首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6beta-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6beta-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1'- and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1'- and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6beta-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1'- and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.  相似文献   

2.
1. The use of everted sacs of the small intestine as an enzyme source for the study of the first-pass metabolism of xenobiotics by cytochrome P450s (P450, CYP) is described. Several drug oxidation activities for testosterone, chlorzoxazone, tolbutamide, bufuralol and warfarin were observed when everted sacs (1-cm segment) from different parts of mouse small intestine were incubated with an NADPH-generating system and each substrate. 2. Most of the drug hydroxylase activities resided in the upper part of mouse small intestine and these activities were much higher than those of intestinal microsomes. Drug oxidation activities decreased along the distance from the upper part of the small intestine except for warfarin hydroxylation. 3. Testosterone 6β-hydroxylation in the everted sacs exhibited the highest catalytic activities among the drug oxidations tested here. In the upper part of the small intestine, the testosterone 6β-hydroxylase activities of everted sacs subjected once to freezing and thawing were substantially decreased compared with the untreated everted sacs. 4. Testosterone 6β-hydroxylase activities in the everted sacs of the small intestine were significantly inhibited by ketoconazole. Immunoreactive proteins using anti-CYP3A antibodies were detected in the upper and middle parts of the small intestine. 5. The results demonstrated that the upper part of the mouse small intestine serves as the major site for intestinal P450 mediated first-pass metabolism. Everted sacs of the small intestine are therefore useful for the study of drug metabolism as well as of transport and absorption.  相似文献   

3.
1. The use of everted sacs of the small intestine as an enzyme source for studying the metabolism of xenobiotics by cytochrome P450 (P450, CYP) enzymes and UDP-glucuronosyltransferases has been investigated. 2. Most of the drug oxidation activities for testosterone, bufuralol, ethoxyresorufin and 7-ethoxycoumarin resided in the upper part of the everted sacs and in intestinal microsomes. Testosterone 6 β -hydroxylase activities in the everted sacs were about two times higher than those in the intestinal microsomes. By freezing and thawing treatment, the testosterone 6 β - and 16 α -hydroxylase activities of the everted sacs were considerably decreased, and those of the intestinal microsomes were abolished. 3. Microsomal testosterone 6 β -hydroxylation, bufuralol 1'-hydroxylation, and pentoxyresorufin and ethoxyresorufin O -dealkylation were inhibited by ketoconazole, quinine, metyrapone and α -naphthoflavone respectively. Immunoreactive proteins using anti-CYP2B1 and anti-CYP3A2 antibodies were detected in the upper and middle parts of the rat small intestine. 4. Except for morphine 3-glucuronidation, glucuronidation activities in intestinal microsomes or everted sacs were not dependent on the intestinal region. The lower part of the everted sacs exhibited about 10 times higher morphine-3-glucuronidation activities compared with those of the upper part. The glucuronidation activities of 4-nitrophenol in the everted sacs were 10 times higher than those in microsomes. 5. These results demonstrated that the upper part of rat small intestine serves as the major site for intestinal P450-mediated first-pass metabolism. CYP3A enzymes in rat intestinal microsomes may not be stable but probably play an important role in drug oxidations. The high activity of glucuronidation in the rat small intestine should also be considered in terms of drug metabolism.  相似文献   

4.
1-Aminobenzotriazole (ABT) is extensively used as a non-specific cytochrome P450 (CYP) inhibitor. In this study, the inhibitory effect of ABT on CYP-dependent drug oxidations was investigated in human liver microsomes (HLM) and compared with that of SKF-525A, another non-specific inhibitor. The following probe activities for human CYP isoforms were determined using pooled HLM: phenacetin O-deethylation (CYP1A2); diclofenac 4'-hydroxylation (CYP2C9); S-mephenytoin 4'-hydroxylation, (CYP2C19); bufuralol 1'-hydroxylation (CYP2D6); chlorzoxazone 6-hydroxylation (CYP2E1); midazolam 1'-hydroxylation, nifedipine oxidation, and testosterone 6beta-hydroxylation (CYP3A). ABT had the strongest inhibitory effect on the CYP3A-dependent drug oxidations and the weakest effect on the diclofenac 4'-hydroxylation. SKF-525A potently inhibited the bufuralol 1'-hydroxylation, but weakly inhibited chlorzoxazone 6-hydroxylation. The inhibitory effects of ABT and SKF-525A were increased by preincubation in some probe reactions, and this preincubation effect was greater in ABT than in SKF-525A. The remarkable IC50 shift (> 10 times) by preincubation with ABT was observed on the phenacetin O-deethylation, chlorzoxazone 6-hydroxylation, and midazolam 1'-hydroxylation. In conclusion, ABT and SKF-525A had a wide range of IC50 values in inhibiting the drug oxidations by HLM with and without preincubation.  相似文献   

5.
1. The effects of several CYP3A substrates (α-naphthoflavone (αNF), terfenadine, midazolam, erythromycin) on nifedipine oxidation and testosterone 6-β-hydroxylation activities were investigated in hepatic and intestinal microsomes from mouse and human. 2. αNF (10 μM) and terfenadine (100 μM) inhibited nifedipine oxidation activities (at substrate concentration of 100 μM) in mouse hepatic microsomes to ~50%, but not in mouse intestinal microsomes. αNF (30 μM) stimulated nifedipine oxidation activities in mouse and human intestinal microsomes and in human hepatic microsomes to ~1.3-1.8-fold. Inhibitory potencies (50% inhibition concentration, IC50) of midazolam and erythromycin for nifedipine oxidations were calculated to be ~90 μM in human intestinal microsomes. In contrast, testosterone (100 μM) stimulated the nifedipine oxidation activities ~1.5-fold in hepatic and intestinal microsomes from mouse and human. 3. αNF showed different effects on the kinetic parameters including the Hill coefficients of nifedipine oxidation and testosterone 6-β-hydroxylation catalysed by hepatic and intestinal microsomes from mouse and human. Cooperativity in nifedipine oxidation was increased by the addition of αNF to pooled human hepatic microsomes, but little effects of αNF could be observed in individual human intestinal microsomes. 4. These results suggest that CYP3A enzymes in liver and intestine might have different characteristics and that observations from hepatic microsomes should not be directly applicable to intestine metabolism in some cases. Studies of drug-drug interactions of CYP3A substrates are recommended to be performed using intestinal samples.  相似文献   

6.
1. The use of everted sacs of the small intestine as an enzyme source for the study of the first-pass metabolism of xenobiotics by cytochrome P450s (P450, CYP) is described. Several drug oxidation activities for testosterone, chlorzoxazone, tolbutamide, bufuralol and warfarin were observed when everted sacs (1-cm segment) from different parts of mouse small intestine were incubated with an NADPH-generating system and each substrate. 2. Most of the drug hydroxylase activities resided in the upper part of mouse small intestine and these activities were much higher than those of intestinal microsomes. Drug oxidation activities decreased along the distance from the upper part of the small intestine except for warfarin hydroxylation. 3. Testosterone 6beta-hydroxylation in the everted sacs exhibited the highest catalytic activities among the drug oxidations tested here. In the upper part of the small intestine, the testosterone 6beta-hydroxylase activities of everted sacs subjected once to freezing and thawing were substantially decreased compared with the untreated everted sacs. 4. Testosterone 6beta-hydroxylase activities in the everted sacs of the small intestine were significantly inhibited by ketoconazole. Immunoreactive proteins using anti-CYP3A antibodies were detected in the upper and middle parts of the small intestine. 5. The results demonstrated that the upper part of the mouse small intestine serves as the major site for intestinal P450 mediated first-pass metabolism. Everted sacs of the small intestine are therefore useful for the study of drug metabolism as well as of transport and absorption.  相似文献   

7.
1. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by 12 recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes have been investigated. 2. Arachidonic acid (50 μM) significantly inhibited CYP1A1- and 1A2-dependent 7-ethoxycoumarin O-deethylations, CYP2C8-dependent taxol 6α-hydroxylation and CYP2C19-dependent R-warfarin 7-hydroxylation. This chemical also inhibited slightly the xenobiotic oxidations catalysed by CYP1B1, 2B6, 2C9, 2D6, 2E1 and 3A4 in recombinant enzyme systems. 3. Retinol, retinoic acid and cholecalciferol were strong inhibitors for xenobiotic oxidations catalysed by recombinant CYP1A1, 2C8 and 2C19. 4. Dixon plots of inhibitions of CYP1A1-, 1A2-, 2C8- and 2C19-dependent xenobiotic oxidations by arachidonic acid, of CYP1A1-, 2B6- and 2C19-dependent activities by retinol, and of CYP1A1- and 2C19-dependent activities by cholecalciferol indicated that these chemicals inhibit P450 activities mainly through a competitive mechanism. 5. In human liver microsomes, arachidonic acid inhibited CYP1A2-dependent theophylline hydroxylation, CYP2C8-dependent taxol 6α-hydroxylation and CYP2C19- dependent omeprazole 5-hydroxylation. Taxol 6α-hydroxylation was also inhibited by retinol and retinoic acid, and omeprazole 5-hydroxylation was inhibited by retinol in human liver microsomes. 6. These results suggest that xenobiotic oxidations by P450 enzymes are affected by endobiotic chemicals and that the endobiotic-xenobiotic interactions as well as drug-drug interactions may be of great importance when understanding the basis for pharmacological and toxicological actions of a number of xenobiotic chemicals.  相似文献   

8.
  1. The aim was to characterize mouse gender and strain differences in the metabolism of commonly used human cytochrome (CYP) P450 probe substrates.

  2. Thirteen human CYP probe substrates (phenacetin, coumarin, 7-ethoxy-4-trifluoromethyl coumarin, amiodarone, paclitaxel, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, chlorzoxazone, p-nitrophenol, testosterone and lauric acid) were used in activity measurements. The metabolism of the probe substrates was compared in liver microsomes from male and female NMRI, CBA, C57bl/6, 129/SvJ and CD1 strains. The expression of proteins identified on Western blots with commonly available antibodies selective for specific human and rat CYP enzymes were compared in the different mouse strains.

  3. Males had higher metabolism than corresponding females for phenacetin O-deethylation (human marker for CYP1A2 activity), and a high correlation was found between phenacetin activity and immunoreactivity in Western blots produced with rat CYP1A2 antibodies.

  4. Protein detected by antibodies cross-reacting with human CYP2B6 and rat CYP2B1/2 antibodies was female specific except for the 129/SvJ strain, where it was absent in both genders.

  5. Females generally had a higher metabolism of bufuralol 1′-hydroxylation and dextromethorphan O-demethylation (human markers for CYP2D activity).

  6. Bufuralol 1′-hydroxylation correlated with a female-dominant mouse CYP, which was detected with antibodies against rat CYP2D4.

  7. p-Nitrophenol 2-hydroxylation correlated better than chlorzoxazone 6-hydroxylation with the protein detected with antibodies against rat CYP2E1, indicating that p-nitrophenol is a more specific substrate for mouse CYP2E1.

  相似文献   

9.
1. The use of everted sacs of the small intestine as an enzyme source for studying the metabolism of xenobiotics by cytochrome P450 (P450, CYP) enzymes and UDP-glucuronosyltransferases has been investigated. 2. Most of the drug oxidation activities for testosterone, bufuralol, ethoxyresorufin and 7-ethoxycoumarin resided in the upper part of the everted sacs and in intestinal microsomes. Testosterone 6 beta-hydroxylase activities in the everted sacs were about two times higher than those in the intestinal microsomes. By freezing and thawing treatment, the testosterone 6 beta- and 16 alpha-hydroxylase activities of the everted sacs were considerably decreased, and those of the intestinal microsomes were abolished. 3. Microsomal testosterone 6 beta-hydroxylation, bufuralol 1'-hydroxylation, and pentoxyresorufin and ethoxyresorufin O-dealkylation were inhibited by ketoconazole, quinine, metyrapone and alpha-naphthoflavone respectively. Immunoreactive proteins using anti-CYP2B1 and anti-CYP3A2 antibodies were detected in the upper and middle parts of the rat small intestine. 4. Except for morphine 3-glucuronidation, glucuronidation activities in intestinal microsomes or everted sacs were not dependent on the intestinal region. The lower part of the everted sacs exhibited about 10 times higher morphine-3-glucuronidation activities compared with those of the upper part. The glucuronidation activities of 4-nitrophenol in the everted sacs were 10 times higher than those in microsomes. 5. These results demonstrated that the upper part of rat small intestine serves as the major site for intestinal P450-mediated first-pass metabolism. CYP3A enzymes in rat intestinal microsomes may not be stable but probably play an important role in drug oxidations. The high activity of glucuronidation in the rat small intestine should also be considered in terms of drug metabolism.  相似文献   

10.
Hepatic cytochrome P450 (P450)-dependent drug oxidation activity has not been completely characterized in chimeric TK-NOG mice with humanized livers (humanized liver mice). In this study, we examined several drug oxidation activities catalyzed by liver microsomes from humans, humanized liver mice, and TK-NOG mice using 9 P450 substrates. The catalytic activities of liver microsomes from humans and humanized liver mice showed relatively similar rates of oxidation of 7-ethoxyresorufin, coumarin, 7-pentoxyresorufin, flurbiprofen, S-mephenytoin, chlorzoxazone, and midazolam, whereas bufuralol 1′-hydroxylation and propafenone 4′-hydroxylation (rodent-specific propafenone oxidation activity) were higher in humanized liver mice than in humans. In addition, P450 protein expression levels in the humanized mouse liver were quantified using a liquid chromatography–tandem mass spectrometry-based protein quantification method. Quantification of P450 enzymes showed a 3-fold difference between human and humanized liver mouse livers, except for CYP2B6, which showed an approximately 6-fold difference. Overall, most P450-dependent drug oxidation activities were comparable between liver microsomes from human and humanized liver mice based on the similar expression levels of human P450 enzymes. However, some differences were observed between both species, including considerable differences in bufuralol 1′-hydroxylation and propafenone 4′-hydroxylation activities.  相似文献   

11.
The aim was to characterize mouse gender and strain differences in the metabolism of commonly used human cytochrome (CYP) P450 probe substrates. Thirteen human CYP probe substrates (phenacetin, coumarin, 7-ethoxy-4-trifluoromethyl coumarin, amiodarone, paclitaxel, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, chlorzoxazone, p-nitrophenol, testosterone and lauric acid) were used in activity measurements. The metabolism of the probe substrates was compared in liver microsomes from male and female NMRI, CBA, C57bl/6, 129/SvJ and CD1 strains. The expression of proteins identified on Western blots with commonly available antibodies selective for specific human and rat CYP enzymes were compared in the different mouse strains. Males had higher metabolism than corresponding females for phenacetin O-deethylation (human marker for CYP1A2 activity), and a high correlation was found between phenacetin activity and immunoreactivity in Western blots produced with rat CYP1A2 antibodies. Protein detected by antibodies cross-reacting with human CYP2B6 and rat CYP2B1/2 antibodies was female specific except for the 129/SvJ strain, where it was absent in both genders. Females generally had a higher metabolism of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation (human markers for CYP2D activity). Bufuralol 1'-hydroxylation correlated with a female-dominant mouse CYP, which was detected with antibodies against rat CYP2D4. p-Nitrophenol 2-hydroxylation correlated better than chlorzoxazone 6-hydroxylation with the protein detected with antibodies against rat CYP2E1, indicating that p-nitrophenol is a more specific substrate for mouse CYP2E1.  相似文献   

12.
In rats, six cytochrome P450 (P450) 2D isoforms have been genetically identified. Nonetheless, there is little evidence of catalytic properties of each CYP2D isoform. In this study, using recombinant CYP2D isoforms (rat CYP2D1, CYP2D2, CYP2D3, and CYP2D4 and human CYP2D6) or hepatic microsomes, we investigated the catalytic specificity toward bufuralol, debrisoquine, and propranolol, which are frequently used as CYP2D substrates. Bufuralol was oxidized to three metabolites by rat and human hepatic microsomes. 1'-Hydroxybufuralol was the major metabolite. 1'2'-Ethenylbufuralol, one of the others, was identified as a novel metabolite. The formation of 1'-hydroxybufuralol and 1'2'-ethenylbufuralol in hepatic microsomes was inhibited by anti-CYP2D antibody, suggesting that these metabolites were formed by CYP2D isoforms. All rat and human recombinant CYP2D isoforms possessed activity for the 1'-hydroxylation of bufuralol, indicating that this catalytic property was common to all CYP2D isoforms. However, the 1'2'-ethenylation of bufuralol was catalyzed only by rat CYP2D4 and human CYP2D6. Debrisoquine was oxidized to two metabolites, 3-hydroxydebrisoquine, and 4-hydroxydebrisoquine, by hepatic microsomes. Recombinant CYP2D2 and CYP2D6 had very high levels of activity for the 4-hydroxylation of debrisoquine with low K(m) values. Only CYP2D1 had a higher level of 3-hydroxylation than 4-hydroxylation activity. Propranolol 4-hydroxylation was catalyzed by CYP2D2, CYP2D4, and CYP2D6. The 7-hydroxylation of propranolol was catalyzed only by CYP2D2. In conclusion, in rats, bufuralol 1'2'-ethenylation activity was specific to CYP2D4 and debrisoquine 4-hydroxylation and propranolol 7-hydroxylation activities were specific to CYP2D2. These catalytic activities are useful as a probe for rat CYP2D isoforms.  相似文献   

13.
Granisetron, a potent 5-HT3 receptor antagonist, has been reported to be mainly metabolized to 7-hydroxygranisetron and a lesser extent to 9'-desmethylgranisetron in humans. A previous study indicated that cytochrome P450 (CYP)3A4 is a major catalyst of 9'-demethylation, although the major CYP isoform(s) responsible for 7-hydroxylation are unknown. To clarify granisetron 7-hydroxylase, the in vitro metabolism of granisetron using expressed human CYPs and human liver microsomes was investigated. 7-Hydroxygranisetron was produced almost exclusively by CYP1A1, while, apparently, 9'-desmethylgranisetron was preferentially produced by CYP3A4. Marked inter-individual differences in the ratio of the formation of 7-hydroxygranisetron and 9'-desmethylgranisetron in human liver microsomes was observed. Granisetron 7-hydroxylase activity was strongly correlated with benzo[a]pyrene 3-hydroxylase activity (p<0.0001), but not with testosterone 6beta-hydroxylase activity in human liver microsomes. Furthermore, an anti-human CYP1A1 antibody completely inhibited 7-hydroxylation in human liver microsomes, however, the reaction was not inhibited at all by an anti-CYP3A4 antibody. On the other hand, granisetron 9'-demethylase activity correlated significantly not only with testosterone 6beta-hydroxylase activity (p<0.0001) but also with benzo[a]pyrene 3-hydroxylase activity (p<0.01). Consistent with this, both the anti-CYP1A1 and anti-human CYP3A4 antibodies inhibited the 9'-demethylase activity. These data indicate that CYP1A1 is a major enzyme responsible for the metabolism of granisetron via a main 7-hydroxylation pathway and an alternative 9'-demethylation route. This is the first report demonstrating the substantial contribution of CYP1A1 to the metabolism of a drug, although its role in the metabolism of environmental compounds is well established.  相似文献   

14.
The effects of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 (CYP) activities in human hepatic microsomes were investigated. Nilvadipine competitively inhibited CYP1A2-mediated 7-ethoxyresorufin O-deethylase, CYP2A6-mediated coumarin 7-hydroxylase, CYP2C8/9-mediated tolbutamide methylhydroxylase, CYP2C19-mediated S-mephenytoin 4'-hydroxylase, and CYP3A4-mediated nifedipine oxidase activities, and the inhibition constant (Ki) values were 13.0, 35.8, 5.02, 24.5 and 44.3 microM, respectively. On the other hand, no inhibition of CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2D6-mediated bufuralol 1'-hydroxylation, or CYP2E1-mediated chlorzoxazone 6-hydroxylation by nilvadipine at 40 microM concentration was observed. The free fractions of nilvadipine in the incubation mixture estimated by ultracentrifugation were 18.9-27.4%. These results suggest that nilvadipine would not cause clinically significant interactions with other drugs, which are metabolized by CYPs, via the inhibition of metabolism.  相似文献   

15.
The effects of gamma-oryzanol, a drug mainly used for the treatment of hyperlipidaemia, on several cytochrome P450 (CYP) specific reactions in human liver microsomes were investigated to predict drug interactions with gamma-oryzanol in vivo from in vitro data. The following eight CYP catalytic reactions were used in this study: CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. gamma-Oryzanol had little inhibitory effects on CYP activities, indicating that this compound would not be expected to cause clinically significant interactions with other CYP-metabolized drugs at expected therapeutic concentrations.  相似文献   

16.
1. The in vitro metabolic activation of o-phenylphenol has been evaluated as yielding a toxic metabolite, 2,5-dihydroxybiphenyl (phenylhydroquinone), by p-hydroxylation in liver microsomes of rat and human. The involvement of rat CYP2C11, CYP2E1 and human CYP1A2 in the p-hydroxylation of o-phenylphenol is suggested. 2. 2,3- and phenylhydroquinone, which induced DNA single-strand scission in the presence of 1 μm CuCl2, were the most cytotoxic chemicals examined to cultured mammalian cell lines among o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,2′-, 4,4′-, 2,3- and phenylhydroquinone. 3. Rat and human liver microsomes catalysed the formation of phenylhydroquinone, but not 2,3-dihydroxybiphenyl, using o-phenylphenol as a substrate. A higher rate of metabolic activation of o-phenylphenol was observed with livers of themale than the female rats by 5.6- and 2.6-fold respectively. 4. Inhibitory antibodies against the male-specific CYP2C11 inhibited hepatic o-phenylphenol p-hydroxylation in the male F344 and Sprague-Dawley rat by > 70%. Liver microsomes from the isoniazid-treated rats produced 1.8- and 3-fold induction of o-phenylphenol p-hydroxylation and chlorzoxazone 6-hydroxylation (a CYP2E1-dependent activity) respectively. 5. Human CYP1A2, expressed by baculovirus-mediated cDNA expression systems, exhibited a remarkably higher capacity for o-phenylphenol p-hydroxylation at concentrations of 5 (> 5-fold), 50 (> 2-fold) and 500 μm (> 2-fold) than CYP2A, CYP2B, CYP2Cs, CYP2D6, CYP2E1 and CYP3A4 on the basis of pmol P450. 6. Among various CYP inhibitors tested here, 7,8-benzoflavone and furafylline, typical human CYP1A2 inhibitors, inhibited the microsomal p-hydroxylation of o-phenylphenol in human livers most potently by 70 and 50% respectively. 7. The results thus indicate the involvement of rat CYP2C11/CYP2E1 and human CYP1A2 in the hepatic p-hydroxylation of o-phenylphenol.  相似文献   

17.
This study examines strain differences in testosterone (T)-hydroxylations between Wistar and Dark Agouti (DA) rats of both genders. The DA rat, an animal model, is a poor metabolizer of such drugs as debrisoquine, which are metabolized by cytochrome P450 (CYP) 2D. T-16α-, 2α-hydroxylations, which are linked to CYP2C11, were catalyzed at similar rates by the microsomes of both strains. In contrast, the liver microsomes from mature male DA rats catalyzed T-6β-hydroxylation, the CYP3A mediated activity, at higher rates (~ 2-fold) than Wistar rat liver microsomes did. There was no difference between immature male DA and Wistar rats for T-6β-hydroxylation, indicating that the activity in male DA rat increases with maturation. Polyclonal antibodies raised against rat liver microsomal CYP3A2 and a CYP3A inhibitor, troleandomycin (TAO), effectively inhibited T-6β-hydroxylation by liver microsomes from both strains of rats. The level of T-6β- hydroxylation activity correlated well with the amount of CYP3A protein in the microsomes in mature as well as in immature male and female Wistar and DA rats. Northern blot analysis repeatedly indicated that the cellular contents of CYP3A2 mRNA are slightly (~ 20%) higher in the liver of mature DA rats than in that of mature Wistar rats. These results indicate that the increased levels of CYP3A are responsible for the increased T-6β-hydroxylation activity and protein in DA rat.  相似文献   

18.
1. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by 12 recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes have been investigated. 2. Arachidonic acid (50 microM) significantly inhibited CYP1A1- and 1A2-dependent 7-ethoxycoumarin O-deethylations, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent R-warfarin 7-hydroxylation. This chemical also inhibited slightly the xenobiotic oxidations catalysed by CYP1B1, 2B6, 2C9, 2D6, 2E1 and 3A4 in recombinant enzyme systems. 3. Retinol, retinoic acid and cholecalciferol were strong inhibitors for xenobiotic oxidations catalysed by recombinant CYP1A1, 2C8 and 2C19. 4. Dixon plots of inhibitions of CYP1A1-, 1A2-, 2C8- and 2C19-dependent xenobiotic oxidations by arachidonic acid, of CYP1A1-, 2B6- and 2C19-dependent activities by retinol, and of CYP1A1- and 2C19-dependent activities by cholecalciferol indicated that these chemicals inhibit P450 activities mainly through a competitive mechanism. 5. In human liver microsomes, arachidonic acid inhibited CYP1A2-dependent theophylline hydroxylation, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent omeprazole 5-hydroxylation. Taxol 6alpha-hydroxylation was also inhibited by retinol and retinoic acid, and omeprazole 5-hydroxylation was inhibited by retinol in human liver microsomes. 6. These results suggest that xenobiotic oxidations by P450 enzymes are affected by endobiotic chemicals and that the endobiotic-xenobiotic interactions as well as drug-drug interactions may be of great importance when understanding the basis for pharmacological and toxicological actions of a number of xenobiotic chemicals.  相似文献   

19.
  1. The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes.

  2. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2′-hydroxy-, 4′-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5.

  3. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2′-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities.

  4. Molecular docking analysis showed that the C2′-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2′ and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively.

  5. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.

  相似文献   

20.
《Pharmaceutical biology》2013,51(12):1499-1507
Abstract

Context: Aqueous decoction of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) (Hypoxis) is widely consumed in Southern Africa by people living with HIV/AIDS, some of whom are on ARV and other medications.

Objective: The aim of this study was to investigate the potential of the crude aqueous extracts of Hypoxis to inhibit major forms of CYP450 and transport proteins.

Materials and methods: Corms of Hypoxis were water-extracted and incubated (in graded concentrations: 1--100?µg/mL) with human liver microsomes (20?min) to monitor the effects on phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, paclitaxel 6α-hydroxylation, diclofenac 4′-hydroxylation, S-mephenytoin 4′-hydroxylation, bufuralol 1′-hydroxylation, chlorzoxazone 6-hydroxylation, midazolam 1′-hydroxylation and testosterone 6β-hydroxylation as markers for the metabolic activities of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4/5, respectively. The generation of metabolites were monitored and quantified with the aid of LC-MS/MS. The potential of the extracts to inhibit human ATP-binding cassette transporter activity was assessed using recombinant MDCKII and LLC-PK1 cells over-expressing human breast cancer resistant protein and human P-glycoprotein , respectively (with Ko143 and cyclosporin A as positive controls). Similar assessment was performed with human organic anion transporting polypeptide (OATP1B1 and OATP1B3) using recombinant HEK293 cells over-expressing OATP1B1 and OATP1B3, respectively (with rifamycin and 10?µM atorvastatin as positive controls).

Results: Extracts of Hypoxis inhibited the production of the metabolites of the substrates of the following enzymes (as compared to controls) with the indicated IC50 values (µg/mL): CYP1A2 (120.6), CYP2A6 (210.8), CYP2B6 (98.5), CYP2C8 (195.2), CYP2C9 (156) and CYP3A4/5 (185.4). The inhibition of the uptake activity of OATP1B1 and OATP1B3 were also observed with IC50 values of 93.4 and 244.8?μg/mL, respectively.

Discussion: Extract concentrations higher than the estimated IC50 values are achievable in the gastrointestinal tract when traditional doses of Hypoxis are considered. This may have profound effects on presystemic metabolism of the drug substrates. If absorbed, systemic inhibition of metabolic enzymes/transporters by Hypoxis may be expected.

Conclusion: The result suggests that there is the potential for HDI between Hypoxis and the substrates of the affected enzymes/transporters, if sufficient in vivo concentration of Hypoxis extracts is attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号