首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Some glycidyl ethers (GE) have been shown to be direct mutagens in short-term in vitro tests and consequently GE are considered to be potentially mutagenic in vivo. However, GE may be metabolically inactivated in the body by two different enzymatic routes: conjugation of the epoxide moiety with the endogenous tripeptide glutathione (GSH) catalysed by glutathione S-transferase (GST) or hydrolysis of the epoxide moiety catalysed by epoxide hydrolase (EH). 2. The metabolic inactivation of five different GE, the diglycidyl ethers of bisphenol A (BADGE), 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (Epikote YX4000) and 1,6-hexanediol (HDDGE) and the GE of 1-dodecanol (C12GE) and o-cresol (o-CGE), has been studied in subcellular fractions of human, C3H mouse and F344 rat liver and lung. 3. All GE were chemically very stable and resistant to aqueous hydrolysis, but were rapidly hydrolysed by EH in cytosolic and microsomal fractions of liver and lung. The aromatic GE were very good substrates for EH. In general, microsomal EH is more efficient than cytosolic EH in hydrolysis of GE, and human microsomes are more efficient than rodent microsomes. 4. The more water-soluble GE, o-CGE and HDDGE, were good substrates for GST whereas the more lipophilic GE, YX4000 and C12GE, were poor substrates for GST. In general, rodents are more efficient in GSH conjugation of GE than humans. 5. In general, the epoxide groups of YX4000 are the most and those of HDDGE the least efficiently inactivated of the five GE under study. For the other three GE no general trend was observed: the relative efficiency of inactivation varied with organ and species. 6. The large variation in metabolism observed with five representative GE indicate that GE have variable individual properties and should not be considered as a single, homogenous class of compounds.  相似文献   

2.
1. Glycidyl ethers (GE), an important class of industrial chemicals, are considered to be potentially mutagenic in vivo because some GE have been shown to be direct mutagens in short-term in vitro tests. 2. The percutaneous penetration and metabolism of representatives of different classes of GE was studied in the fresh, full-thickness C3H mouse, and dermatomed human and Fisher 344 rat skin to determine the apparent permeability constants, lag times and metabolic profiles. 3. Five different GE, the diglycidyl ethers of bisphenol A (BADGE), 4,4'-dihydroxy3,3',5,5'-tetramethylbiphenyl (Epikote YX4000) and 1,6-hexanediol (HDDGE) and the GE of 1-dodecanol (C12GE) and o-cresol (o-CGE), were synthesized by reaction of their alcohols with epichlorohydrin. Their radiolabelled analogues were synthesized with a 14Clabel using [U-14C]-epichlorohydrin. 4. There was a large variation (four orders of magnitude) in percutaneous penetration between the five GE. In general, penetration through full-thickness mouse skin was higher than through dermatomed rat skin, whereas dermatomed human skin was the least permeable. The permeability increased in the order YX4000<BADGE<C12GE<o CGE<HDDGE. 5. The relative skin permeability of the five GE could be explained for a significant part by the lipophilicity, expressed as log Po/w, in combination with the molecular weight of the compounds. 6. During skin penetration, all GE were extensively metabolized to their corresponding (bis-)diols. Virtually no YX4000, and only very small amounts of C12GE and BADGE, penetrated the skin unchanged, but significant amounts of HDDGE and o-CGE penetrated the skin unchanged. For o-CGE, but none of the other GE, the percentage of the applied dose that penetrated the skin unchanged increased over time. 7. The large variation in response observed with the five selected GE indicates that GE should not be considered as a single class of compounds but rather on the basis of their individual properties.  相似文献   

3.
1. Glycidyl ethers (GE), an important class of industrial chemicals, are considered to be potentially mutagenic in vivo because some GE have been shown to be direct mutagens in short-term in vitro tests. 2. The percutaneous penetration and metabolism of representatives of different classes of GE was studied in the fresh, full-thickness C3H mouse, and dermatomed human and Fisher 344 rat skin to determine the apparent permeability constants, lag times and metabolic profiles. 3. Five different GE, the diglycidyl ethers of bisphenol A (BADGE), 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (Epikote YX4000) and 1,6-hexanediol (HDDGE) and the GE of 1-dodecanol (C12GE) and o-cresol (o-CGE), were synthesized by reaction of their alcohols with epichlorohydrin. Their radiolabelled analogues were synthesized with a 14C-label using [U-14C]-epichlorohydrin. 4. There was a large variation (four orders of magnitude) in percutaneous penetration between the five GE. In general, penetration through full-thickness mouse skin was higher than through dermatomed rat skin, whereas dermatomed human skin was the least permeable. The permeability increased in the order YX4000 < BADGE < C12GE < o-CGE < HDDGE. 5. The relative skin permeability of the five GE could be explained for a significant part by the lipophilicity, expressed as log P(o/w), in combination with the molecular weight of the compounds. 6. During skin penetration, all GE were extensively metabolized to their corresponding (bis-)diols. Virtually no YX4000, and only very small amounts of C12GE and BADGE, penetrated the skin unchanged, but significant amounts of HDDGE and o-CGE penetrated the skin unchanged. For o-CGE, but none of the other GE, the percentage of the applied dose that penetrated the skin unchanged increased over time. 7. The large variation in response observed with the five selected GE indicates that GE should not be considered as a single class of compounds but rather on the basis of their individual properties.  相似文献   

4.
1. The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Cardura®E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. 2. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. 3. The overall rates of inactivation in vitro decreased in the following order: mouse &;gt; rat &;gt; human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). 4. The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24±0.06 (SD), 1.8±0.2 and 6.8±0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4X 10?6 cm/h. 5. During transdermal penetration, [14C]-C10GE was extensively hydrolysed to the corresponding diol and the free acid. Only 0.01, 0.11 and 0.21% of the applied dose was absorbed unchanged through the human, mouse and rat skin respectively.  相似文献   

5.
The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Carduras E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. The overall rates of inactivation in vitro decreased in the following order: mouse > rat > human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24+/-0.06 (SD), 1.8+/-0.2 and 6.8+/-0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4 x 10(-6) cm/h. During transdermal penetration, [14C]-C10GE was extensively hydrolysed to the corresponding diol and the free acid. Only 0.01, 0.11 and 0.21]% of the applied dose was absorbed unchanged through the human, mouse and rat skin respectively.  相似文献   

6.
Kinetics of the metabolic inactivation of 1,2-epoxypropane (propylene oxide; PO) catalyzed by glutathione S-transferase (GST) and by epoxide hydrolase (EH) were investigated at 37 degrees C in cytosol and microsomes of liver and lung of B6C3F1 mice, F344 rats, and humans and of respiratory and olfactory nasal mucosa of F344 rats. In all of these tissues, GST and EH activities were detected. GST activity for PO was found in cytosolic fractions exclusively. EH activity for PO could be determined only in microsomes, with the exception of human livers where some cytosolic activity also occurred, representing 1-3% of the corresponding GST activity. For GST, the ratio of the maximum metabolic rate (V(max)) to the apparent Michaelis constant (K(m)) could be quantified for all tissues. In liver and lung, these ratios ranged from 12 (human liver) to 106 microl/min/mg protein (mouse lung). Corresponding values for EH ranged from 4.4 (mouse liver) to 46 (human lung). The lowest V(max) value for EH was found in mouse lung (7.1 nmol/min/mg protein); the highest was found in human liver (80 nmol/min/mg protein). K(m) values for EH-mediated PO hydrolysis in liver and lung ranged from 0.83 (human lung) to 3.7 mmol/L (mouse liver). With respect to liver and lung, the highest V(max)/K(m) ratios were obtained for GST in mouse and for EH in human tissues. GST activities were higher in lung than in liver of mouse and human and were alike in both rat tissues. Species-specific EH activities in lung were similar to those in liver. In rat nasal mucosa, GST and EH activities were much higher than in rat liver.  相似文献   

7.
Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovo turkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using 32P-postlabeling for DNA adducts. In ovo exposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had 32P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity.  相似文献   

8.
The transformation of the herbicide tridiphane (Tandem, Dowco 356, 2-(3,5-dichlorophenyl)-2(2,2,2-trichloroethyl)oxirane by the epoxide-metabolizing enzymes, epoxide hydrolases (EH) and glutathione S-transferases (GST), was investigated in mouse liver microsomes and cytosol. The microsomal EH catalyzed the formation of tridiphane diol. The production of this metabolite was prevented by cyclohexene oxide at 1 mM, a known inhibitor of microsomal EH. The structure of the diol was verified by comparison of retention time or Rf of the compound with those of an authentic standard using gas-liquid chromatography or thin-layer chromatography techniques. The diol formed a diester with 1-butane boronic acid or an aldehyde with lead tetraacetate. Mass spectral analysis supported the structural assignment. After optimization of the assay conditions, kinetic constants for the hydration of tridiphane by the microsomal EH were determined (Km = 65 microM and Vmax = 0.9 nmol/min/mg protein). Dietary exposure of mice to the hypolipidemic drug clofibrate at a dose of 0.5% (w/w) for 2 weeks increased by 173% the metabolism of tridiphane to tridiphane diol by the microsomal fraction. No diol could be detected following incubation of tridiphane with the cytosolic EH, even after induction by clofibrate. Tridiphane was also a substrate for GST, but administration of clofibrate did not change the specific activity for the formation of the glutathione conjugate. The herbicide was a rather weak inhibitor of the microsomal EH and the cytosolic GST activities measured with cis-stilbene oxide and trans-stilbene oxide as substrates with I50's of 3.0 x 10(-5) and 1.8 x 10(-4)M, respectively. Tridiphane diol was a poor inhibitor of the enzymes studied, and the glutathione conjugate of tridiphane caused marked inhibition of only the GST activity (I50, 2.0 x 10(-5)M). By contrast the activity of cytosolic EH (trans-stilbene oxide) was relatively insensitive to the addition of tridiphane or of tridiphane metabolites.  相似文献   

9.
The effect of aging on epoxide hydrolase (EH) and glutathion-S-transferase (GST) activities was investigated in testes of C57BL/6 mice 1-30 months of age. Microsomal EH (mEH) activity, as monitored with cis-stilbene oxide (CSO), showed statistically insignificant changes throughout the lifespan of mice. Although cytosolic EH (cEH) was detected in testes by immunoblotting, the enzyme activity towards trans-stilbene oxide (TSO) could not be measured under the experimental conditions used. Gonadal GST monitored with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate displayed an increasing trend until the mice reached senescence, showing a 3.7-fold increase in the enzyme activity in old animals (30 months) when compared with that in young animals (2 months). However, with CSO as substrate, GST showed no change in activity in mice of different ages.  相似文献   

10.
Differential susceptibility of polycyclic aromatic hydrocarbon (PAH)-mediated liver cancer exists in two related species of Ictalurid catfish. Two hypotheses are addressed in this study to explain this difference. Specifically, the relatively insensitive channel catfish 1) do not produce mutagenic PAH metabolites, and/or 2) they more quickly eliminate PAHs due to greater Phase II enzyme activities than the more sensitive brown bullhead. Livers and bile were collected from each species 6, 24, 72, and 168 h after a single 10 mg/kg i.p. benzo(a)pyrene (BaP) exposure. BaP treatment had no significant effect on cytosolic 1-chloro-2,4-dinitrobenzene or ethacrynic acid (EA)-glutathione-S:- transferase (GST) and cis-stilbene oxide-microsomal epoxide hydrolase (EH) activities of either species. Channel catfish EH and GST activities were 1.2-fold higher than brown bullhead activities (p = 0.058 and p < 0.002, respectively). HPLC-APCI-MS of extracted bile and bile enzymatically digested to detect glucuronyl transferase (GT), GST, and sulfotransferase (ST) conjugated metabolites indicated no species differences in elimination or profiles of total biliary metabolites. GT conjugates predominated; ST and GST conjugates were minimal. BaP-diones accounted for the majority of metabolites in both species. Overall, these results indicated that brown bullhead preferentially formed BaP-7,8-dihydrodiol, a precursor to the DNA-reactive BaP-7, 8-dihydrodiol-9,10-epoxide (BPDE), which may be linked to the increased PAH susceptibility in this species.  相似文献   

11.
Context: Spices and herbs are recognized sources of natural antioxidants that can protect from oxidative stress, thus play an important role in chemoprevention of liver diseases. Ginger is used worldwide primarily as a spicy condiment.

Objective: This study evaluated the ability of ginger extract (GE) to ameliorate oxidative-hepatic toxicity induced by lead acetate (PbAc) in rats.

Materials and methods: Five groups of animals were used: group I kept as control; groups II, IV, and V received PbAc (1?ppm in drinking water daily for 6 weeks, and kept for an additional 2 weeks without PbAc exposure); group III treated orally with GE (350?mg/kg body weight, 4?d per week) for 6 weeks; group IV (protective) received GE for 2 weeks before and simultaneously with PbAc; and group V (treatment) received GE for 2 weeks after PbAc exposure.

Results: GC-MS analysis of GE revealed its content of gingerol (7.09%), quercetin (3.20%), dl-limonene (0.96%), and zingiberene (0.18%). Treatment of PbAc-treated rats with GE has no effect on hepatic Pb concentrations. However, it maintained serum aspartate aminotransferase level, increased hepatic glutathione (157%), glutathione S-transferase (GST) (228%), glutathione peroxidase (GPx) (138%) and catalase (CAT) (112%) levels, and reduced hepatic malondialdehyde (80%). Co-treatment of PbAc group with GE upregulated mRNA expression of antioxidant genes: GST-α1 (1.4-fold), GPx1 (1.8-fold), and CAT (8-fold), while post-treatment with GE upregulated only mRNA expression of GPx1 (1.5-fold).

Conclusion: GE has an antioxidant protective efficacy against PbAc-induced hepatotoxicity, which appears more effective than its therapeutic application. However, the changes in antioxidant gene expression were not reflected at the protein level.  相似文献   

12.
Six different 1,2-epoxycycloalkanes, whose rings were constituted of 5 to 12 carbon atoms, were tested as possible inhibitors of epoxide-metabolizing enzymes and substrates for the microsomal and cytosolic epoxide hydrolases (mEH, cEH) in mouse liver. The geometric configurations and the relative steric hindrances of these epoxides were estimated from their ease of hydrolysis in acidic conditions to the corresponding diols, their abilities to react with nitrobenzylpyridine, and the chemical shifts of the groups associated with the oxirane rings measured by proton and 13C-NMR. The cyclopentene, -hexene, -heptene, -octene and -decene oxides adopted mainly a cis-configuration. By contrast, cyclododecene oxide presented a trans-configuration. Steric hindrance increased with the size of the ring and was particularly strong when cyclooctene, -decene and -dodecene oxides were considered. With the exception of cyclohexene oxide, all the compounds were weak inhibitors of EH and glutathione S-transferase (GST) activities. Cyclohexene oxide exhibited a selective inhibition of the mEH with an I50 of 4.0.10(-6) M. As the size of the ring increased, inhibitory potency was gradually lost. The cEH and the GST activities were less sensitive to the inhibitory effects of these epoxides (I50, 1 mM or above). A marked difference between the substrate selectivities of mEH and cEH for these epoxides was observed. The mEH hydrated all of the cyclic epoxides, although some of them at a very low rate; the best substrate was the cycloheptene oxide (2.3 nmol/min/mg protein). On the other hand, cyclodecene oxide was a substrate of cEH, but no diol formation was detected when cyclopentene, -hexene and -dodecene oxides were incubated with cytosolic enzyme.  相似文献   

13.
Administration of tridiphane (Tandem, DOWCO 356, 2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane) to male Swiss-Webster mice for 3 days at 100, 250, and 500 mg/kg (ip) resulted in increases in liver weight accompanied by an increase in mitotic index and increases in large particle and microsomal protein. Epoxide hydrolase (EH) activity towards cis-stilbene oxide (CSO, microsomal EH) was elevated in microsomes and cytosol, a decrease in microsomal cholesterol EH was found, and hydrolysis of trans-stilbene oxide (TSO, cytosolic EH) was elevated in the cytosol but not in the microsomes. Glutathione S-transferase (GST) activity was elevated in cytosol for CSO, TSO, and 1,2-dichloro-4-nitrobenzene (DCNB), with inconsistent responses found with 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (ENPP). Microsomal GST was not consistently effected by tridiphane. Clofibrate (500 mg/kg, 3 daily ip injections) treatment resulted in similar responses in liver size, microsomal protein, and the EHs. The increase in cytosolic EH activity previously has been noted only in animals treated with peroxisome proliferators. Examination of livers from mice treated with 250 mg/kg tridiphane revealed that an increase in hepatic peroxisomes was apparent after 3 days of treatment. This was accompanied by decreases in serum cholesterol and triglyceride levels and increases in liver carnitine acetyl transferase and cyanide-insensitive oxidation of palmitoyl-CoA. This study demonstrates that tridiphane does have in vivo effects on mammalian epoxide-metabolizing enzymes and extends the association of increased cytosolic epoxide hydrolase activity with peroxisome proliferation.  相似文献   

14.
An extracellular proteinase secreted by the thermophilic bacteria Thermomonospora fusca YX (YX-proteinase) is a serine proteinase as shown by its inactivation by the site specific reagents, phenylmethanesulfonyl fluoride, dansyl fluoride, and carbobenzoxy-l -phenylalanine chloromethyl ketone. This conclusion is further supported by the effect of various proteinase inhibitors on its activity. The activity of the proteinase toward small synthetic ester substrates shows that the enzyme has a primary specificity for the aromatic and hydrophobic amino acids. The amino acid composition and NH2 -terminal sequence, as well as its size, suggest that the enzyme is related to the chymotrypsin-like microbial proteinase, α-lytic protease from Myxobacter 495 and protease A and B from Streptomyces griseus.  相似文献   

15.
The effect of pretreatment with o-, m- and p-toluidine on the drug-metabolizing enzymes of liver, kidney and lung in rats were investigated. The activities of microsomal aryl hydrocarbon hydroxylase (AHH), amino-pyrine demethylase, NADPH-cytochrome c reductase, epoxide hydrolase, cytosolic glutathione S-transferase as well as the concentrations of cytochrome P-450 and cytochrome b5 were determined. The obtained results showed that o-toluidine increased the activity of AHH in all tested organs; showed that o-toluidine increased the activity of AHH in all tested organs; a particularly marked increase was observed in the kidney. The activity of NADPH-cytochrome c reductase and the content of cytochrome b5 were enhanced by o-toluidine only in the liver. m-Toluidine enhanced the glutathione S-transferase activity while the p-isomer increased both the epoxide hydrolase and the glutathione S-transferase activities. p-Toluidine decreased the AHH and aminopyrine demethylase activities and the cytochrome P-450 content. These results may explain in part the previously reported observations on carcinogenic activity of o-toluidine.  相似文献   

16.
Biotransformation of caffeine by cDNA-expressed human cytochromes P-450   总被引:2,自引:0,他引:2  
Objectives: The biotransformation of caffeine has been studied in vitro using human cytochrome P-450 isoenzymes (CYPs) expressed in human B-lymphoblastoid cell lines, namely CYP1A1, 1A2, 2A6, 2B6, 2D6-Val, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH). In addition, CYP 2D6-Met was also studied, in which a valine in the wild type (CYP2D6-Val) has been replaced by a methionine due to a G to A mutation in position 112. Results: At caffeine 3 mmol·l-1, five CYPs (1A1, 1A2, 2D6-Met, 2E1 and 3A4) catalysed the biotransformation of caffeine. Among the enzymes studied, CYP1A2, which predominantly catalysed paraxanthine formation, had the highest intrinsic clearance (160 l h-1·mmol-1 CYP). Together with its high abundance in liver, it should be considered, therefore, to be the most important isoenzyme in caffeine metabolism. The affinity of caffeine for CYP1A1 was comparable to that of its homologue 1A2. CYP2D6-Met, which catalysed caffeine metabolism by demethylation and 8-hydroxylation, also had a relatively high intrinsic clearance (3.0 l·h-1mmol-1 CYP), in particular for theophylline and paraxanthine formation, with kM values between 9–16 mmol·l-1. In contrast, the wild type, CYP2D6-Val, had no detectable activity. In comparison, CYP2E1 played a less important role in in vitro caffeine metabolism. CYP3A4 predominantly catalysed 8-hydroxylation with a kM value of 46 mmol·l-1 and an intrinsic clearance of 0.60 l·h-1·mmol-1 CYP. Due to its high abundance in human liver, the latter CYP may contribute significantly to the in vivo formation of TMU. Conclusion: The findings of this study indicate that i) microsomes from transfected human B-lymphoblastoid cell lines give results close to those obtained with microsomes isolated from human liver, ii) at least four CYP isoforms are involved in caffeine metabolism, iii) at a substrate concentration <0.1 mmol·l-1, CYP1A2 and 1A1 are the most important isoenzymes, iv) at higher concentrations the participation of other isoenzymes, in particular CYP3A4, 2E1 and possibly also CYP2D6-Met, are important in caffeine metabolism, and v) the nucleotide composition at position 1120 of CYP2D6 determines the activity of this isoenzyme in caffeine metabolism.Abbreviations AFMU 5-acetylamino-6-formylamino-3-methyluracil - CYP human cytochrome P-450 - PAH polycyclic aromatic hydrocarbon - 17X paraxanthine - 37X theobromine - 13X theophylline - 137U trimethyluric acid.  相似文献   

17.
Styrene oxide (SO), a labile metabolite of styrene, is generally accepted as being responsible for any genotoxicity associated with styrene. To better define the hazard associated with styrene, the activity of the enzymes involved in the formation (monooxygenase) and destruction of SO (epoxide hydrolase and glutathione-S-transferase) were measured in the liver and lungs from naive and styrene-exposed male Sprague-Dawley rats and B6C3F1 mice (three daily 6-h inhalation exposures at up to 600 ppm styrene) and Fischer 344 rats (four daily 6-h inhalation exposures at up to 1000 ppm styrene), and in samples of human liver tissue. Additionally, the time course of styrene and SO in the blood was measured following oral administration of 500 mg styrene/kg body weight to naive Fischer rats and rats previously exposed to 1000 ppm styrene. The affinity of hepatic monooxygenase for styrene, as measured by the Michaelis constant (K m), was similar in the rat, mouse, and human. Based on theV max for monooxygenase activity and the relative liver and body size, the mouse had the greatest capacity and humans the lowest capacity to form SO from styrene. In contrast, human epoxide hydrolase had a greater affinity (i. e., lowerK m) for SO than epoxide hydrolase from rats or mice while the apparent Vmax for epoxide hydrolase was similar in the rat, mouse, and human liver. However, the activity of epoxide hydrolase relative to monooxygenase activity was much greater in the human than in the rodent liver. Hepatic glutathione-S-transferase activity, as indicated by theV max, was 6- to 33-fold higher than epoxide hydrolase activity. However, the significance of the high glutathione-S-transferase activity is unknown because hydrolysis, rather than conjugation, is the primary pathway for SO detoxification in vivo. Human hepatic glutathione-S-transferase activity was extremely variable between individual human livers and much lower than in rat or mouse liver. Prior exposure to styrene had no effect on monooxygenase activity or on blood styrene levels in rats given a large oral dose of styrene. In contrast, prior exposure to styrene increased hepatic epoxide hydrolase activity 1.6-fold and resulted in lower (0.1>P>0.05) blood SO levels in rats given a large oral dose of styrene. Qualitatively, these data indicate that the mouse has the greatest capacity and the human the lowest capacity to form SO. In addition, human liver should be more effective than rodent liver in hydrolyzing low levels of SO. Quantitative evaluation of the species differences in enzyme levels are being evaluated with the development of a physiologically based pharmacokinetic model for styrene that includes SO.  相似文献   

18.
The degradation kinetics, products, and mechanisms of RS-10029 (2), 2-[2-[(l-carboxylic acid)-3-phenylpropyl]amino-l-oxopropyl] 6,7-dimethoxy- 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (S,S,S), in aqueous solutions from pH 1 to pH 13 were studied at 50, 60, and 80°C. Pseudo-first-order kinetics were obtained throughout the entire pH range studied, and the log(rate)-pH profile reflected four kinetic processes (k o, ko, ko, and k OH) as well as the three pk a's of 2. Excellent mass balance (>96%) was obtained for the four major products 3–6 throughout the entire pH range studied even though four other minor products can be detected by high-performance liquid chromatography (HPLC). At pH 8.0 and below, intramolecular aminolysis leading to diketopiperazine (DKP) 5 accounted for greater than 65% of the neutral or water-catalyzed (k o and ko) processes. Amide hydrolysis leading to products 3 and 4 and epimerization of DKP 5 to the (R,S,S) diastereomer 6 accounted for the remaining 35% of the neutral or water catalyzed processes. At pH values above 8.0, DKP 5 formation begins to decrease as the amide hydrolysis increases so that both mechanisms account for the neutral or water-catalyzed ko process. Above pH 11.0 amide hydrolysis dominates and is responsible for the specific base-catalyzed (k OH) process. The four minor products detected by HPLC are two diastereomers (7 and 8) of 2 and the two diastereomers (9 and 10) of the DKP 5. The stability results between 2 and its ester prodrug (1) are compared.  相似文献   

19.
Abstract

1. Anthocyanins and their aglycone anthocyanidins represent the most abundant flavonoids in human diet and popular constituents of various dietary supplements. The aim of this study was to evaluate inhibitory effect of four anthocyanidins (delphinidin, cyanidin, malvidin and pelargonidin) on three families of important drug-metabolizing enzymes: carbonyl reductases (CBRs), glutathione S-transferases (GSTs) and UDP-glucuronosyltransferases (UGT).

2. Human or rat hepatic subcellular fractions were incubated with or without pure anthocyanidins (100?µM) and the activities of CBR, GST and UGT were assayed using menadione, 1-chloro-2,4-dinitrobenzene and p-nitrophenol as substrates, respectively. For the most potent inhibitors, half maximal inhibitory concentrations (IC50) were determined and the inhibition kinetics study was performed.

3. Anthocyanidins inhibited weakly the activity of GST and moderately the activities of CBR and UGT. Cyanidin was the most potent inhibitor of human UGT with IC50?=?69?µM (at 200?µM substrate concentration) and competitive type of action. Delphinidin acted as significant non-competitive inhibitor of human CBR with IC50?=?16?µM (at substrate concentration 500?µM). The inhibitory potency of anthocyanidins differed in rat and human samples significantly.

4. Anthocyanidins are able to inhibit CBR and UGT in vitro. Possible interference of anthocyanidins (in high-dose dietary supplements) with simultaneously administered drugs, which are UGT or CBR substrates, should be checked.  相似文献   

20.
The synthesis of a specifically ring labelled isotopomer of L ‐tyrosine, (L ‐Tyr), using a combination of chemical and enzymatic methods is reported. The tritium labelled [2′,6′]‐L ‐Tyr has been synthesized via catalytic exchange of phenol with tritiated water in the presence of K2PtCl4, reverse acid catalysed removal of tritium from the o‐ and p‐positions of phenol, and subsequent condensation of the resulting [3′,5‐3H2]‐phenol with S‐methyl‐L ‐cysteine using the enzyme β‐tyrosinase from Citrobacter freundii. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号