首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The aims were to attest whether HepG2-GS-3A4, a cell line into which the human CYP3A4 gene was introduced, can be used for a screening of chemicals that will inhibit CYP3A4 activity. 2. The capacity of the cells for metabolizing CYP3A4 substrates in vitro was evaluated. Also determined was the effect of CYP3A4 inhibitors and non-inhibitors on nifedipine hydroxylation. Western blot, immunohistochemostry and determination of beta-nicotinamide adenine dinucleotide phosphate (NADPH)-reductase activity were performed. 3. HepG2-GS-3A4 selectively metabolized substrates of CYP3A4 (diazepam, nordiazepam, lidocaine, atorvastatin, and nifedipine) to a greater degree than control. The metabolites were easily detected in the culture medium. Values of V(max) of HepG2-GS-3A4 were about 30- to 100-fold higher than those of the control, while values of K(m) were comparable. Pre-incubation of cimetidine and ketoconazole significantly inhibited nifedipine hydroxylation, while addition of inhibitors specific to other isoforms of CYPs had no substantial effect. The HepG2-GS-3A4 expressed a higher amount of CYP3A4 protein and mRNA than control. Most NADPH reductase activity was detected in microsomal fractions. 4 In conclusion, HepG2-GS-3A4 sufficiently and selectively metabolize substrates of CYP3A4, and inhibitors of CYP3A4 reduced the metabolism. Because the metabolites were easily detected in the culture medium, this cell might be useful for the new and easy screening of new drugs for the evaluation of CYP3A4-inhibiting activity in vitro.  相似文献   

2.
Objectives We previously established HepG2‐GS‐3A4, a cell line from hepatoblastoma with overexpression of human CYP3A4 and glutamine synthetase (GS). We further reported that these cells can be applied for screening inhibitors of CYP3A4 in vitro. The purpose of this study was to determine whether our CYP3A4‐overexpresed cell could be applied to evaluate mechanisms of CYP3A4 inhibition by 6′,7′‐dihydroxybergamottin (DHB), which is one of the major furanocoumarins in grapefruit juice, by using these cells. Methods Nifedipine oxidation, activity and protein expression of NADPH‐cytochrome reductase (POR) of HepG2‐GS‐3A4 cell were measured. CO‐binding spectrumassay in microsomal fraction of the cells was also evaluated. Key findings DHB and ketoconazole, a well‐known inhibitor of CYP3A4, inhibited nifedipine oxidation in a concentration‐dependent manner. DHB at a concentration of 3.0 µm , sufficient to inhibit the nifedipine oxidation, decreased POR activity; however, ketoconazole at a concentration of 0.9 µm , sufficient to inhibit the oxidation, did not affect the activity. The expression of POR protein in HepG2‐GS‐3A4 cells was not changed by either DHB or ketoconazole. The expression of CYP3A4 mRNA and protein was not changed by the addition of DHB or ketoconazole. DHB also reduced the absorption rate at 450 nm in a CO‐binding spectrum assay without alteration of the wavelength of maximum absorption. The mean absorption value at 450 nm slightly decreased with ketoconazole; however, the difference was not significant. Conclusions We concluded that inhibition of CYP3A4 activity by DHB includes the inhibition of POR activity. HepG2‐GS‐3A4 might be a good tool to evaluate the mechanisms.  相似文献   

3.
1. Focusing on the genetic similarity of CYP3A subfamily enzymes (CYP3A4 and CYP3A5) between monkeys and humans, we have attempted to provide a single-species approach to predicting human hepatic clearance (CLh) of CYP3A4 substrates using pharmacokinetic parameters in cynomolgus monkeys following intravenous administrations.

2. Hepatic intrinsic clearance (CLint,h) of six CYP3A4 substrates (alprazolam, clonazepam, diltiazem, midazolam, nifedipine, and quinidine), covering a wide range of clearance, in monkeys correlated well with that cited in literature for humans (R = 0.90) with a simple equation of Y = 0.165X (Y: human CLint,h, X: monkey CLint,h, represented in mL/min/kg).

3. To verify the predictability of human CLint,h, monkey CLint,h of a test set of CYP3A4 substrates cited in literature (dexamethasone, nifedipine, midazolam, quinidine, tacrolimus, and verapamil) was applied to the equation and human CLint,h was calculated. The human CLint,h of all the substrates was predicted within 3-fold error (fold error: 0.35–2.77).

4. The predictability of human CLh by our method was superior to common in vivo prediction methods (allometry and liver blood flow method). These results suggest that human hepatic clearance of CYP3A4 substrates can be predicted by applying cynomolgus monkey CLint,h obtained following intravenous administrations in each laboratory to the simple equation.  相似文献   

4.
Abstract

1.?Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems.

2.?Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2?μM and 669.5?μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8?μM and 0.05?min–1, respectively.

3.?Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products.

4.?In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.  相似文献   

5.
1.?The results of homology modelling of cytochrome P4503A4 (CYP3A4), which is a human enzyme of major importance for the Phase 1 metabolism of drug substrates, from the CYP2C5 crystal structure is reported.

2.?The overall homology between the two protein sequences was generally good (46%) with 24%?of amino acid residues being identical and a 22%?similarity between matched pairs in the CYP3A4 and CYP2C5 aligned sequences, thus indicating that CYP2C5 represents a viable template for modelling CYP3A4 by homology.

3.?The CYP3A4 model appears to show consistency with the reported findings from the extensive site-directed mutagenesis studies already published.

4.?Typical CYP3A4 substrates, such as midazolam, testosterone, nifedipine and verapamil, are shown to fit the putative active site of the enzyme structure in a manner consistent with their known positions of metabolism.  相似文献   

6.
1.?The accumulation of fusidic acid (FA) after multiple doses of FA has been reported on in previous studies but the related mechanisms have not been clarified fully. In the present study, we explain the mechanisms related to the mechanism-based inactivation of CYP2D6 and CYP3A4.

2.?The irreversible inhibitory effects of FA on CYP2D6 and CYP3A4 were examined via a series of experiments, including: (a) time-, concentration- and NADPH-dependent inactivation, (b) substrate protection in enzyme inactivation and (c) partition ratio with recombinant human CYP enzymes. Metoprolol α-hydroxylation and midazolam 1′-hydroxylation were used as marker reactions for CYP2D6 and CYP3A4 activities, and HPLC-MS/MS measurement was also utilised.

3.?FA caused to the time- and concentration-dependent inactivation of CYP2D6 and CYP3A4. About 55.8% of the activity of CYP2D6 and 75.8% of the activity of CYP3A4 were suppressed after incubation with 10?μM FA for 15?min. KI and kinact were found to be 2.87?μM and 0.033?min?1, respectively, for CYP2D6, while they were 1.95?μM and 0.029?min?1, respectively, for CYP3A4. Inhibition of CYP2D6 and CYP3A4 activity was found to require the presence of NADPH. Substrates of CYP2D6 and CYP3A4 showed that the enzymes were protected against the inactivation induced by FA. The estimated partition ratio for the inactivation was 7 for CYP2D6 and 12 for CYP3A4.

4.?FA is a potent mechanism-based inhibitor of CYP2D6 and CYP3A4, which may explain the accumulation of FA in vivo.  相似文献   

7.
CYP3A4 and CYP3A5 exhibit significant overlap in substrate specificity, but can differ in catalytic activity and regioselectivity. To investigate their characteristics further, the enzymatic reactions of the two CYP3A enzymes were compared using midazolam, nifedipine, testosterone and terfenadine as substrates. Both CYP3A5 and CYP3A4 showed sigmoid and substrate inhibition patterns for testosterone 6β-hydroxylation and terfenadine t-butylhydroxylation (TFDOH), respectively. In the other reactions, the kinetic model for CYP3A5 was not similar to that for CYP3A4. An inhibition study demonstrated that the interactions between α-naphthoflavone (αNF) and CYP3A substrates were different for the two CYP3A enzymes. αNF stimulated nifedipine oxidation catalysed by CYP3A5, but did not stimulate that catalysed by CYP3A4. αNF at less than 32?µM inhibited TFDOH catalysed by CYP3A5, but did not inhibit that catalysed by CYP3A4. These results indicate that CYP3A5 has different enzymatic characteristics from CYP3A4 in some CYP3A catalysed reactions.  相似文献   

8.
Purpose. To further characterize CYP3A4-transfected Caco-2 cells with regard to morphological, transport, and metabolic properties, and to evaluate a different Caco-2 cell strain transfected with both CYP3A4 and oxidoreductase (OR). Methods. Transfected Caco-2 cells, Caco-2 TC7 cells, and wild-type Caco-2 cells grown onto Millicell were used. We determined the morphological characteristics of transfected cell monolayers using light and transmission electron microscope. We determined the transport and metabolic capabilities of the transfected cells, TC7 cells, and wild-type cells with a variety of drugs, nutrients, and marker compounds. Results. The transfected Caco-2 cells formed a tight monolayer with TEER values and mannitol transport similar to the untransfected parent cell strain (wild type). However, the transfected cells (grown onto Millicell) reached maturity approximately 33% faster than the wild-type cells. Permeabilities of propranolol, nifedipine, testosterone, linopirdine, mannitol, and cephalexin were similar in transfected and wild-type Caco-2 cells. On the other hand, the transfected cells of early passages were much more metabolically active, and metabolized standard CYP3A4 substrates (e.g., testosterone and nifedipine) as much as 100 times faster than untransfected cells. In addition, metabolism of standard substrates was inhibitable by ketoconazole and TAO. Using comparable data, the transfected cells metabolized testosterone the fastest, followed by linopirdine and nifedipine (approximate ratio: 10:6:2). The metabolites of standard substrates were generally preferably excreted to the apical membrane. Conclusions. The monolayers of newly transfected cells (CYP3A4 + OR) have a significantly increased level of CYP3A4 activities compared to untransfected cells. These cell monolayers also have desirable morphological and transport characteristics that are similar to untransfected cells.  相似文献   

9.
Purpose. CYP3A and P-gp both function to reduce the intracellular concentration of drug substrates, one by metabolism and the other by transmembrane efflux. Moreover, it has been serendipitously noted that the two proteins have many common substrates and inhibitors. In order to test this notion more fully, systematic studies were undertaken to determine the P-gp-mediated transport and inhibitory characteristics of prototypical CYP substrates. Methods. L-MDR1, LLC-PK1, and Caco-2 cells were used to evaluate established CYP substrates as potential P-gp substrates and inhibitors in vitro, and mdrla deficient mice were used to assess the in vivo relevance of P-gp-mediated transport. Results. Some (terfenadine, erythromycin and lovastatin) but not all (nifedipine and midazolam) CYP3A substrates were found to be P-gp substrates. Except for debrisoquine, none of the prototypical substrates of other common human CYP isoforms were transported by P-gp. Studies in mdrla disrupted mice confirmed that erythromycin was a P-gp substrate but the CYP3A inhibitor ketoconazole was not. In addition, CYP3A substrates and inhibitors varied widely in their ability to inhibit the P-gp-mediated transport of digoxin. Conclusions. These results indicate that the overlap in substrate specificities of CYP3A and P-gp appears to be fortuitous rather than indicative of a more fundamental relationship.  相似文献   

10.
Objectives Glycyrrhetinic acid is the main metabolite of glycyrrhizin and the main active component of Licorice root. This study was designed to investigate the in‐vitro metabolism of glycyrrhetinic acid by liver microsomes and to examine possible metabolic interactions that glycyrrhetinic acid may have with other cytochrome P450 (CYP) substrates. Methods Glycyrrhetinic acid was incubated with rat liver microsomes (RLM) and human liver microsomes (HLM). Liquid chromatography tandem mass spectrometry was used for glycyrrhetinic acid or substrates identification and quantification. Key findings The Km and Vmax values for HLM are 33.41 µm and 2.23 nmol/mg protein/min, respectively; for RLM the Km and Vmax were 24.24 µm and 6.86 nmol/mg protein/min, respectively. CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. Other human CYP isoforms have minimal or no activity toward glycyrrhetinic acid. The interactions of glycyrrhetinic acid and six CYP substrates, such as phenacetin, diclofenac, (S)‐mephenytoin, dextromethorphan, chlorzoxazone and midazolam were also investigated. The inhibitory action of glycyrrhetinic acid was observed in CYP2C9 for 4‐hydroxylation of diclofenac, CYP2C19 for 4′‐hydroxylation of (S)‐mephenytoin and CYP3A4 for 1′‐hydroxylation of midazolam with half maximal inhibitory concentration (IC50) values of 4.3‐fold, 3.8‐fold and 9.6‐fold higher than specific inhibitors in HLM, respectively. However, glycyrrhetinic acid showed relatively little inhibitory effect (IC50 > 400 µm ) on phenacetin O‐deethylation, dextromethorphan O‐demethylation and chlorzoxazone 6‐hydroxylation. Conclusions The study indicated that CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. The results suggest that glycyrrhetinic acid has the potential to interact with a wide range of xenobiotics or endogenous chemicals that are CYP2C9, CYP2C19 and CYP3A4 substrates.  相似文献   

11.
Amiodarone is a class III antiarrhythmic drug with potentially life-threatening hepatotoxicity. Recent in vitro investigations suggested that the mono-N-desethyl (MDEA) and di-N-desethyl (DDEA) metabolites may cause amiodarone's hepatotoxicity. Since cytochrome P450 (CYP) 3A4 is responsible for amiodarone N-deethylation, CYP3A4 induction may represent a risk factor. Our aim was therefore to investigate the role of CYP3A4 in amiodarone-associated hepatotoxicity. First, we showed that 50 μM amiodarone is more toxic to primary human hepatocytes after CYP induction with rifampicin. Second, we overexpressed human CYP3A4 in HepG2 cells (HepG2 cells/CYP3A4) for studying the interaction between CYP3A4 and amiodarone in more detail. We also used HepG2 wild type cells (HepG2 cells/wt) co-incubated with human CYP3A4 supersomes for amiodarone activation (HepG2 cells/CYP3A4 supersomes). Amiodarone (10–50 μM) was cytotoxic for HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes, but not for HepG2 cells/wt or less toxic for HepG2 cells/wt incubated with control supersomes without CYP3A4. Co-incubation with ketoconazole, attenuated cytotoxicity of amiodarone incubated with HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes. MDEA and DDEA were formed only in incubations containing HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes but not by HepG2 cells/wt or HepG2 cells/wt with control supersomes. Metabolized amiodarone triggered the production of reactive oxygen species, induced mitochondrial damage and cytochrome c release, and promoted apoptosis/necrosis in HepG2 cells/CYP3A4, but not HepG2 cells/wt. This study supports the hypothesis that a high CYP3A4 activity is a risk factor for amiodarone's hepatotoxicity. Since CYP3A4 inducers are used frequently and amiodarone-associated hepatotoxicity can be fatal, our observations may be clinically relevant.  相似文献   

12.
陈力  吴娟  李静 《现代药物与临床》2017,32(10):1819-1823
目的研究阿司匹林联用华法林对肝药物代谢酶CYP3A4活性的影响及其机制。方法不同质量浓度的阿司匹林、华法林及联合用药处理Hep G2细胞48 h,采用MTT法检测细胞存活率;通过荧光素酶报告基因技术检测各组对PXR转录酶活性和酶CYP3A4活性的影响;采用荧光定量PCR法和Western blotting法检测Hep G2细胞的酶CYP3A4的m RNA和蛋白表达水平。结果与对照组比较,阿司匹林组、联合用药组细胞的孕烷X受体(PXR)转录酶活性、酶CYP3A4活性均显著降低(P0.01),CYP3A4 m RNA和蛋白表达水平显著降低(P0.05、0.01),华法林组均无显著差异。结论阿司匹林联用华法林能够抑制药物代谢酶CYP3A4活性,其机制可能是通过抑制PXR受体的m RNA和蛋白表达实现的。  相似文献   

13.
  1. We established a mechanism-based inhibition cocktail-substrate assay system using human liver microsomes and drug–probe substrates that enabled simultaneous estimation of the inactivation of main cytochrome P450 (CYP) enzymes, CYP2C9, CYP2D6, and CYP3A, in drug metabolism.

  2. The inactivation kinetic parameters of typical mechanism-based inhibitors, tienilic acid, paroxetine, and erythromycin, for each enzyme in the cocktail-substrate assay were almost in agreement with the values obtained in the single-substrate assay.

  3. Using this system, we confirmed that multiple CYP inactivation caused by mechanism-based inhibitors such as isoniazid and amiodarone could be detected simultaneously.

  4. Mechanism-based inhibition potency can be estimated by the determination of the observed inactivation rate constants (kobs) at a single concentration of test compounds because the kobs of eleven CYP3A inactivators at 10?μM in the assay system nearly corresponded to kinact/KI values, an indicator of a compound’s propensity to alter the activity of a CYP in vivo (R2?=?0.97).

  5. Therefore, this cocktail-substrate assay is considered to be a powerful tool for evaluating mechanism-based inhibition at an early stage of drug development.

  相似文献   

14.
目的 考察乌头碱配伍人参皂苷Rb1、甘草苷后对HepG2药物代谢酶(Cytochrome P450,CYP450)中3A4亚型的报告基因荧光活性、mRNA转录及蛋白翻译水平的影响。方法 将pGLuc-CYP3A4报告基因质粒与pcDNA3.1-hPXR表达质粒共转染HepG2细胞,检测乌头类生物碱、人参皂苷和甘草的单体成分对CYP3A4的激活效应;并利用实时荧光定量PCR(qRT-PCR)及Western blotting技术检测人参皂苷Rb1、甘草苷与乌头碱对CYP3A4 mRNA及蛋白水平的影响。结果 报告基因模型检测结果显示,与对照组比较,乌头碱、新乌头碱、次乌头碱和乙酰乌头碱能下调CYP3A4报告基因荧光强度(P<0.05),其中乌头碱下调能力最强,人参皂苷Rb1、Rc、Re、Rg1以及甘草苷、异甘草苷、甘草素和甘草酸均能上调报告基因的荧光强度(P<0.05、0.01),其中人参皂苷Rb1和甘草苷上调能力最明显;同时乌头碱能下调CYP3A4 mRNA与蛋白表达水平(P<0.05、0.01),人参皂苷Rb1和甘草苷能逆转乌头碱下调CYP3A4的能力(P<0.05、0.01)。结论 人参皂苷Rb1、甘草苷与乌头碱配伍后可上调CYP3A4的表达,减少乌头碱在体内蓄积时间,起到减毒的作用。  相似文献   

15.
1. A structural model of CYP3A4 is reported on the basis of a novel amino acid sequence alignment between the CYP3 family and CYP102, a bacterial P450 of known crystal structure.

2. Construction of the CYP3A4 model from CYP102 is facilitated by the relatively high sequence homology between the two proteins (52% homology; 27% identity) with many conservative amino acid changes, yielding a structure of low internal energy.

3. A considerable number of specific substrates, and some specific inhibitors, are shown to occupy the putative CYP3A4 active site via interactions with the same amino acid residues in almost all cases investigated.

4. The CYP3A4 model rationalizes the known positions of metabolism for many substrates of this major human P450 such that the route of metabolism in novel development compounds can be predicted.  相似文献   

16.
1.?The individual cytochrome P450 isoforms in dextropropoxyphene N-demethylation to nordextropropoxyphene were determined and the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in cytochrome P4502D6 (CYP2D6) extensive (EM) and poor (PM) subjects were characterized.

2.?Microsomes from six CYP2D6 extensive metabolizers and one CYP2D6 poor metabolizer were used with isoform specific chemical and antibody inhibitors and expressed recombinant CYP enzymes. Groups of three CYP2D6 EM and PM subjects received a single 65-mg oral dose of dextropropoxyphene, and blood and urine were collected for 168 and 96 h, respectively.

3.?Nordextropropoxyphene formation in vitro was not different between the CYP2D6 extensive metabolizers (Km = 179 ± 74 μM, Clint = 0.41 ± 0.26 ml mg?1 h?1) and the PM subject (Km = 225 μM, Clint = 0.19 ml mg?1 h?1) and was catalysed predominantly by CYP3A4. There was no apparent difference in the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in CYP2D6 EM and PM subjects.

4.?CYP3A4 is the major CYP enzyme catalysing the major metabolic pathway of dextropropoxyphene metabolism. Hence variability in the pharmacodynamic effects of dextropropoxyphene are likely due to intersubject variability in hepatic CYP3A4 expression and/or drug–drug interactions. Reported CYP2D6 phenocopying is not due to dextropropoxyphene being a CYP2D6 substrate.  相似文献   

17.

BACKGROUND AND PURPOSE

Imatinib, a cytochrome P450 2C8 (CYP2C8) and CYP3A4 substrate, markedly increases plasma concentrations of the CYP3A4/5 substrate simvastatin and reduces hepatic CYP3A4/5 activity in humans. Because competitive inhibition of CYP3A4/5 does not explain these in vivo interactions, we investigated the reversible and time-dependent inhibitory effects of imatinib and its main metabolite N-desmethylimatinib on CYP2C8 and CYP3A4/5 in vitro.

EXPERIMENTAL APPROACH

Amodiaquine N-deethylation and midazolam 1′-hydroxylation were used as marker reactions for CYP2C8 and CYP3A4/5 activity. Direct, IC50-shift, and time-dependent inhibition were assessed with human liver microsomes.

KEY RESULTS

Inhibition of CYP3A4 activity by imatinib was pre-incubation time-, concentration- and NADPH-dependent, and the time-dependent inactivation variables KI and kinact were 14.3 µM and 0.072 min−1 respectively. In direct inhibition experiments, imatinib and N-desmethylimatinib inhibited amodiaquine N-deethylation with a Ki of 8.4 and 12.8 µM, respectively, and midazolam 1′-hydroxylation with a Ki of 23.3 and 18.1 µM respectively. The time-dependent inhibition effect of imatinib was predicted to cause up to 90% inhibition of hepatic CYP3A4 activity with clinically relevant imatinib concentrations, whereas the direct inhibition was predicted to be negligible in vivo.

CONCLUSIONS AND IMPLICATIONS

Imatinib is a potent mechanism-based inhibitor of CYP3A4 in vitro and this finding explains the imatinib–simvastatin interaction and suggests that imatinib could markedly increase plasma concentrations of other CYP3A4 substrates. Our results also suggest a possibility of autoinhibition of CYP3A4-mediated imatinib metabolism leading to a less significant role for CYP3A4 in imatinib biotransformation in vivo than previously proposed.  相似文献   

18.
  1. The aim of this analysis was to explore the influence of CYP3A4*1G and CYP3A5*3 polymorphisms on the pharmacokinetics of tylerdipine in healthy Chinese subjects.

  2. A total of 64 and 63 healthy Chinese subjects were included and identified as the genotypes of CYP3A4*1G and CYP3A5*3, respectively. Plasma samples were collected for up to 120?h post-dose to characterize the pharmacokinetic profile following single oral dose of the drug (5, 15, 20, 25 and 30?mg). Plasma levels were measured by a high-performance liquid chromatography-mass spectrometry (LC-MS/MS). The pharmacokinetic parameters were calculated using non-compartmental method. The maximum concentration (Cmax) and the area under the curve (AUC0–24?h) were all corrected by the dose given.

  3. In the wild-type group, the mean dose-corrected AUC0–24?h was 1.35-fold larger than in CYP3A4*1G carriers (p?=?.018). Among the three CYP3A5 genotypes, there showed significantly difference (p?=?.008) in the t1/2, but no significant difference was observed for the AUC0–24?h and Cmax. In subjects with the CYP3A5*3/*3 genotype, the mean t1/2 was 1.35-fold higher than in CYP3A5*1/*1 group (p?=?.007). And the t1/2 in CYP3A5*3 carriers also was 1.32-fold higher than in the wild-type group (p?=?.004).

  4. CYP3A4*1G and CYP3A5*3 polymorphisms may influence tylerdipine pharmacokinetic in healthy Chinese subjects.

  相似文献   

19.
Objective We investigated whether differences in pharmacokinetics of midazolam, a CYP3A probe, could be demonstrated between subjects with different CYP3A4 and CYP3A5 genotypes.Methods Plasma concentrations of midazolam, and of total (conjugated + unconjugated) 1OH-midazolam, and 4OH-midazolam were measured after the oral administration of 7.5 mg or of 75 µg of midazolam in 21 healthy subjects.Results CYP3A5*7, CYP3A4*1E, CYP3A4*2, CYP3A4*4, CYP3A4*5, CYP3A4*6, CYP3A4*8, CYP3A4*11, CYP3A4*12, CYP3A4*13, CYP3A4*17 and CYP3A4*18 alleles were not identified in the 21 subjects. CYP3A5*3, CYP3A5*6, CYP3A4*1B and CYP3A4*1F alleles were identified in 20, 1, 4 and 2 subjects, respectively. No statistically significant differences were observed for the AUCinf values between the different genotypes after the 75-µg or the 7.5-mg dose.Conclusion Presently, CYP3A4 and CYP3A5 genotyping methods do not sufficiently reflect the inter-individual variability of CYP3A activity.  相似文献   

20.
1. Preliminary studies have identified cytochrome P450 (CYP) 3A4 and CYP1B1 as the human CYPs inhibited by tamoxifen. To quantify the inhibitory potency of tamoxifen and its major metabolites, the metabolism of three substrates of CYP3A, midazolam, diltiazem and testosterone, and 7-ethoxyresorufin as a substrate of CYP1B1 were examined in catalytic assays carried out using human liver microsomes and cDNA-expression systems. 2. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and 3-hydroxytamoxifen reversibly inhibited midazolam 1'-hydroxylation, diltiazem N-demethylation and testosterone 6 β -hydroxylation with Ki ranging from 3 to 37 µM in human liver microsomes. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and 3-hydroxytamoxifen also reversibly inhibited the activity of cDNA-expressed CYP3A4, CYP3A5 and CYP1B1. 3. Tamoxifen and N-desmethyltamoxifen exhibited time-dependent inactivation of testosterone 6 β -hydroxylation by cDNA-expressed CYP3A4 (+cytochrome b5) yielding k inact and K i of 0.04?min -1 and 0.2 µM for tamoxifen and 0.08?min -1 and 2.6 µM for N-desmethyltamoxifen. A metabolic intermediate complex (MIC) was also formed by tamoxifen and N -desmethyltamoxifen with CYP3A4 (+ cytochrome b5) and CYP3A4 but not with CYP3A5 or CYP3A7. Pre-incubation with 4-hydroxytamoxifen and 3-hydroxytamoxifen did not result in any CYP3A inactivation or detectable MIC formation. There was no detectable time-dependent inactivation or MIC formation with tamoxifen or metabolites with CYP1B1. 4. These data indicate that tamoxifen and its three major metabolites are effective inhibitors of CYP3A in vitro and that tamoxifen and N-desmethyltamoxifen are effective mechanism-based inhibitors. Thus, caution should be exercised when tamoxifen is coadministered with other CYP3A substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号