首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The major human cytochrome P450 (CYP) form(s) responsible for the metabolism of CP-195,543, a potent leukotriene B4 antagonist, were investigated. 2. Incubation of CP-195,543 with human liver microsomes resulted in the formation of three major metabolites, M1-3. M1 and M2 were diastereoisomers and formed by oxidation on the benzylic position. M3 was formed by aromatic oxidation of the benzyl group attached to the 3-position of the benzopyran ring. 3. The results from experiments with recombinant CYPs, correlation studies and inhibition studies with form-selective inhibitors and a CYP3A antibody strongly suggest that the CYP3A4 plays a major role in the metabolism of CP-195,543. Recombinant CYP3A5 did not metabolize CP-195,543. 4. The apparent K(m) and V(max) for the formation of M1-3 in human liver microsomes were determined as 36 microM and 4.1 pmol min(-1) pmol(-1) P450, 44 microM and 10 pmol min(-1) pmol(-1) P450, and 34 microM and 2.0 pmol min(-1) pmol(-1) P450, respectively. The average in vitro intrinsic clearance for M2 was the highest both in human liver microsomes and recombinant CYP3A4 compared with M1 and M3. Intrinsic clearance for M2 in human liver microsomes and recombinant CYP3A4 was 0.231 and 0.736 ml min(-1) pmol(-1) P450, respectively. The intrinsic clearances for M1 and M3 in human liver microsomes and CYP3A4 were 0.114 and 0.060 and 0.197 and 0.088 ml min(-1) pmol(-1) P450, respectively. This suggests that benzylic oxidation is the predominant phase I metabolic pathway of CP-195,543 in man.  相似文献   

2.
1.?KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPARγ) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes.

2.?Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a β-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198.

3.?The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CLint of 0.012?±?0.001 versus 0.004?±?0.001 μl min?1 pmol?1 P450, respectively).

4.?In a drug–drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC50?>?50 μM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.  相似文献   

3.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25?nM?1?min?1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96?nmol?min?1?nmol?1 P450 and apparent Km value of 0.09?mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03?mM, and Vmax values were 2.94, 6.1 and 13.8?nmol?min?1?nmol?1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

4.
The in vitro metabolism of (?)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (?)-fenchone was investigated by gas chromatography-mass spectrometry. (?)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (?)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (?)-fenchone. Second, oxidation of (?)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (?)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (?)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3?nM?1?min?1, respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (?)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9?nmol?min?1?nmol?1 P450 and apparent Km values of 0.18 and 0.15?mM and (?)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33?nmol?min?1?nmol?1 P450 with apparent Km values of 0.29 and 0.26?mM. (?)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2?mM and 10.66?nmol?min?1?nmol?1 P450, respectively.  相似文献   

5.
1.?Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes.

2.?This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes.

3.?The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35?μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15?μM?1?min?1.

4.?The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

6.
To predict drug interactions with estazolam, the biotransformation of estazolam to its major hydoxylated metabolite, 4-hydroxyestazolam was studied in vitro using pooled human liver microsomes and individual expressed human cytochrome P450 (CYP) enzymes. Estazolam was metabolized to 4-hydroxyestazolam according to the Hill kinetic model in pooled human liver microsomes. The Km value for the 4-hydroxylation of estazolam was 24.1?µM, and the Vmax value was 52.6?pmol?min?1?mg?1 protein. The formation of 4-hydroxyestazolam from estazolam in pooled human liver microsomes was significantly inhibited by itraconazole and erythromycin, specific CYP3A4 inhibitors, in a dose-dependent manner, with IC50 values of 1.1 and 12.8?µM, respectively. When estazolam was incubated with expressed human CYP enzymes (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4), it was metabolized only by CYP3A4. In conclusion, the biotransformation of estazolam to 4-hydroxyestazolam was catalyzed by CYP3A4.  相似文献   

7.
1.?The metabolism of diallyl disulphide was investigated in vitro with rat and human liver cell subfractions and ex vivo with an isolated perfused rat liver.

2.?Diallyl disulphide was oxidized to diallylthiosulphinate by rat liver microsomes with an apparent Km = 0.86 ± 0.1?mM and an apparent Vmax = 0.47 ± 0.12 nmol?min?1?mg?1 protein (mean ± SE). Both cytochrome P450 (CYP) and flavin-containing monooxygenases were involved, with CYP2B1/2 and CYP2E1 being the most active CYP enzymes.

3.?In rat and man, microsomal oxidation of allylmethyl sulphide to allylmethyl sulphoxide and allylmethyl sulphone also occurred, although at a low rate. Diallyl disulphide was also metabolized to allylglutathione sulphide and allylmercaptan. In addition, diallylthiosulphinate reacted non-enzymatically with glutathione to form allylglutathione sulphide.

4.?When an isolated rat liver was perfused with diallyl disulphide, the metabolites allyl mercaptan, allylmethyl sulphide, allylmethyl sulphoxide, allylmethyl sulphone and allylglutathione sulphide were detected primarily within the liver tissue, with only small amounts of metabolites found in the bile and perfusion medium. The pharmacokinetic parameters for diallyl disulphide were t1/2 = 6.09?min; AUC0–∞ = 4.77?min?mmol?l?1; clearance = 34.22 ml?min?1.

5.?A scheme for the metabolism of diallyl disulphide in rat and man is proposed.  相似文献   

8.
1.?4′-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC.

2.?TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms.

3.?Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46?µM and 85.1?pmol/min/mg protein for M1 and 9.98?µM and 32.1?pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.  相似文献   

9.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   

10.
1. The metabolism of 4′-methoxy-α-pyrrolidinopropiophenone (MOPPP), a novel designer drug, to its demethylated major metabolite 4′-hydroxy-pyrrolidinopropio-phenone (HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes.

2. CYP2C19 catalysed the demethylation with apparent Km and Vmax values of 373.4 ± 45.1?μM and 6.0 ± 0.3?pmol?min?1?pmol?1 CYP, respectively (mean ± SD). Both CYP2D6 and HLM exhibited clear biphasic profiles with apparent Km,1 values of 1.3 ± 0.4 and 22.0 ± 6.5?μM, respectively, and Vmax,1 values of 1.1 ± 0.1 pmol?min?1?pmol?1 CYP and 169.1 ± 20.5?pmol?min?1?mg?1 protein, respectively.

3. Percentages of intrinsic clearances of MOPPP by particular CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4′-hydroxylation or bufuralol-1′-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively.

4. MOPPP, HO-PPP and the standard 3′,4′-methylenedioxy-pyrrolidinopropio-phenone (MDPPP) were separated and analysed by liquid chromatography–mass spectrometry in the selected-ion monitoring (SIM) mode.

5. The CYP2D6 specific chemical inhibitor quinidine (3?μM) significantly (?p<0.0001) inhibited HO-PPP formation by 91.8 ± 0.5% (mean ± SEM) in incubation mixtures with HLM and 2?μM MOPPP.

6. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 is the enzyme mainly responsible for MOPPP demethylation.  相似文献   

11.
1.?We previously reported that flavone and flavanone interact spectrally with cytochrome P450 (P450 or CYP) 2A6 and 2A13 and other human P450s and inhibit catalytic activities of these P450 enzymes. In this study, we studied abilities of CYP1A1, 1A2, 1B1, 2A6, 2A13, 2C9 and 3A4 to oxidize flavone and flavanone.

2.?Human P450s oxidized flavone to 6- and 5-hydroxylated flavones, seven uncharacterized mono-hydroxylated flavones, and five di-hydroxylated flavones. CYP2A6 was most active in forming 6-hydroxy- and 5-hydroxyflavones and several mono- and di-hydroxylated products.

3.?CYP2A6 was also very active in catalyzing flavanone to form 2′- and 6-hydroxyflavanones, the major products, at turnover rates of 4.8?min?1 and 1.3?min?1, respectively. Other flavanone metabolites were 4′-, 3′- and 7-hydroxyflavanone, three uncharacterized mono-hydroxylated flavanones and five mono-hydroxylated flavones, including 6-hydroxyflavone. CYP2A6 catalyzed flavanone to produce flavone at a turnover rate of 0.72?min?1 that was ~3-fold higher than that catalyzed by CYP2A13 (0.29?min?1).

4.?These results indicate that CYP2A6 and other human P450s have important roles in metabolizing flavone and flavanone, two unsubstituted flavonoids, present in dietary foods. Chemical mechanisms of P450-catalyzed desaturation of flavanone to form flavone are discussed.  相似文献   


12.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

13.
1.?The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes.

2.?100?μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00?μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11?μM, respectively.

3.?Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83?μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75?nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey?>?rat?>?minipig?>?dog?>?human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12?mL/min/kg body weight, respectively.

4.?This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.  相似文献   

14.
Abstract

1.?The purpose of this study was to investigate the inhibitory effects of diclofenac on human cytochrome P450 1A2-, 2C19- and 3A4-mediated drug oxidations and to evaluate the drug interaction potential of diclofenac and 4′-hydroxydiclofenac.

2.?Diclofenac was converted to 4′-hydroxydiclofenac by recombinantly expressed human P450 1A2 with Km and Vmax values of 33?µM and 0.20?min?1, respectively. Diclofenac and 4′-hydroxydiclofenac suppressed flurbiprofen 4′-hydroxylation by P450 2C9 strongly and moderately, respectively; however, they did not affect P450 2C19-dependent S-mephenytoin hydroxylation or P450 3A4-dependent midazolam hydroxylation.

3.?Although the caffeine 3-N-demethylation activity of liver microsomal P450 1A2 was inhibited by simultaneous incubation with diclofenac, the riluzole N-hydroxylation activities of recombinant P450 1A2 and human liver microsomes were inhibited after preincubation with diclofenac or 4′-hydroxydiclofenac for 20?min in the presence of NADPH. Using the inhibition constant (37?µM) of diclofenac on caffeine 3-N-demethylation and the reported 95th percentiles of maximum plasma concentration (10.5?µM) after an oral dose of diclofenac, the in vivo estimated increase in area under the plasma concentration–time curve was 29%.

4.?These results suggest that diclofenac could inhibit drug clearance to a clinically important degree that depends on P450 1A2. Clinically relevant drug interactions in vivo with diclofenac are likely to be invoked via human P450 1A2 function in addition to those caused by the effect of diclofenac on P450 2C9.  相似文献   

15.
Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115?mg?kg?1?day?1 of triadimefon or 150?mg?kg?1?day?1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.  相似文献   

16.
Abstract

1. Catalpol possesses numerous pharmacological activities, and however, little data available for the effects of catalpol on the activity of human liver cytochrome P450 (CYP) enzymes.

2. This study investigates the inhibitory effects of catalpol on the main human liver CYP isoforms. In this study, the inhibitory effects of catalpol on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8 and 3A4 were investigated in human liver microsomes.

3. The results indicated that catalpol could inhibit the activity of CYP3A4, CYP2E1 and CYP2C9, with IC50 values of 14.27, 22.4 and 14.69?μM, respectively, but those other CYP isoforms were not affected. Enzyme kinetic studies showed that catalpol was not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1 and CYP2C9, with Ki values of 7.40, 10.75 and 7.37?μM, respectively. In addition, catalpol is a time-dependent inhibitor for CYP3A4, with maximum inactivation (kinact) and 50% maximum inactivation (KI) values of 0.02?min?1 and 1.86?μM, respectively.

4. The in vitro studies of catalpol with CYP isoforms suggest that catalpol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2C9. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

17.
1. The cytochrome P450 (CYP)-mediated biotransformation of the organophosphorothioate insecticides chlorpyrifos and diazinon was investigated. Rates of desulphuration to the active oxon metabolite (chlorpyrifos-oxon and diazinon-oxon) and dearylation to non-toxic hydrolysis products were determined in human liver microsome preparations from five individual donors and in recombinant CYP enzymes.

2. Chlorpyrifos and diazinon underwent desulphuration in human liver microsome with mean Km = 30 and 45 μM and Vmax = 353 and 766 pmol min?1 mg?1, respectively. Dearylation of these compounds by human liver microsome proceeded with Km = 12 and 28 μM and Vmax = 653 and 1186?pmol min?1 mg?1, respectively. The apparent intrinsic clearance (Vmax/Km) of dearylation was 4.5- and 2.5-fold greater than desulphuration for chlorpyrifos and diazinon, respectively.

3. Recombinant human CYP2B6 possessed the highest desulphuration activity for chlorpyrifos, whereas CYP2C19 had the highest dearylation activity. In contrast, both desulphuration and dearylation of diazinon were catalysed at similar rates, in the rank order CYP2C19 > CYP1A2 > CYP2B6 > CYP3A4.

4. Both organophosphorothioates were more readily detoxified (dearylation) than bioactivated (desulphuration) in all human liver microsome preparations. However, the role of individual CYP enzymes in these two biotransformation pathways varied according to the structure of the organophosphorothioate, which was reflected in different activation/detoxification ratios for chlorpyrifos and diazinon. Variability in activity of individual CYP enzymes may influence interindividual sensitivity to the toxic effects of chlorpyrifos and diazinon.  相似文献   

18.
  1. Cytochromes P450 (P450) involved in letrozole metabolism were investigated. Among 13 recombinant P450 forms examined, only P450 2A6 and 3A4 showed activities in transforming letrozole to its carbinol metabolite with small Km and high Vmax values yielding apparent Vmax/Km values of 0.48 and 0.24 nl min?1 nmol?1 P450, respectively.

  2. The metabolic activities of individual human liver microsomes showed a significant correlation with coumarin 7-hydroxylase activities (P450 2A6 marker) at a letrozole concentration of 0.5 μM, while a good correlation was also seen with testosterone 6β-hydroxylase activities (P450 3A4 marker) at 5 μM substrate concentration with different inhibition by 8-methoxypsolaren.

  3. Significantly low carbinol-forming activities were seen in human liver microsomes from individuals possessing CYP2A6*4/*4 (whole CYP2A6 gene deletion) at a letrozole concentration of 0.5 μM. A Vmax/Km value measured for CYP2A6.7 (amino acid substitution type) in human liver microsomes, in the presence of anti-P450 3A4 antibodies, was approximately seven-fold smaller than that for CYP2A6.1 (wild-type).

  4. These results demonstrate that P450 2A6 and 3A4 catalyse the conversion of letrozole to its carbinol metabolite in vitro at low and high concentrations of letrozole. Polymorphic variation of CYP2A6 is considered to be relevant to inter-subject variation in therapeutic exposure of letrozole.

  相似文献   

19.
1.?The objective of this study were to investigate the effect of orally administered resveratrol on the pharmacokinetics of aripiprazole (APZ) in rat, and the inhibitory effects of resveratrol on APZ dehydrogenation activity in liver microsomes and human cytochrome P450 3A4 and 2D6.

2.?Twenty-five healthy male Sprague–Dawley rats were randomly divided into five groups: A (control group), B (multiple dose of 200?mg/kg resveratrol), C (multiple dose of 100?mg/kg resveratrol), D (a single dose of 200?mg/kg resveratrol) and E (a single dose of 100?mg/kg resveratrol). A single dose of 3?mg/kg APZ administered orally 30?min after administration of resveratrol. In addition, CYP2D6*1, CYP3A4*1, human and rat liver microsomes were performed to determine the effect of resveratrol on the metabolism of APZ in vitro.

3.?The multiple dose of 200 or 100?mg/kg resveratrol significantly increased the AUC and Cmax of APZ. The resveratrol also obviously decreased the CL, but without any significant difference on t1/2 in vivo. On the other hand, resveratrol showed inhibitory effect on CYP3A4*1, CYP2D6*1, human and rat microsomes, the IC50 of resveratrol was 6.771, 87.87, 45.11 and 35.59?μmol?l?1, respectively.

4.?Those results indicated more attention should be paid when APZ was administrated combined with resveratrol.  相似文献   

20.
1.?This study aimed to investigate the potential impact of epigallocatechin-3-gallate (EGCG) on the pharmacokinetic behaviors of simvastatin and its metabolite simvastatin acid and explored the possible role of metabolizing enzymes and transporters of this food–drug interaction.

2.?Female SD rats were intravenously administered with EGCG (5?mg/kg), ketoconazole (10?mg/kg) and rifampin (10?mg/kg), followed by intravenous administration of 2?mg/kg simvastatin. In vitro, the effects of EGCG on Cytochrome P450 enzymes (CYP450) and organic anion transporting polypeptides (OATPs) were studied using human hepatic microsomes and human embryonic kidney 293 (HEK293) cells overexpressing OATP1B1 or OATP1B3. The results showed that areas under concentration–time (AUC) curves of simvastatin and simvastatin acid increased by 2.21- and 1.4-fold while the clearance was reduced by 2.29- and 1.4-fold, respectively, when co-administered with EGCG. In vitro experiments suggested the inhibitory effect of EGCG on CYP enzymes (IC50: 18.37?±?1.36?μM, 26.08?±?1.51?μM for simvastatin and simvastatin acid, respectively). Simvastatin transport by OATP1B1 and OATP1B3 was also inhibited by EGCG (IC50: 8.68?±?1.27?μM and 22.67?±?1.42?μM, respectively).

3.?The presently reported novel food–drug interaction between EGCG and simvastatin involves the inhibition of not only CYP450 enzymes but also OATPs by EGCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号