首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paraventricular nucleus (PVN) in the hypothalamus receives inputs from the hippocampus The present study explored the influence of the hippocampus on genes mediating glucocorticoid feedback in the PVN. Accordingly, the expression of mRNAs for corticotrophin-releasing hormone (CRH), the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) in the PVN was examined by in situ hybridisation in rats subjected to transection of the fornix. Significant increases in CRH, MR and GR mRNAs were observed in the parvocellular PVN after fornix transection (FT). FT-animals subjected to adrenalectomy also showed an increase in the number of cells positive for CRH and GR mRNAs. CRH, MR and GR mRNA expression was also increased by bilateral adrenalectomy, and GR mRNA expression was further enhanced in the parvocellular PVN of the FT transected animals. However, no such changes were evident in the magnocellular PVN. These results suggest that the input from the hippocampus to the PVN, particularly to its parvocellular region, has distinct and differential inhibitory effects on the expression of MR,GR and CRH mRNAs that may operate independently from the feedback actions of corticosterone.  相似文献   

2.
3.
Maternal deprivation of neonatal rats for 24 h has immediate and persistent effects on hypothalamic-pituitary-adrenal (HPA) regulation. Immediately after deprivation corticosterone (CORT) is elevated. The primary purpose of our experiments was to determine if, by preventing this CORT elevation, the persistent effects could be reversed. In experiment 1, pups were injected with dexamethasone at the onset of the 24-h deprivation period on postnatal day 11 to suppress the rise in CORT. In experiment 2 some aspects of maternal behaviour known to suppress CORT levels were mimicked during deprivation from postnatal days 11-12. The pups were either: (1) left undisturbed; (2) stroked periodically; or (3) stroked and episodically fed. At postnatal day 20 basal and stress-induced adrenocorticotrophic hormone (ACTH) and CORT levels were measured as well as brain mineralocorticoid (MR) and glucocorticoid receptors (GR). Neonatal rats receiving dexamethasone prior to the onset of the deprivation on day 11 did not differ on day 20 from deprived pups that were exposed to elevated CORT levels. There were no detectable changes in the non-deprived pups that were treated with dexamethasone. In contrast, feeding and stroking during the period of deprivation obliterated the persistent effects both with regard to the reduced ACTH response and the decreased GR mRNA in hippocampus and hypothalamus. Stroking alone appears to have no influence. In conclusion, the persistent reduction of the ACTH response to mild stress and the decrease of GR mRNA is not mediated by deprivation-induced elevations in CORT, but appears to be reversible by reinstating specific aspects of the dam's nurturing behaviour.  相似文献   

4.
We previously reported that food deprivation significantly decreased arginine-vasopressin (AVP) mRNA levels in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus and also greatly stimulated the pituitary-adrenocortical system in rats. In this study, we deprived adrenalectomized rats with subcutaneously implanted low-dose corticosterone pellets (ADX + B) of food for 3 days to investigate the involvement of corticosteroid feedback regulation in the food deprivation-induced decrease in AVP mRNA in both the SON and the PVN. The plasma corticosterone levels in these animals were maintained at low levels constantly over 24 h. The ACTH concentration in the morning plasma was markedly increased in the food-deprived ADX + B rats as compared to the fed ADX + B rats. Food deprivation significantly decreased the corticotropin-releasing hormone (CRH) content in the median eminence and increased the CRH and AVP content in the neurointermediate lobe of the pituitary. Semiquantitative in situ hybridization histochemistry revealed that AVP mRNA levels were decreased in the SON but, inversely, increased in magnocellular as well as parvocellular subdivisions of the PVN following food deprivation. These results suggest that: (1) AVP mRNA responds differently to food deprivation between the SON and the PVN; (2) the glucocorticoid feedback can exert on AVP mRNA in the PVN but not in the SON in the food-deprived rats; and (3) food deprivation affects the neurohypophysial levels of CRH and AVP.  相似文献   

5.
Modification of the fetal environment has been shown to program hypothalamo-pituitary-adrenal (HPA) development. Altered expression of brain corticosteroid receptors is thought to be central to this process. In the fetal guinea pig, rapid development of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) occurs in concert with rapid brain growth. Since nutrient availability has been associated with programming of endocrine function, we hypothesized that 48 h of maternal nutrient deprivation during rapid brain growth modifies the fetal endocrine environment and alters expression of GR and MR in the fetal brain. Pregnant guinea pigs were deprived of food (water available ad libitum) or fed normally on gestational days 50–51, and euthanized on gd52 (term=70 days). Nutrient deprivation caused intrauterine growth restriction (IUGR), though brain growth was protected. Fetal and maternal plasma cortisol was elevated in the deprived animals (p<0.001), though plasma adrenocorticotrophin (ACTH) was only elevated in maternal blood. In deprived fetuses, plasma thyroxin levels were significantly (p<0.001) lower than control. GR mRNA levels were significantly decreased in the hypothalamic paraventricular nucleus (PVN; p<0.05) and CA1/2 (p<0.01) region of the hippocampus in female fetuses, and in the hippocampal CA1/2 in male fetuses (p<0.01). In contrast, MR mRNA levels were not changed by nutrient deprivation. In conclusion, 48 h of nutrient deprivation, activates the maternal, but not the fetal HPA axis, and decreases GR mRNA but not MR mRNA levels in the developing hypothalamus and limbic system. These developmental perturbations may have an important impact on the trajectory of corticosteroid receptor development and therefore central glucocorticoid feedback regulation.  相似文献   

6.
Corticotropin releasing hormone (CRH), a major regulator of pituitary ACTH secretion, also acts as a neurotransmitter in the brain. To determine whether CRH is involved in the regulation of hypothalamic function during stress, CRH receptor binding and CRH receptor mRNA levels were studied in the hypothalamus of rats subjected to different stress paradigms: immobilization, a physical-psychological model; water deprivation and 2% saline intake, osmotic models; and i.p. hypertonic saline injection, a combined physical-psychological and osmotic model. In agreement with the distribution of CRH receptor binding in the brain, in situ hybridization studies using 35S-labeled cRNA probes revealed low levels of CRH receptor mRNA in the anterior hypothalamic area, which were unaffected after acute or chronic exposure to any of the stress paradigms used. Under basal conditions, there was no CRH binding or CRH receptor mRNA in the supraoptic (SON) or paraventricular (PVN) nuclei. However, 2 h after the initiation of acute immobilization, CRH receptor mRNA hybridization became evident in the parvicellular division of the PVN, with levels substantially increasing from 2 to 4 h, decreasing at 8 h and disappearing by 24 h. Identical hybridization patterns of CRH receptor mRNA were found in the parvicellular PVN after repeated immobilization; levels were similar to those after 2 h single stress following immobilization at 8-hourly intervals for 24 h (3 times), and very low, but clearly detectable 24 h after 8 or 14 days daily immobilization for 2 h. On the other hand, water deprivation for 24 or 60 h and intake of 2% NaCI for 12 days induced expression of CRH receptor mRNA in the SON and magnocellular PVN, but not in the parvicellular pars of the PVN. Both parvicellular and magnocellular hypothalamic areas showed CRH receptor mRNA following i.p. hypertonic saline injection, single (4 h after) or repeated at 8-hourly intervals for 24 h (3 injections), or one injection daily for 8 or 14 days. Consistent with the expression of CRH receptor mRNA, autoradiographic studies showed binding of 125I-Tyr-oCRH in the parvicellular division of the PVN after immobilization; in the magnocellular division of the PVN after osmotic stimulation, and in the PVN and SON after i.p. hypertonic saline injection. The data show that stress-specific activation of the parvicellular and magnocellular systems is associated with CRH receptor expression, and suggest a role for CRH in the autoregulation of hypothalamic function.  相似文献   

7.
Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (ACE) participate in neurohumoral and behavioral responses to stress. To understand better the central regulation of CRH, the present study assessed the effects of ipsilateral surgical hemisection of the brainstem on expression of CRH mRNA in the PVN and the ACE. In situ hybridization was used to demonstrate PVN CRH mRNA expression in hemisected, sham-operated or intact rats before and after 3  h of immobilization (IMMO). In addition, hypothalamic-pituitary-adrenocortical (HPA) axis activity at baseline and during IMMO was assessed by measurements of plasma concentrations of ACTH and corticosterone. IMMO markedly increased CRH mRNA expression in the PVN in all experimental groups. Rats with brainstem hemisections had lower PVN CRH mRNA expression ipsilateral to the lesion and markedly blunted responses after IMMO, compared to values in sham-operated rats. In contrast, neither hemisection nor IMMO affected CRH mRNA expression in the ACE. Lesioned and SHAM-operated groups did not differ in baseline or IMMO-induced increases in plasma ACTH or corticosterone levels. The present results indicate that baseline levels and IMMO-induced increments in CRH mRNA expression in the PVN, but not in the ACE, depend on ipsilaterally ascending medullary tracts and that IMMO-induced HPA activation does not depend on these pathways.  相似文献   

8.
In situ hybridization histochemistry was used to localize and quantify the effects of acute and repeated immobilization stress on mRNA levels of tyrosine hydroxylase (TH) in catecholaminergic neurons in the locus ceruleus and substantia nigra and on mRNA levels of relevant markers of the hypothalamic-pituitary-adrenal axis, namely corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN), proopiomelanocortin in the pituitary, and mineralocorticoid receptors (MR, type I) and glucocorticoid receptors (GR, type II) in the hippocampus, PVN and pituitary. Control, acutely stressed (1 × lMO, sacrificed immediately after 2 h of immobilization), and repeatedly stressed (6 × IMO plus delay, sacrificed 24 h after 6 daily 2-h immobilizations and 6 × lMO plus challenge, sacrificed immediately after the seventh daily 2-h immobilization) male Sprague-Dawley rats were examined. TH mRNA expression was increased in the locus ceruleus in the acutely stressed and repeatedly stressed animals. The increase in TH mRNA levels was greatest in the repeatedly stressed (6 × IMO plus challenge) group. TH mRNA levels were not altered in the substantia nigra. CRH mRNA levels in the PVN were significantly increased in the three stressed groups and the increase was greatest in the 6 × IMO plus challenge group. CRH mRNA levels were increased in the central nucleus of the amygdala only after acute stress. Proopiomelanocortin mRNA levels were elevated in the anterior pituitary during acute and repeated stress, but the magnitude of the effect was largest after acute stress. The changes in the hypothalamic-pituitary-adrenal axis were accompanied by an acute stress-induced increase in MR mRNA levels in the hippocampus, MR and GR mRNA levels in the PVN and GR mRNA levels in the pituitary. MR mRNA levels continued to be elevated in the PVN in the 6 × IMO plus challenge animals. Plasma corticosterone levels were elevated in the acute and repeated stress conditions. The results show that repeated immobilization stress produces a rapid and persistent increase in mRNA expression of TH in the locus ceruleus, CRH in the PVN, and proopiomelanocortin in the anterior pituitary. The TH-containing neurons in the locus ceruleus and the CRH-containing neurons in the PVN appear to preserve the capability to respond to repeated stimulation (6 × IMO plus challenge) indicating altered feedback mechanisms under repeated stress conditions. GR and MR mRNA levels are differentially regulated in the hippocampus, PVN and pituitary by acute and repeated stress. It is of interest that the central nervous system systems which are activated during repeated stress, namely the locus ceruleus-norepinephrine system and hypothalamic-pituitary-adrenal axis, are dysregulated in melancholic depression. Further studies of the central nervous system effects of prolonged exposure to stress may help elucidate the mechanisms underlying dysregulation of the locus ceruleus-norepinephrine system and hypothalamic-pituitary-adrenal axis in depression and other stress-related psychiatric diseases.  相似文献   

9.
Corticosterone regulates both basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity in a negative-feedback fashion. However, the cellular and molecular mechanisms of this negative feedback have yet to be explicitly characterized. By comparing stress-induced c-fos and corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus (PVN), we may be able to determine whether acute glucocorticoid treatment affects the net neural excitatory input to the PVN (represented primarily by c-fos mRNA expression) or directly affects the ability of cells in the PVN to respond to that input (represented primarily by CRH hnRNA expression). In the following studies, we observed the effect of acute glucocorticoid (RU28362) treatment on subsequent HPA axis reactivity by measuring stress-induced plasma hormone concentration [corticosterone and adrenocorticotropic hormone (ACTH)] and gene expression (c-fos and CRH) in the PVN. First, we examined the dose-response relationship between systemically administered RU28362 (1-150 microg/kg, i.p) and suppression of the stress-induced corticosterone response. We then confirmed central nervous system access of the maximally suppressive dose of RU28362 (150 microg/kg) by an ex vivo radioligand binding assay. RU28362 selectively occupied the majority of glucocorticoid receptors in the hippocampus and hypothalamus while having no effect on mineralocorticoid receptors. In separate studies, RU28362 (150 microg/kg) and corticosterone (5 mg/kg) were injected i.p. 1 h before restraint stress. Compared to vehicle-treated controls, rats treated with RU28362 and corticosterone had substantially blunted stress-induced corticosterone and ACTH production, respectively. Furthermore, treatment with RU28362 significantly blunted stress-induced CRH hnRNA expression in the PVN. By contrast, neither RU28362 nor corticosterone treatment had an effect on stress-induced neuronal activation as measured by c-fos mRNA and its protein product in the PVN. This dissociation between c-fos and CRH gene expression suggests that glucocorticoid suppression of HPA activity within this time-frame is not a result of decreased excitatory neural input to the PVN, but instead depends on some direct effect of RU28362 on cells intrinsic to the HPA axis.  相似文献   

10.
11.
The effects of chronic immune challenge on cytokine expression and hypothalamic-pituitary-adrenal axis (HPA) axis responses to stress were studied in Wistar rats after administration of increasing doses of lipopolysaccharide (LPS). Repeated LPS (R-LPS) decreased body weight and increased adrenal weight and pituitary pro-opiomelanocortin mRNA levels. LPS injection increased plasma adrenocorticotropic hormone (ACTH) and corticosterone but the effect was attenuated in R-LPS. Plasma corticosterone but not ACTH responses to restraint were also reduced in R-LPS. Basal and restraint-stimulated corticotropin releasing hormone (CRH) mRNA levels were lower in R-LPS, but responses to a new LPS injection were similar to controls. In contrast, type 1 CRH receptor (CRH-R1) mRNA responses to both LPS and restraint were blunted in R-LPS. Vasopressin mRNA levels in parvocellular neurones were higher in R-LPS, and increased further after restraint but not after a new LPS injection. Glucocorticoid receptor (GR) levels in the paraventricular nucleus (PVN) increased after a single LPS or R-LPS (24 h after the last injection) but declined after a new injection in R-LPS. Interleukin (IL)-1beta and IL-6 mRNAs increased in the pituitary, spleen and circumventricular organs after single or R-LPS, suggesting that cytokines may contribute to the activation of the HPA axis though pathways from the circumventricular organs as well as paracrine effects in the pituitary. The data show that (i) adaptation of the HPA axis during repeated LPS injection involves increases in vasopressin : CRH expression ratios in parvocellular neurones; (ii) that hypothalamic CRH and vasopressin responses to acute stimulation are independent of CRH-R1 expression in the PVN; and (iii) there is a dissociation between pituitary and adrenal responses to acute stress suggesting a decrease of adrenal sensitivity to ACTH.  相似文献   

12.
Corticotropin-releasing hormone (CRH) and vasopressin (AVP) participate in the endocrine, autonomic, immunological and behavioral response to stress. CRH and AVP receptors are found in hippocampus and anterior pituitary, where mineralocorticoid (MR) and glucocorticoid (GR) receptors are abundant. We investigated the possible influence of CRH and AVP on the regulation of MR and GR in both tissues. CRH, AVP, or their antagonists were administered to adrenalectomized rats substituted with corticosterone, to avoid interference with adrenal secretion. Repeated i.c.v. oCRH injections (10 microgram) for 5 days significantly decreased MR and GR mRNA in hippocampus and MR mRNA in anterior pituitary. AVP significantly increased both corticosteroid receptor mRNAs, as repeated i.c.v. injections (5 microgram) for 5 days in hippocampus, and as continuous i.c.v. infusion (10 ng/h/5 days) in anterior pituitary. The i.c.v. infusion of 5 or 10 microgram/day of the alpha-helical CRH antagonist during intermittent restraint stress (5 days), induced a significant decrease in hippocampal MR binding. In anterior pituitary, 5 microgram/day significantly decreased MR binding, while 10 microgram/day significantly increased GR binding. Under the same conditions of stress, the infusion of 15 microgram/day of the vasopressin V1a/1b receptor antagonist [dP Tyr (Me)(2)AVP] significantly increased MR and GR binding in hippocampus and anterior pituitary; 5 microgram/day significantly decreased pituitary MR binding. Our results show that CRH and AVP regulate MR and GR in hippocampus and anterior pituitary. This reveals another important function of CRH and AVP, which could be relevant to understand stress adaptation and the pathophysiology of stress-related disorders like major depression.  相似文献   

13.
One of the striking characteristics of the developing neuroendocrine system of rats and mice is the stress hypo-responsive period (SHRP), i.e. low basal corticosterone secretion and the inability to increase corticosterone in response to mild stressors during the first 2 weeks of life. However, immediately after 24 h of deprivation from maternal care the response of the hypothalamic–pituitary–adrenal (HPA) axis to mild stressors is enhanced. This study examines in CD1 mouse pups the recovery pattern of markers of HPA axis (re)activity from maternal deprivation (once for 24 h from postnatal days (pnds) 3 to 4). As expected, deprivation induced a profound corticosterone response to novelty immediately after deprivation. In contrast, 1 day after reunion with the mother (pnd 5), this effect was abolished, lasting for at least 3 days. Basal corticosterone remained even below control levels. Corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) was suppressed for 2 days, exceeded control levels at pnds 7 and 8, and subsequently followed the gradual decline observed in controls until pnd 12. Delayed and rather short-lasting changes were found for adrenocorticotropic hormone (low at pnd 5), and glucocorticoid receptor mRNA expression (decreased in the PVN at pnd 4, and in the hippocampal CA1 area at pnd 5). Hippocampal mineralocorticoid receptor mRNA expression was unaffected. From pnds 9 to 13, both deprived and control pups gradually emerged from the SHRP in a similar temporal pattern. In conclusion, maternal deprivation at pnd 3 augments hypo-responsiveness of corticosterone secretion to mild stress for several days, but does not affect the duration of the SHRP. Whether CRH and glucocorticoid receptor changes are cause or consequence remains to be established.  相似文献   

14.
Arginine vasopressin (AVP) and corticotrophin-releasing hormone (CRH) in the parvocellular neurosecretory cells of the paraventricular nucleus (PVN) play a major role in activating the hypothalamic-pituitary-adrenal axis, which is the main neuroendocrine response against the many kinds of stress. We examined the effects of chronic inflammatory/nociceptive stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using the adjuvant arthritis (AA) model. To induce AA, the AVP-eGFP rats were intracutaneously injected heat-killed Mycobacterium butyricum (1 mg/rat) in paraffin liquid at the base of their tails. We measured AVP, oxytocin and corticosterone levels in plasma and changes in eGFP and CRH mRNA in the hypothalamus during the time course of AA development. Then, we examined eGFP fluorescence in the PVN, the supraoptic nucleus (SON), median eminence (ME) and posterior pituitary gland (PP) when AA was established. The plasma concentrations of AVP, oxytocin and corticosterone were significantly increased on days 15 and 22 in AA rats, without affecting the plasma osmolality and sodium. Although CRH mRNA levels in the PVN were significantly decreased, eGFP mRNA levels in the PVN and the SON were significantly increased on days 15 and 22 in AA rats. The eGFP fluorescence in the SON, the PVN, internal and external layers of the ME and PP was apparently increased in AA compared to control rats. These results suggest that the increases in the concentrations of ACTH and corticosterone in AA rats are induced by hypothalamic AVP, based on data from AVP-eGFP transgenic rats.  相似文献   

15.
Epidemiologic studies show that smokers with a past history of depression are more likely to relapse into depression after smoking cessation than those without a history of depression. These studies suggest the existence of a direct biological link between nicotine withdrawal and depression. To investigate the neuronal and hormonal mechanisms of the precipitation of depression during smoking cessation, we used an animal model of nicotine withdrawal and studied the function of the hypothalamic-pituitary-adrenal (HPA) axis, the abnormality of which is implicated in the pathogenesis of depression. Rats were implanted with a minipump delivering nicotine at 6.0 mg/kg/day for 12 days. The minipumps were removed in order to abruptly terminate nicotine infusion. The activity of the HPA axis was determined on day 2 of withdrawal using the stress-induced corticosterone response and the dexamethasone suppression test (DST). At the same time the expressions of glucocorticoid receptor (GR) mRNA in the hippocampus and paraventricular nucleus of hypothalamus (PVN) and corticotropin-releasing hormone (CRH) mRNA in PVN were determined by non-radioactive in situ hybridization. Nicotine withdrawal resulted in lower corticosterone levels during restraint stress, suggesting subsensitivity of the HPA axis to stress. The result of DST, however, did not show a significant difference between nicotine-withdrawal and control rats. These effects of nicotine withdrawal were not accompanied by any changes in the expressions of GR and CRH mRNA in either hippocampus or PVN. These results suggest that subsensitivity of the HPA axis to stress during nicotine withdrawal may be implicated in the precipitation of depression during smoking cessation, although GR and CRH in the HPA axis do not appear to play a significant role.  相似文献   

16.
During the dark phase of the diurnal cycle, and during recovery from restraint stress, Brown Norway (BN) rats secrete less corticosterone than Fischer 344 (F344) rats. These strains also display different levels of corticosteroid receptors in the hippocampus, and of plasma transcortin. Because corticosteroid receptors, plasma transcortin and corticosterone secretion are mutually regulated, we examined brain and pituitary mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) expression and some of the parameters modulated by these receptors (i.e. body and thymus weight, fluid intake, plasma transcortin) in BN and F344 rat strains, by comparing the effects of either hormone deprivation by long-term (21 days) adrenalectomy (ADX), or chronic elevation of corticosterone given in drinking fluid to ADX rats. In BN rats, body weight gain and fluid intake were insensitive to corticosterone deprivation, suggesting that MR-related mechanisms are constitutively active in this strain. Body weight (b.w.) gain, plasma transcortin and thymus weight were reduced to a greater extent by chronic corticosterone in BN rats than in F344 rats, possibly as a consequence of higher free, active fraction of plasma corticosterone due to lower plasma transcortin concentrations and/or a greater efficiency of GR-related mechanisms in BN rats. F344 rats displayed twofold higher brain and pituitary MR levels than BN rats, whereas tissue-and strain-specific regulations were observed for GR levels. The differences in MR levels observed between BN and F344 strains cannot completely explain the differences in corticosterone actions, suggesting that strain differences in response to ADX or corticosterone treatment result from variable receptor efficiencies.  相似文献   

17.
The acute stress response in vertebrates is a highly adaptive suite of physiological and behavioural mechanisms that promote survival in the face of deleterious stimuli from the environment. Facultative changes of physiology and behaviour are mediated through changes in circulating levels of glucocorticoids (corticosterone, cortisol) and their subsequent binding to the high‐affinity mineralocorticoid receptor (MR) or the low‐affinity glucocorticoid receptor (GR). Free‐living male wild Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii) display annual fluctuations in the stress response with marked attenuation during the transition from the pre‐parental to the parental stage. We investigated whether this rapid reduction in the stress response is mediated through changes in MR and GR mRNA expression in the brain using in situ hybridisation. MR mRNA expression was found to be significantly lower in the hippocampus as the male birds became parental. No changes were observed in GR mRNA expression in the paraventricular nucleus (PVN) or preoptic area (POA) at this time. No significant correlations were found between initial capture levels of corticosterone and GR or MR mRNA expression. No differences were found in basal levels of corticosterone between pre‐parental and parental in birds collected for in situ hybridisation. Stress response data revealed no difference at baseline but reductions in peak levels of corticosterone as birds became parental. These data suggest that changes in MR expression may be important for the regulation of the stress response or behavioural stress sensitivity with respect to promoting parental care and investment.  相似文献   

18.
The mineralocorticoid receptor (MR) has been considered as both neuroprotective and damaging to the function of the central nervous system. MR may be also involved in central regulation of blood pressure. In the present study, we compared the expression of MR and the glucocorticoid receptor (GR) in the hippocampus and hypothalamus of 16-week-old spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats. In the hippocampus, MR expression was studied by in situ hybridization (ISH), quantitative polymerase chain reaction (PCR) and immunohistochemistry, whereas GR expression was analysed using the latter two procedures. Hypertensive animals showed an increased expression of MR mRNA in the whole hippocampus according to qPCR data and also in CA3 by ISH. Immunocytochemical staining for MR of the dorsal hippocampus, however, did not reveal differences between SHR and WKY rats. SHR showed elevated hypothalamic MR mRNA by qPCR, as well as an increased number of MR immunopositive cells in the magnocellular paraventricular region, compared to WKY rats. By contrast, expression levels of GR mRNA or protein in the hippocampus and hypothalamus of SHR were similar to those of WKY rats. Furthermore, we investigated the role of MR in the hypertensive rats by i.c.v. injection of the MR antagonist RU-2831. This compound produced a significant drop in blood pressure for SHR. In conclusion, MR expression is increased in the hippocampus and hypothalamus of SHR. We suggest that pathological MR overdrive may take responsibility for up-regulation of blood pressure and the encephalopathy of hypertension.  相似文献   

19.
The long-term behavioral and neurochemical effects of 24h maternal separation were assessed in rats of both genders. Maternal deprivation was applied at the age of 9 days, whereas consequences were assessed 3 months later. Deprived rats (irrespective of gender) showed a considerable growth retardation that disappeared till adulthood. The plus-maze performance of control and deprived males did not differ under normal conditions, but deprived males showed more anxiety when the test was applied shortly after stress exposure. CRH mRNA expression in the amygdala, but not in the hypothalamus, was more intense in deprived as compared with control males. Deprived females were not affected. These data suggest that (i) the maternal deprivation induced changes are larger in males than in females, (ii) maternal deprivation induces a latent behavioral disposition towards anxiety that is precipitated by acute stressors, and (iii) the changes noticed in amygdalar CRH expression may serve as mechanisms for the behavioral changes noticed.  相似文献   

20.
In the current investigation, hypothalamic-pituitary-adrenal (HPA) axis function was examined in young and aged male Long-Evans rats that were initially assessed on a version of the Morris water maze sensitive to cognitive impairment during ageing. In behaviourally characterized rats, a 1-h restraint stress paradigm revealed that plasma corticosterone concentrations in aged cognitively impaired rats took significantly longer to return to baseline following the stressor than did those in young or aged cognitively unimpaired rats. No differences in basal or peak plasma corticosterone concentrations, however, were observed between young or aged rats, irrespective of cognitive status. Using ribonuclease protection assays and in situ hybridization, we evaluated mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA abundance in young and aged rats characterized on the spatial task. Abundance of MR mRNA was decreased as a function of age in stratum granulosum but not hippocampus proper, and the decrease in MR mRNA was largely unrelated to cognitive status. However, GR mRNA was significantly reduced in several hippocampal subfields (i.e. stratum granulosum and temporal hippocampus proper) and other related cortical structures (medial prefrontal and olfactory regions) of aged cognitively impaired rats compared to either young or aged cognitively unimpaired cohorts, and was significantly correlated with spatial learning ability among the aged rats in each of these brain regions. In agreement with previous stereological data from this ageing model, no changes were detected in neuron density in the hippocampus of the rats used in the in situ hybridization analysis. These data are the first to describe a coordinated decrease in GR mRNA in a functional brain system including hippocampus and related cortical areas that occurs in tandem with impairments of the HPA response to stress and cognitive decline in ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号