首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
1. Tanshinone IIA is the main active diterpene quinone in the herbal medicine Salvia miltiorrhiza. In untreated mouse liver microsomes, tanshinone IIA selectively inhibited 7-ethoxyresorufin O-deethylation (EROD) and 7-methoxyresorufin O-demethylation (MROD) activities without affecting the oxidation of benzo(a)pyrene, tolbutamide, N-nitrosodimethylamine and nifedipine. Tanshinone IIA was a competitive inhibitor of MROD activity with a K(i) of 7.2 +/- 0.7 nM. 2. In 3-methylcholanthrene-treated mouse liver microsomes, tanshinone IIA and two minor tanshinones, tanshinone I and cryptotanshinone, inhibited liver microsomal MROD activity without affecting EROD and benzo(a)pyrene hydroxylation activities at the concentrations up to 1 microM. Tanshinone IIA induced a type I binding spectrum with a spectral dissociation constant K(s) of 2.3 +/-0.8 microM without cooperativity. 3. In human liver microsomes, tanshinone IIA decreased EROD and MROD activities without affecting the oxidation of benzo(a)pyrene, tolbutamide, chlorzoxazone and nifedipine. 4. In Escherichia coli membranes expressing bicistronic human CYP1A enzymes, tanshinone IIA inhibited EROD activity of CYP1A1 with an IC(50) 48 times higher than that for CYP1A2. Tanshinone I and cryptotanshinone had the same IC(50) ratio (1A1/1A2) of 4. 5. The results indicate that tanshinone represents a new group of CYP1A inhibitors, and tanshinone IIA had the highest selectivity in inhibition of CYP1A2.  相似文献   

2.
  1. Domperidone was evaluated in direct and time-dependent cytochrome P450 (CYP) 3A inhibition assays in human liver microsomes with midazolam and testosterone as probe substrates.

  2. Domperidone was found to be a modest mechanism-based inhibitor of human and rat CYP3A. For human CYP3A, the inactivation constant (KI) is 12 μM, and the maximum inactivation rate (kinact) is 0.037?min?1.

  3. A rat interaction study was conducted between midazolam and either a single dose or five daily doses of domperidone. Although a single oral dose of 10?mg kg?1 domperidone did not affect the pharmacokinetics of 10?mg kg?1 oral midazolam, five daily oral doses of domperidone almost doubled the area under the plasma concentration versus time curve (AUC) of midazolam, and increased the maximum plasma concentration (Cmax) of midazolam by 72%.

  4. Based on the simulation and rat in vitro–in vivo extrapolation, it is predicted that co-administration of domperidone in humans could modestly increase (approximately 50%) the exposure of drugs that are primarily cleared by CYP3A.

  相似文献   

3.
1.?Members of the cytochrome P450 3A (CYP3A) subfamily metabolize numerous compounds and serve as the loci of drug–drug interactions (DDIs). Because of high amino acid sequence identity with human CYP3A, the cynomolgus monkey has been proposed as a model species to support DDI risk assessment.

2.?Therefore, the objective of this study was to evaluate 35 known inhibitors of human CYP3A using human (HLM) and cynomolgus monkey (CLM) liver microsomes. Midazolam was employed as substrate to generate IC50 values (concentration of inhibitor rendering 50% inhibition) in the absence and presence of a preincubation (30 mins) with NADPH.

3.?In the absence of preincubation, the IC50 values generated with CLM were similar to those obtained with HLM (86% within 2-fold; 100% within 3-fold difference). However, significant differences (up to 48-fold) in preincubation IC50 were observed with 17% of the compounds (raloxifene, bergamottin, nicardipine, mibefradil, ritonavir, and diltiazem).

4.?Our results indicate that in most cases the cynomolgus monkey can be a viable DDI model. However, significant species differences in time-dependent CYP3A inhibition can be observed for some compounds. In the case of raloxifene, such a difference can be ascribed to a specific CYP3A4 amino acid residue.  相似文献   

4.
1.Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a famous Chinese medicine used for many years to treat cardiovascular disorders. However, the role of cytochrome P450 (CYP) enzymes in the metabolism of STS was unclear. In this study, we screened the main CYPs for the metabolism of STS and studied their interactions in vitro.

2.Seven CYPs were screened for the metabolism of STS by human liver microsomes (HLMs) or recombinant CYP isoforms. To determine the potential of STS to affect CYP-mediated phase I metabolism in humans, phenacetin (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), metoprolol (CYP2D6), chlorzoxazone (CYP2E1), S-Mephenytoin (CYP2C19), and midazolam (CYP3A4) were used as the respective probe substrates. Enzyme kinetic studies were performed to investigate the mode of inhibition of the enzyme–substrate interactions.

3.STS inhibited the activity of CYP3A4 in a dose-dependent manner in the HLMs and CYP3A4 isoform. Other CYP isoforms, including CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on the metabolism of STS.

4.The results suggested that STS primarily inhibits the activities of CYP3A4 in vitro, and STS has the potential to perpetrate drug–drug interactions with other CYP3A4 substrates.  相似文献   

5.
Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. The therapeutic use of GLB is often complicated by a substantial inter‐individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter‐individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. The present study systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9 and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8 or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, it was found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4–17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro metabolism of GLB. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Objective The aim of the present study was to estimate the drug interaction potential of psychtropic medication on buprenorphine (BUP) N-dealkylation using cDNA-expressed cytochrome P450 (CYP) enzymes.Methods BUP was incubated with psychotropic drugs and cDNA-expressed CYP 3A4 and CYP 2C8 enzymes. Seven substances were screened for their inhibition potency. To check for a mechanism-based component in inhibition, all substances were tested with and without preincubation, respectively. Norbuprenorphine (NBUP) concentrations were determined by liquid chromatography/tandem mass spectrometry, following liquid/liquid extraction.Results Midazolam and zolpidem demonstrated greatest inhibition in screening experiments. As expected, IC50 values without preincubation were higher than those after 30-min preincubation, with zolpidem 113.1 μM and midazolam 20.25 μM. Following a 30-min preincubation period in the absence of the probe substrate BUP, the apparent IC50 values for zolpidem and midazolam were 20.17 μM and 3.5 μM.Conclusion Both midazolam and zolpidem showed a distinct inhibitory potency towards NBUP formation by CYP 3A4, implicating a decreased conversion of BUP. When preincubated, the inhibitory potency was increased, which strongly suggests a metabolically activated component in inhibition.  相似文献   

7.
We attempted to predict the in vivo metabolic clearance of alprazolam from in vitro metabolic studies using human liver microsomes and human CYP recombinants. Good correlations were observed between the intrinsic clearance (CL(int)) for 4-hydroxylation and CYP3A4 content and between the CL(int) for alpha-hydroxylation and CYP3A5 content in ten human liver microsomal samples. Using the recombinant CYP isoforms expressed in insect cells, the CL(int) for CYP3A4 was about 2-fold higher than the CL(int) for CYP3A5 in the case of 4-hydroxylation. However, the CL(int) for CYP3A5 was about 3-fold higher than the CL(int) for CYP3A4 in the case of alpha-hydroxylation. The metabolic rates for 4- and alpha-hydroxylation increased as the added amount of cytochrome b(5) increased, and their maximum values were 3- to 4-fold higher than those without cytochrome b(5). The values of CL(int), in vivo predicted from in vitro studies using human liver microsomes and CYP3A4 and CYP3A5 recombinants were within 2.5 times of the observed value calculated from literature data. The average CL(int) value (sum of 4- and alpha-hydroxylation) obtained using three human liver microsomal samples was 4-fold higher than that obtained using three small intestinal microsomal samples from the same donors, indicating the minor contribution of intestinal metabolism to alprazolam disposition. The area under the plasma concentration-time curve (AUC) of alprazolam is reported to increase following co-administration of ketoconazole and the magnitude of the increase predicted from the in vitro K(i) values and reported pharmacokinetic parameters of ketoconazole was 2.30-2.45, which is close to the value observed in vivo (3.19). A quantitative prediction of the AUC increase by cimetidine was also successful (1.73-1.79 vs 1.58-1.64), considering the active transport of cimetidine into the liver. In conclusion, we have succeeded in carrying out an in vitro/in vivo scaling of alprazolam metabolism using human liver microsomes and human CYP3A4 and CYP3A5 recombinants.  相似文献   

8.
In vitro studies were carried out to identify the major contribution of CYP2C8, CYP2D6 and CYP3A4 to the metabolism of perospirone (cis-N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]cyclohexane-1,2-dicarboximide monohydrochloride dehydrate), a novel antipsychotic agent, using human liver microsomes and expressed P450 isoforms. Quinidine (a specific inhibitor of CYP2D6) did not markedly affect the metabolism of perospirone, whereas quercetin (an inhibitor of CYP2C8) and ketoconazole (an inhibitor of CYP3A4) caused a decrease in the metabolism with human liver microsomes in a concentration dependent fashion. With 10 microM quercetin, the metabolism of perospirone was inhibited by 60.0% and with 1 microM ketoconazole almost complete inhibition was apparent. Anti-CYP2C8 and anti-CYP2D6 antisera did not exert marked effects, whereas anti-CYP3A4 antiserum caused almost complete inhibition. With expressed P450s, K(m) and V(max) values were 1.09 microM and 1.93 pmol/min/pmol P450 for CYP2C8, 1.38 microM and 5.73 pmol/min/pmol P450 for CYP2D6, and 0.245 microM and 61.3 pmol/min/pmol P450 for CYP3A4, respectively. These results indicated that the metabolism of perospirone in human liver was mainly catalysed by CYP3A4, and to a lesser extent CYP2C8 and CYP2D6 were responsible because kinetic data (K(m) and V(max)) of CYP2C8 and CYP2D6 suggested catalytic potential.  相似文献   

9.
Objective: The present study was conducted to identify in vitro the cytochrome P450(CYP) isoform involved in the metabolic conversion of reduced haloperidol to haloperidol using microsomes derived from human AHH-1 TK +/− cells expressing human cytochrome P450s. The inhibitory and/or stimulatory effects of reduced haloperidol or haloperidol on CYP2D6-catalyzed carteolol 8-hydroxylase activity were also investigated. Results: The CYP isoform involved in the oxidation of reduced haloperidol to haloperidol was CYP3A4. CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 2E1 were not involved in the oxidation. The kM value for the CYP3A4 expressed in the cells was 69.7 μmol · l−1, and the Vmax was 4.87 pmol · min−1 · pmol−1 P450. Troleandomycin, a relatively selective probe for CYP3A enzymes, inhibited the CYP3A4-mediated oxidation of reduced haloperidol in a dose-dependent manner. Quinidine and sparteine competitively inhibited the oxidative reaction with a ki value of 24.9 and 1390 μmol · l−1, respectively. Carteolol 8-hydroxylase activity, which is a selective reaction probe for CYP2D6 activity, was inhibited by reduced haloperidol with a ki value of 4.3 μmol · l−1. Haloperidol stimulated the CYP2D6-mediated carteolol 8-hydroxylase activity with an optimum concentration of 1 μmol · l−1, whereas higher concentrations of the compound (>10 μmol · l−1) inhibited the hydroxylase activity. Conclusion: It was concluded that CYP3A4, not CYP2D6, is the principal isoform of cytochrome P450 involved in the metabolic conversion of reduced haloperidol to haloperidol. It was further found that reduced haloperidol is a substrate of CYP3A4 and an inhibitor of CYP2D6, and that haloperidol has both stimulatory and inhibitory effects on CYP2D6 activity. Received: 10 April 1997 / Accepted in revised form: 16 December 1997  相似文献   

10.
1.?Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes.

2.?This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes.

3.?The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35?μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15?μM?1?min?1.

4.?The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

11.
Context: Friedelin is a triterpenoid with several biological activities. However, the affects of Friedelin on the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Objective: This study investigates the inhibitory effects of Friedelin on the major human liver CYP isoforms (CYP3A4, 1A2, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8).

Materials and methods: First, the inhibitory effects of Friedelin (100?μM) on the eight human liver CYP isoforms were investigated in vitro using human liver microsomes (HLMs), and then enzyme inhibition, kinetic studies, and time-dependent inhibition studies were conducted to investigate the IC50, Ki and Kinact/KI values of Friedelin.

Results: The results indicate that Friedelin inhibited the activity of CYP3A4 and 2E1, with the IC50 values of 10.79 and 22.54?μM, respectively, but other CYP isoforms were not affected. Enzyme kinetic studies showed that Friedelin is not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1, with Ki values of 6.16 and 18.02?μM, respectively. In addition, Friedelin is a time-dependent inhibitor of CYP3A4 with Kinact/Ki value of 4.84?nM/min.

Discussion and conclusion: The in vitro studies of Friedelin with CYP isoforms suggested that Friedelin has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2E1. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

12.
Objective: Interindividual variations in immunoreactivity and function of three major human drug metabolising P450 monooxygenases has been investigated in liver microsomes from 42 Caucasians (kidney donors or liver biopsies). Methods: Diclofenac 4′-hydroxylation, dextromethorphan O-demethylation and midazolam 1′-hydroxylation, measured by HPLC in incubates, were used as probes to determine CYP2C9, CYP2D6 and CYP3A4 function kinetics, respectively. Immunoquantification of the three isoforms was achieved by Western blotting, using rabbit polyclonal antibodies raised against human CYP2C9 and human CYP3A4, and mouse monoclonal antibody raised against human CYP2D6. Results: Diclofenac 4′-hydroxylation exhibited Michaelis-Menten kinetics with kM= 3.4 μmol ⋅l−1 and Vmax = 45 nmole ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2C9 was correlated with Vmax and CLint. Dextromethorphan O-demethylation in EM (extensive metabolisers) liver microsomes also showed Michaelis-Menten kinetics, with kM = 4.4 μmol ⋅l−1 and Vmax = 5.0 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP2D6 was correlated with Vmax and CLint. Midazolam 1′-hydroxylation also exhibited Michaelis-Menten kinetics with kM = 3.3 μmol ⋅l−1 and Vmax = 35 nmol ⋅mg−1P ⋅h−1. Relative immunoreactivity of CYP3A4 was correlated with Vmax and CLint. Immunoreactivity and function were correlated for each isozyme, but there was no cross correlation between isozymes. Conclusion: The velocity of metabolite formation (Vmax) by the three major human drug metabolising P450 monooxygenases is correlated with their immunoreactivity in liver microsomes. Interindividual variation was much larger for Vmax than kM. Interindividual variability was more pronounced for CYP2D6, probably due to the presence of several different functional alleles in the population of extensive metabolisers. Received: 27 December 1995/Accepted in revised form: 29 March 1996  相似文献   

13.
1.?A novel selective anaplastic lymphoma kinase (ALK) inhibitor, alectinib, has shown remarkable efficacy and safety in patients with ALK-positive non-small-cell lung cancer (NSCLC). The purpose of this study was to evaluate in vitro the potential to inhibit and induce cytochrome P450 (CYP) isoforms for alectinib and its major metabolite M4.

2.?Alectinib and M4 did not show the meaningful direct inhibition of six major CYP isoforms (CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4) in human liver microsomes (HLM). Alectinib, but not M4, competitively inhibited CYP2C8, by which few marketed drugs are exclusively metabolized, with an inhibition constant of 1.98?μM.

3.?Out of the seven CYP isoforms in HLM, alectinib and M4 showed time-dependent inhibition (TDI) of only CYP3A4, which suggests low TDI potential due to low inactivation efficiency.

4.?Alectinib exhibited quite smaller induction of mRNA expression of CYP1A2, 2B6 and 3A4 genes in human hepatocytes compared to the respective positive controls, suggesting a low potential of enzyme induction.

5.?In summary, the risk of alectinib causing drug-drug interactions with coadministered drugs is expected to be low due to the weak potential of CYP inhibition and induction estimated in the preclinical studies.  相似文献   

14.
目的:体外实验考察己烯雌酚(DES)对细胞色素P450 3A4(CYP3A4)和细胞色素P450 2C9(CYP2C9)活性的抑制作用,以评佑DES通过抑制这两个重要的细胞色素P450(CYP)亚型而引发药物-药物相互作用的可能性.方法:混合人肝微粒体与不同浓度的DES(或阳性抑制剂),CYP3A4或CYP2C9的探针...  相似文献   

15.
Abstract

1. Catalpol possesses numerous pharmacological activities, and however, little data available for the effects of catalpol on the activity of human liver cytochrome P450 (CYP) enzymes.

2. This study investigates the inhibitory effects of catalpol on the main human liver CYP isoforms. In this study, the inhibitory effects of catalpol on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8 and 3A4 were investigated in human liver microsomes.

3. The results indicated that catalpol could inhibit the activity of CYP3A4, CYP2E1 and CYP2C9, with IC50 values of 14.27, 22.4 and 14.69?μM, respectively, but those other CYP isoforms were not affected. Enzyme kinetic studies showed that catalpol was not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1 and CYP2C9, with Ki values of 7.40, 10.75 and 7.37?μM, respectively. In addition, catalpol is a time-dependent inhibitor for CYP3A4, with maximum inactivation (kinact) and 50% maximum inactivation (KI) values of 0.02?min?1 and 1.86?μM, respectively.

4. The in vitro studies of catalpol with CYP isoforms suggest that catalpol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2C9. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

16.
1.?Roles of human cytochrome P450 (P450) 3A4 in oxidation of an antihistaminic drug terfenadine have been previously investigated in association with terfenadine–ketoconazole interaction. Several antihistamine drugs have been recently identified as substrates for multiple P450 enzymes. In this study, overall roles of P450 3A4, 2J2, and 4F12 enzymes in terfenadine t-butyl hydroxylation were investigated in small intestines and livers from humans, marmosets, and/or cynomolgus monkeys.

2.?Human liver microsomes and liver and small intestine microsomes from marmosets and cynomolgus monkeys effectively mediated terfenadine t-butyl hydroxylation. Ketoconazole and N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine (a P450 4A/F inhibitor) almost completely and moderately inhibited these activities, respectively, in human liver microsomes; however, these chemicals did not show substantially suppression in marmoset liver. Anti-human P450 3A and 4F antibodies showed the roughly supportive inhibitory effects.

3.?Recombinant P450 3A4/90 and 4F12 showed high terfenadine t-butyl hydroxylation activities with substrate inhibition constants of 84–144?μM (under 26–76?μM of Km values), in similar manners to liver and intestine microsomes.

4.?These results suggest that human and marmoset P450 3A4/90 and 4F12 in livers or small intestines played important roles in terfenadine t-butyl hydroxylation. Marmosets could be a model for humans during first pass extraction of terfenadine and related substrates.  相似文献   

17.
  1. Cytochromes P450 (P450) involved in letrozole metabolism were investigated. Among 13 recombinant P450 forms examined, only P450 2A6 and 3A4 showed activities in transforming letrozole to its carbinol metabolite with small Km and high Vmax values yielding apparent Vmax/Km values of 0.48 and 0.24 nl min?1 nmol?1 P450, respectively.

  2. The metabolic activities of individual human liver microsomes showed a significant correlation with coumarin 7-hydroxylase activities (P450 2A6 marker) at a letrozole concentration of 0.5 μM, while a good correlation was also seen with testosterone 6β-hydroxylase activities (P450 3A4 marker) at 5 μM substrate concentration with different inhibition by 8-methoxypsolaren.

  3. Significantly low carbinol-forming activities were seen in human liver microsomes from individuals possessing CYP2A6*4/*4 (whole CYP2A6 gene deletion) at a letrozole concentration of 0.5 μM. A Vmax/Km value measured for CYP2A6.7 (amino acid substitution type) in human liver microsomes, in the presence of anti-P450 3A4 antibodies, was approximately seven-fold smaller than that for CYP2A6.1 (wild-type).

  4. These results demonstrate that P450 2A6 and 3A4 catalyse the conversion of letrozole to its carbinol metabolite in vitro at low and high concentrations of letrozole. Polymorphic variation of CYP2A6 is considered to be relevant to inter-subject variation in therapeutic exposure of letrozole.

  相似文献   

18.
Context: Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Materials and methods: The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs).

Results: The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52?μM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057?min?1?μM?1.

Discussion and conclusion: The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

19.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

20.
Cytochrome P450 3A is the main enzyme subfamily involved in the metabolism of a variety of marketed medicines. It is generally believed that the substrate specificity of polymorphic P450 3A5 is similar to that of the predominant P450 3A4 isoform, although some differences in catalytic properties have been found. It has been hypothesized that individuals with CYP3A5*1 (P450 3A5 expresser) might clear the HIV protease inhibitor saquinavir, administered by mouth, more rapidly than subjects lacking functional CYP3A5 alleles. Enhanced midazolam hydroxylation and cyclosporin metabolism occur in an in vitro P450 3A5 system and in liver microsomes expressing P450 3A5 in the presence of thalidomide. However, inhibition constants (Ki) of three triazole anti-fungal drugs (itraconazole, fluconazole, and voriconazole) for liver microsomal P450 3A5 are higher than for liver microsomal P450 3A4. To predict drug interactions in vivo, we estimated increases of areas under the curves (AUC) dependent on polymorphic P450 3A5 expression, using both 1 +[Inhibitor] / Ki (recommended in US FDA guidance), and 1 +[Inhibitor]unbound / Ki (as recommended by Japanese MHLW Notice). Voriconazole would be expected to cause approximately a three-fold higher increase in AUC in subjects with CYP3A5*3/*3 than in those with CYP3A5*1/*3, especially when estimated using the FDA guidance. We conclude that drug interactions between marketed drugs may differ substantially between individuals with genetically distinct P450 3A5 catalytic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号