at test potentials ranging from −50 to 40 mV (holding potential −80 mV). The maximal amplitude, measured at 10 mV in the U-shaped I–V curve, amounted to 247 ± 103pA(n = 3). This inward current was insensitive to 3 μM TTX, but blocked by 1 mM Co2+ and partially reduced by 10 μM D600 and 3 μM PN 200-110. In contrast to outward currents, the inward currents exhibited a ‘run-down’ within about 10 min. Lowering the pO2 from the control of 150 Torr (air-gassed medium) to 28 Torr had no apparent effect on inward currents, but depressed reversibly outward currents by 28%. In conclusion, it is suggested that type-I cells possess voltage-activated K+ and Ca2+ channels which might be essential for chemoreception in the carotid body.  相似文献   

9.
Previous studies resulted in conflicting conclusions that glutamate application either decreases or increases the activity of Ca2+ channels in hippocampal neurons. We studied whole-cell Ca2+ currents (ICa) in chick dorsal root ganglion neurons and rat hippocampal cells. For both cell types glutamate (1–30 μM) increased high-threshold Ca2+ current. It was independent of the charge carriers, Ca2+ or Ba2+. Low-threshold Ca2+ channel current and the fast sodium current were not changed with glutamate application. The effect developed within 1–2 min and then further facilitated after washout of the agonist. A second application of glutamate produced no additional increase in ICa. No changes in the time-course of whole-cell currents were observed, suggesting that glutamate recruits ‘sleepy’ Ca2+ channels. Whatever its mechanism, overlasting increase of ICa by glutamate may be important in neuronal plasticity.  相似文献   

10.
Nitric oxide (NO) has been shown to regulate neuronal excitability in the nervous system, but little is known as to whether NO, which is synthesized in certain neurons, also serves functional roles within NO‐producing neurons themselves. We investigated this possibility by using a nitric oxide synthase (NOS)‐expressing neuron, and studied the role of intrinsic NO production on neuronal firing properties in single‐cell culture. B5 neurons of the pond snail Helisoma trivolvis fire spontaneous action potentials (APs), but once the intrinsic activity of NOS was inhibited, neurons became hyperpolarized and were unable to fire evoked APs. These striking long‐term effects could be attributed to intrinsic NO acting on three types of conductances, a persistent sodium current (INaP), voltage‐gated Ca currents (ICa) and small‐conductance calcium‐activated potassium (SK) channels. We show that NOS inhibitors 7‐nitroindazole and S‐methyl‐l ‐thiocitrulline resulted in a decrease in INaP, and that their hyperpolarizing and inhibiting effects on spontaneous spiking were mimicked by the inhibitor of INaP, riluzole. Moreover, inhibition of NOS, soluble guanylate cyclase (sGC) or protein kinase G (PKG) attenuated ICa, and blocked spontaneous and depolarization‐induced spiking, suggesting that intrinsic NO controlled ICa via the sGC/PKG pathway. The SK channel inhibitor apamin partially prevented the hyperpolarization observed after inhibition of NOS, suggesting a downregulation of SK channels by intrinsic NO. Taken together, we describe a novel mechanism by which neurons utilize their self‐produced NO as an intrinsic modulator of neuronal excitability. In B5 neurons, intrinsic NO production is necessary to maintain spontaneous tonic and evoked spiking activity.  相似文献   

11.
The Ca2+-antagonistic action of bevantolol, aβ1-adrenoceptor antagonist, on high- and low-voltage activated Ca2+ currents (HVA- and LVA-ICa) was examined on neurons dissociated from rat brain. Bevantolol (10−6 to 10−4 M) inhibited concentration-dependently bothICa. The IC50 value of bevantolol for LVA-ICa was 4 × 10−5 M, while bevantolol at 10−4 M inhibited HVA-ICa by 28.5 ± 7.7%. The potency of bevantolol in inhibiting bothICa was greater than those of propranolol, labetalol and lidocaine, while the inhibitory action of bevantolol on voltage-activated Na+ current was weakest among them. Bevantolol may possess Ca2+-antagonistic action that is independent from local anesthetic action.  相似文献   

12.
Muscarinic agonists produce membrane depolarization and losses of spike frequency accommodation and the slow afterhyperpolarization (AHP) when applied to neurons of the basolateral amygdala (BLA). Underlying these changes are the muscarinic-induced inhibitions of several K+ conductances, including the voltage-activated M-current (IM), a slowly decaying Ca2-activated current (IAHP), a voltage-insensitive leak current (ILeak), and the hyperpolarization-activated inward rectifier current (IIR) Similar depolarizations and losses of the slow AHP have been observed in other neuronal cell types following stimulation of metabotropic glutamate receptors. Therefore, we tested the effects of the metabotropic glutamate receptor agonist, 1-aminocyclopentanels, 3r-dicarboxylic acid (ACPD), on pyramidal neurons impaled with a single microelectrode for current- and voltage-clamp recordings in a brain slice preparation of the rat BLA. Application of ACPD (20 or 100 μM) to BLA neurons inhibited IM and IA HP, resulting in membrane depolarization and reductions in the amplitude and duration of the slow AHP. However, ACPD did not inhibit the muscarinic-sensitive current IIR, nor was ILeak blocked in the majority of neurons examined. These findings suggest the possibility that muscarinic cholinergic and metabotropic glutamatergic receptor agonists may activate separate intracellular transduction pathways which have convergent inhibitory effects onto IM and IAHP in BLA pyramidal neurons. © 1994 Wiley-hiss, Inc.  相似文献   

13.
Excitatory amino acids exert a depolarizing action on central nervous system cells through an increase in cationic conductances. Non-NMDA receptors have been considered to be selectively permeable to Na+ and K+, while Ca2+ influx has been thought to occur through the NMDA receptor subtype. Recently, however, the expression of cloned non-NMDA receptor subunits has shown that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are permeable to Ca2+ whenever the receptor lacks a particular subunit (edited GluR-B). The behaviour of recombinant glutamate receptor channels predicts that Ca2+ would only permeate through receptors that show strong inward rectification and vice versa, i.e. AMPA receptors with linear current-voltage relationships would be impermeable to Ca2+ . Using the whole-cell configuration of the patch-clamp technique, we have studied the Ca2+ permeability and the rectifying properties of AMPA receptors, when activated by kainate, in hippocampal neurons kept in culture or acutely dissociated from differentiated hippocampus. Cells were classified according to whether they showed outward rectifying (type I), inward rectifying (type II) or almost linear (type III) current-voltage relationships for kainate-activated responses. AMPA receptors of type I cells (52.2%) were mostly Ca2+-impermeable (PcaIPcs= 0.1) while type II cells (6.5%) expressed Ca2+-permeable receptors (PcaIPcs=0.9).Type III cells (41.3%) showed responses with low but not negligible Ca2+ permeability (PcaIPcs= 0.18). The degree of Ca2+ permeability and inward rectification were well correlated in cultured cells, i.e. more inward rectification corresponded to higher Ca2+ permeability. In acutely dissociated neurons, the restricted activation of the receptors located either in dendritic or somatic membranes revealed that inward rectifying (i.e. Ca2+-permeable) AMPA receptors are preferentially located in the dendritic shaft (i.e. synaptic field). Our results indicate that oligomeric AMPA receptors of different subunit composition are coexpressed in dissimilar proportions in different cells, which would explain the incomplete inward rectification and graded Ca2+ permeability. In addition, Ca2+-permeable AMPA receptors may exhibit non-homogeneous subcellular distribution.  相似文献   

14.
Effects of nilvadipine on the low- and high-voltage activated Ca2+ currents (LVA and HVA ICa, respectively) were compared with other organic Ca2+ antagonists in acutely dissociated rat hippocampal CA1 pyramidal neurons. The inhibitory effects of nilvadipine, amlodipine and flunarizine on LVA ICa were concentration- and use-dependent. The apparent half-maximum inhibitory concentrations (IC50s) at every 1- and 30-s stimulation were 6.3×10−7 M and 1.8×10−6 M for flunarizine, 1.9×10−6 M and 7.6×10−6 M for nilvadipine, and 4.0×10−6 M and 8.0×10−6 M for amlodipine, respectively. Thus, the strength of the use-dependence was in the sequence of nilvadipine>flunarizine>amlodipine. Nilvadipine also inhibited the HVA ICa in a concentration-dependent manner with an IC50 of 1.5×10−7 M. The hippocampal CA1 neurons were observed to have five pharmacologically distinct HVA Ca2+ channel subtypes consisting of L-, N-, P-, Q- and R-types. Nilvadipine selectively inhibited the L-type Ca2+ channel current which comprised 34% of the total HVA ICa. On the other hand, amlodipine non-selectively inhibited the HVA Ca2+ channel subtypes. These results suggest that the inhibitory effect of nilvadipine on the neuronal Ca2+ influx through both LVA and HVA L-type Ca2+ channels, in combination with the cerebral vasodilatory action, may prevent neuronal damage during ischemia.  相似文献   

15.
Cytosolic calcium concentrations ([Ca2+]i) in cultured hippocampal neurons from rat embryos were measured using fura-2. Neurons with higher resting [Ca2+]i showed greater [Ca2+]i responses toN-methyl-d-aspartate (NMDA) and K+ depolarization. There was a strong relationship between resting [Ca2+]i and the maximal changes in [Ca2+]i (Δ[Ca2+]i), which fit the our proposed equation to describe this relationship.  相似文献   

16.
The effect of a new type of organic Ca2+ channel blocker, NC-1100 [(±)-1-(3,4-dimethoxyphenyl)-2-(4-diphenylmethylpiperazinyl)ethanol dihydrochloride], on both low- and high-threshold Ca2+ currents was studied in the whole-cell mode of the pyramidal neurons freshly dissociated from rat hippocampal CA1 region under voltage-clamp condition. The NC-1100 reversibly reduced the high-threshold Ca2+ current (HVAICa) in a concentration-dependent manner without affecting the current-voltage relationship. The values of half-inhibition (IC50) were 1.3 × 10−5 and 9.1 × 10−6M in external solution containing 10 and 2.5 mM Ca2+, respectively. The NC-1100 also decreased the low-threshold Ca2+ current (LVAICa) in a concentration-dependent manner. The inhibitory potency was augmented by increasing the stimulation frequency and / or decreasing the extracellular Ca2+ concentration to a physiological range (2.5 mM). The IC50 value decreased to 7.7 × 10−7M in external solution containing 2.5 mM Ca2+ at a stimulation frequency of 1 Hz. The NC-1100 delayed the reactivation of LVA Ca2+ channel and enhanced voltage-dependently the steady-state inactivation, suggesting that this drug bound not only the resting LVA Ca2+ channel but also the inactivated one.  相似文献   

17.
Bombesin and the bombesin‐like peptides including neuromedin B (NMB) and gastrin‐releasing peptide (GRP) are important neuromodulators in the brain. We studied their effects on GABAergic transmission and epileptiform activity in the entorhinal cortex (EC). Bath application of bombesin concentration‐dependently increased both the frequency and amplitude of sIPSCs recorded from the principal neurons in the EC. Application of NMB and GRP exerted the same effects as bombesin. Bombesin had no effects on mIPSCs recorded in the presence of TTX but slightly depressed the evoked IPSCs. Omission of extracellular Ca2+ or inclusion of voltage‐gated Ca2+ channel blockers, Cd2+ and Ni2+, blocked bombesin‐induced increases in sIPSCs suggesting that bombesin increases GABA release via facilitating extracellular Ca2+ influx. Bombesin induced membrane depolarization and slightly increased the input resistance of GABAergic interneurons recorded from layer III of the EC. The action potential firing frequency of the interneurons was also increased by bombesin. Bombesin‐mediated depolarization of interneurons was unlikely to be mediated by the opening of a cationic conductance but due to the inhibition of inward rectifier K+ channels. Bath application of bombesin, NMB and GRP depressed the frequency of the epileptiform activity elicited by deprivation of Mg2+ from the extracellular solution suggesting that bombesin and the bombesin‐like peptides have antiepileptic effects in the brain. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The effects of KB-2796, 1-[bis(4-fluorophenyl)methyl]-4-(2,3,4-trimethoxybenzyl)piperazine-2HCl, on the low- and high-voltage activated Ca2+ currents (LVA and HVA ICa, respectively) and on oxidative metabolism were studied in neurons freshly dissociated from rat brain. KB-2796 reduced the peak amplitude of LVA ICa in a concentration-dependent manner with a threshold concentration of 10−7 M when the LVA ICa was elicited every 30 s in the external solution with 10 mM Ca2+. The concentration for half-maximum inhibition (IC50) was 1.9 × 10−6M. At 10−5 M or more of KB-2796, a complete suppression of the LVA ICa was observed in the majority of neurons tested. There was no apparent effect on the current-voltage (I-V) relationship and the current kinetics. KB-2796 delayed the reactivation and enhanced the inactivation of the Ca2+ channel for LVA ICa voltage- and time-dependently, suggesting that KB-2796 preferentially binds to the inactivated Ca2+ channel. KB-2796 at a concentration of3.0 × 10−6M also decreased the peak amplitude of the HVA ICa without shifting the I-V relationship. In addition, KB-2796 reduced the oxidative metabolism (the formation of reactive oxygen species) of the neuron in a concentration-dependent manner with a threshold concentration of3 × 10−6M. It is suggested that the inhibitory action of KB-2796 on the neuronal Ca2+ influx and the oxidative metabolism, in combination with a cerebral vasodilatory action, may reduce ischemic brain damage.  相似文献   

19.
Superior-cervical ganglion (SCG) cells dissociated from newborn rats depend on nerve growth factor (NGF) for survival. Membrane depolarization with elevated K+ is known to prevent neuronal death following NGF deprivation and/or to promote survival via a Ca2+-dependent mechanism. Here we have exploited the possibility of whether or not a Na+-dependent pathway for neuronal survival is present in these cells. Veratridine (ec50=40 nM), a voltage-dependent Na+ channel activator, significantly delayed the onset of apoptotic cell death in NGF-deprived SCG neurons that had been cultured for 7 days in the presence of NGF. This effect was blocked completely by Na+ channel blockers including tetrodotoxin (TTX, 1 μM), benzamil (25 μM) and flunarizine (1 μM), but was not attenuated by nimodipine (1 μM), an L-type Ca2+ channel blocker. The saving effect of veratridine on cultured neurons was observed even in low Ca2+ media (0–1.0 mM), but was completely abolished in a low Na+ medium (38 mM). Sodium-binding benzofuran isophthalate was employed as a fluorescent probe for monitoring the level of cytoplasmic free Na+, which revealed a sustained increase in its level (12.9 mM, 307% of that of control) in response to veratridine (0.75 μM). The TTX or flunarizine completely blocked veratridine-induced Na+ influx in these cultured neurons. Moreover, no appreciable increase in intracellular Ca2+ was detected under these conditions. Though Na+ channels were effectual in SCG neurons which were freshly isolated from newborn rats, the Na+-dependent saving effect of veratridine was not observed in these young neurons. These lines of evidence suggest that the death-suppressing effect of veratridine on cultured SCG neurons depends on the Na+ influx via voltage-dependent Na+ channels, and suggests the presence of Na+-dependent regulatory mechanism(s) in neuronal survival.  相似文献   

20.
The electrophysiological action of thyrotropin-releasing hormone (TRH) on rat spinal motoneurons was studied in vitro using single-electrode voltage- and current-clamp techniques. In current-clamp conditions TRH elicited a slowly developing depolarization, associated with a large input resistance increase and sustained neuronal firing; the primary metabolites of TRH were ineffective. Under voltage-clamp conditions in the presence of tetrodotoxin, TRH evoked a large inward current (ITRH; peaking at approximately –40 mV) associated with a large input conductance fall. Only 44% of cells displayed ITRH reversal; when the chord conductance values of these cells were plotted against membrane potential, a bell-shaped relation occurred, indicating voltage-dependent block by TRH of a persistent conductance active over a wide range of membrane potentials. ITRH reversal values were shifted to more positive levels in high K+ solution in Nernstian fashion; hence a large proportion of the TRH response is suggested to be mediated by the block of a K+ conductance (IK(T)). IK(T) (and its voltage-dependent block by TRH) was resistant to certain K+ channel antagonists (tetraethylammonium, Cs+, 4-aminopyridine or apamin), but was depressed by Ba2+. The Ba2+-resistant fraction of ITRH was attenuated by Cd2+, Mn2+ or Co2+, indicating that it probably involved a Ca2+-sensitive inward current. Concomitant application of Ba2+ and Cd2+ induced a near-total block of the response to TRH. It is suggested that suppression of IK(T), associated with the onset of a Ca2+-sensitive current, can explain the excitatory effect of TRH on rat spinal motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号