首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: To assess the effect of an ultrathin (0.2 μm) silicone-coated microporous membrane oxygenator on gas transfer and hemolytic performance, a silicone-coated capillary membrane oxygenator (Mera HP Excelung-prime, HPO-20H-C, Senko Medical Instrument Mfg. Co., Ltd. Tokyo, Japan) was compared with a noncoated polypropylene microporous membrane oxygenator of the same model and manufacturer using an in vitro test circuit. The 2 oxygenators showed little difference in the oxygen (O2) transfer rate over a wide range of blood flow rates (1 L/min to 8 L/min). The carbon dioxide (CO2) transfer rate was almost the same in both devices at low blood flow rates. but the silicone-coated oxygenator showed a decrease of more than 20% in the CO2 transfer rate at higher blood flow rates. This loss in performance could be partly attenuated by increasing the gas/blood flow ratio from 0.5 or 1.0 to 2.0. In the hemolysis study, the silicone-coated membrane oxygenator showed a smaller increase in plasma free hemoglobin than the noncoated oxygenator. The pressure drop across both oxygenators was the same. These results suggest that the ultrathin silicone-coated porous membrane oxygenator may be a useful tool for long-term extracorporeal lung support while maintaining a sufficient gas transfer rate and causing less blood component damage.  相似文献   

2.
This study compares the gas transfer capacity, the blood trauma, and the blood path resistance of the hollow-fiber membrane oxygenator Dideco D 903 with a surface area of 1.7 m2 (oxygenator 1.7) versus a prototype built on the same principles but with a surface area of 2 m2 (oxygenator 2). Six calves (mean body weight: 68.2 +/- 3.2 kg) were connected to cardiopulmonary bypass (CPB) by jugular venous and carotid arterial cannulation, with a mean flow rate of 4 l/min for 6 h. They were randomly assigned to oxygenator 1.7 (N = 3) or 2 (N = 3). After 7 days, the animals were sacrificed. A standard battery of blood samples was taken before the bypass, throughout the bypass, and 24 h, 48 h, and 7 days after the bypass. The oxygenator 2 group showed significantly better total oxygen and carbon dioxide transfer values throughout the perfusion (p < .001 for both comparison). Hemolytic parameters (lactate dehydrogenase and free plasma hemoglobin) exhibited a slight but significant increase after 5 h of bypass in the oxygenator 1.7 group. The pressure drop through the oxygenator was low in both groups (range, 43-74 mmHg). With this type of hollow-fiber membrane oxygenator, an increased surface of gas exchange from 1.7 m2 to 2 m2 improves gas transfer, with a limited impact on blood trauma and no increase of blood path resistance.  相似文献   

3.
The most common technical complication during ECMO is clot formation. A large clot inside a membrane oxygenator reduces effective membrane surface area and therefore gas transfer capabilities, and restricts blood flow through the device, resulting in an increased membrane oxygenator pressure drop (dpMO). The reasons for thrombotic events are manifold and highly patient specific. Thrombus formation inside the oxygenator during ECMO is usually unpredictable and remains an unsolved problem. Clot sizes and positions are well documented in literature for the Maquet Quadrox‐i Adult oxygenator based on CT data extracted from devices after patient treatment. Based on this data, the present study was designed to investigate the effects of large clots on purely technical parameters, for example, dpMO and gas transfer. Therefore, medical grade silicone was injected into the fiber bundle of the devices to replicate large clot positions and sizes. A total of six devices were tested in vitro with silicone clot volumes of 0, 30, 40, 50, 65, and 85 mL in accordance with ISO 7199. Gas transfer was measured by sampling blood pre and post device, as well as by sampling the exhaust gas at the devices’ outlet at blood flow rates of 0.5, 2.5, and 5.0 L/min. Pre and post device pressure was monitored to calculate the dpMO at the different blood flow rates. The dpMO was found to be a reliable parameter to indicate a large clot only in already advanced “clotting stages.” The CO2 concentration in the exhaust gas, however, was found to be sensitive to even small clot sizes and at low blood flows. Exhaust gas CO2 concentration can be monitored continuously and without any risks for the patient during ECMO therapy to provide additional information on the endurance of the oxygenator. This may help detect a clot formation and growth inside a membrane oxygenator during ECMO even if the increase in dpMO remains moderate.  相似文献   

4.
Extracorporeal membrane oxygenator compatible with centrifugal blood pumps   总被引:1,自引:0,他引:1  
Coil-type silicone membrane oxygenators can only be used with roller blood pumps due to the resistance from the high blood flow. Therefore, during extracorporeal membrane oxygenation (ECMO) treatment, the combination of a roller pump and an oxygenator with a high blood flow resistance will induce severe hemolysis, which is a serious problem. A silicone rubber, hollow fiber membrane oxygenator that has a low blood flow resistance was developed and evaluated with centrifugal pumps. During in vitro tests, sufficient gas transfer was demonstrated with a blood flow less than 3 L/min. Blood flow resistance was 18 mm Hg at 1 L/min blood flow. This oxygenator module was combined with the Gyro C1E3 (Kyocera, Japan), and veno-arterial ECMO was established on a Dexter strain calf. An ex vivo experiment was performed for 3 days with stable gas performance and low blood flow resistance. The combination of this oxygenator and centrifugal pump may be advantageous to enhance biocompatibility and have less blood trauma characteristics.  相似文献   

5.
The Terumo Capiox SX18R is a commercially available, low prime, reverse phase, hollow fiber membrane oxygenator. The oxygenator consists of a 1.8 m2 microporous polypropylene hollow fiber bundle, a 2200 cm2 tubular stainless steel heat exchanger, and an open hard shell venous reservoir with integral cardiotomy filter. The Terumo Capiox SX18R oxygenator was evaluated to determine its clinical oxygenating performance. Blood samples were drawn from 25 patients yielding 114 data points. The following parameters were recorded: blood flow, cardiac index, gas flow, gas to blood flow ratio, and oxygen fraction. Samples were assayed for hematocrit, hemoglobin, arterial and venous blood gas values, and venous oxygen saturation. The data and assay results were used to calculate arterial, venous, and membrane gas oxygen content, oxygen transfer, shunt fraction, and oxygen diffusion capacity. The Terumo Capiox SX18R oxygenator performed adequately with sufficient oxygen transfer reserve and carbon dioxide clearance under a variety of clinical conditions for the tested population.  相似文献   

6.
The new Travenol oxygenator is composed of 80 parallel blood pathways. Microporous membrane separates the blood and gas compartments. The membrane surface area is 3 m2, with a pore size of 0.01 microns. Venous blood drains directly from the patient through the oxygenator, then through an integral heat exchanger and into a reservoir, from which a single arterial pump returns the blood to the patient. The advantage of this configuration of membrane oxygenator is simplicity of setup and operation. A disadvantage that we have observed is an apparent variation in resistance to blood flow through the oxygenator during clinical perfusion. Construction changes in a later version of the oxygenator have reduced the resistance to flow through the blood pathway.This device has been used for 20 perfusions at moderate hypothermia (mean 31.8 °C) in patients up to 2.1 m2 body surface area for up to 313 minutes. Blood flow was 2.1 to 5.6 liters/min, partial arterial oxygen pressure 100 to 394 torr, partial arterial carbon dioxide pressure 19 to 57 torr (mean 37 torr) and, arterial pH 7.29 to 7.56 (mean 7.41). Oxygen transfer was as high as 230 ml/min.This integral oxygenator-heat exchanger-reservoir is operated like a bubble oxygenator, with direct venous drainage through the device and a single pump, but it uses a membrane oxygenator for gas exchange to eliminate the detrimental effects of bubbles.  相似文献   

7.
Abstract: The dominant problem in the design of an intracorporeal oxygenator is achieving gas transfer rates sufficient for physiological needs in the space available with acceptably low flow resistance to blood. Design problems still to be solved, when configurations with sufficient gas transfer effectiveness are well identified, are biological tolerance (including adequate blood compatibility), ease of manufacture, and prolonged function.  相似文献   

8.
We have developed a membrane oxygenator using a novel asymmetric polyimide hollow fiber. The hollow fibers are prepared using a dry/wet phase-inversion process. The gas transfer rates of O(2) and CO(2) through the hollow fibers are investigated in gas-gas and gas-liquid systems. The polyimide hollow fiber has an asymmetric structure characterized by the presence of macrovoids, and the outer diameter of the hollow fiber is 330 microm. It is found that the polyimide hollow-fiber oxygenator can enhance the gas transfer rates of O(2) and CO(2), and that the hollow fiber provides excellent blood compatibility in vitro and in vivo.  相似文献   

9.
Abstract: The woven tubes membrane oxygenator is a suitable configuration for the intracorporeal membrane oxygenator because of a high gas exchange performance and a compact packing of tubing. In this study the oxygen transfer performance of woven tubes was evaluated by an in vitro experiment with an external perfusion mode; the blood flow is outside of the tubes in order to reveal the feasibility of designing the intravascular oxygenator (IVOX) by the woven tubes. The oxygen transfer efficiency of the external perfusion mode is superior to that with the internal perfusion mode because of the larger convective mixing effect on the external surface of the tubes. Thus the use of the external perfusion mode results in the shorter necessary tube length for the rated condition, which enables making the oxygenator unit more compact. All of these features encourage the adoption of the woven tubes for use in the intravascular oxygenator.  相似文献   

10.
11.
An experimental silicone hollow fiber membrane oxygenator for long-term extracorporeal membrane oxygenation (ECMO) was developed in our laboratory using an ultrathin silicone hollow fiber. However, the marginal gas transfer performances and a high-pressure drop in some cases were demonstrated in the initial models. In order to improve performance the following features were incorporated in the most recent oxygenator model: increasing the fiber length and total surface area, decreasing the packing density, and modifying the flow distributor. The aim of this study was to evaluate the gas transfer performances and biocompatibility of this newly improved model with in vitro experiments. According to the established method in our laboratory, in vitro studies were performed using fresh bovine blood. Gas transfer performance tests were performed at a blood flow rate of 0.5 to 6 L/min and a V/Q ratio (V = gas flow rate, Q = blood flow rate) of 2 and 3. Hemolysis tests were performed at a blood flow rate of 1 and 5 L/min. Blood pressure drop was also measured. At a blood flow rate of 1 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 72.45 +/- 1.24 and 39.87 +/- 2.92 ml/min, respectively. At a blood flow rate of 2 L/min and V/Q = 3, the O2 and CO2 gas transfer rates were 128.83 +/- 1.09 and 47.49 +/- 5.11 ml/min. Clearly, these data were superior to those obtained with previous models. As for the pressure drop and hemolytic performance, remarkable improvements were also demonstrated. These data indicate that this newly improved oxygenator is superior to the previous model and may be clinically acceptable for long-term ECMO application.  相似文献   

12.
Two types small and efficient ECMO oxygenators were developed utilizing the most up to date hollow fiber technology. Newly silicone hollow fibers possess sufficient mechanical strength while maintaining ultra thin walls of 50 micro meter. Two types of oxygenators were made with this fiber. The fiber length for the type 1 module is 150mm with a priming volume 194 cc (surface area 1.3 m(2)) and type 2 has a fiber length of 100 mm with a 144 cc priming volume (the surface area 0.8 m(2)). The studies were performed at 0.5, 1.0 and 2.0 L/min of blood flow and these oxygenators demonstrated. O(2) gas transfer rate of 69+/-4 ml/min/L for type 1 and 68+/-6 ml/min/L for type 2. The CO(2) gas transfer rate was 25+/-2 ml/min/L for type 1 and 32+/-2 ml/min/L for type 2. These results demonstrate type 2 oxygenator has similar gas exchange capabilities to those of Kolobows' oxygenator which has about 2.0 times larger surface area. Additionally, comparative hemolysis tests were preformed with this new oxygenator and the Kolbow. The NIH value was 0.006 (g/100 L) for the type 1 oxygenator and 0.01 (g/100 L) for the Kolbow oxygenator. These results suggested that this ECMO oxygenator had sufficient gas exchange performance in spite of being smaller and induced minimal blood damage.  相似文献   

13.
Based on the results of in vitro studies of many experimental models, a silicone hollow fiber membrane oxygenator for pediatric cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber with a 300 microm outer diameter and a wall thickness of 50 microm. In this study, we evaluated the gas transfer performance of this oxygenator simulating pediatric CPB and ECMO conditions. Two ex vivo studies in a pediatric CPB condition for 6 h and 5 ex vivo studies in an ECMO condition for 1 week were performed with venoarterial bypass using healthy calves. At a blood flow rate of 2 L/min and V/Q = 4 (V = gas flow rate, Q = blood flow rate) (pediatric CPB condition), the O2 and CO2 gas transfer rates were maintained at 97.44 +/- 8.88 (mean +/- SD) and 43.59 +/- 15.75 ml/min/m2, respectively. At a blood flow rate of 1 L/min and V/Q = 4 (ECMO condition), the O2 and CO2 gas transfer rates were maintained at 56.15 +/- 8.49 and 42.47 +/- 9.22 ml/min/m2, respectively. These data suggest that this preclinical silicone membrane hollow fiber oxygenator may be acceptable for both pediatric CPB and long-term ECMO use.  相似文献   

14.
This study evaluates the usefulness of the analysis of gas sampled from the exhaust port of a membrane oxygenator in the estimation of anaesthetic tension in arterial blood. Sixty-seven arterial blood samples were drawn from patients undergoing hypothermic cardiopulmonary bypass with anaesthesia maintained by either isoflurane or desflurane. Anaesthetic tensions in the oxygenator exhaust gas were measured using an infrared analyser and in arterial blood using a two-stage headspace technique with a gas chromatograph. Both measurement systems were calibrated with the same standard gas mixtures. There was no difference in anaesthetic tension measured in arterial blood and gas leaving the oxygenator exhaust (isoflurane: n = 29, range: 0.3-0.8%, 95% limits of agreement: -0.08% to 0.09%; desflurane: n = 38, range: 1.5-5.4%; 95% limits of agreement -0.65% to 0.58%). We conclude that anaesthetic tensions in arterial blood can be accurately monitored by analysis of the gas emerging from the exhaust port of a membrane oxygenator.  相似文献   

15.
Gibbon's rotating cylinder could not be enlarged to oxygenate an animal larger than a cat. The spinning disc oxygenator, introduced in 1947, had the capacity to perfuse a dog and the potential to increase oxygenation capacity by addition of more discs. When centers began to do three to four open-heart operations per day, the disposable bubble oxygenator was more practical. Bubble size was optimized to decrease the flow of oxygen relative to the blood flow and reduce trauma to blood. The bubble oxygenator is the type most commonly used today. Use of deep hypothermia with whole blood at an esophageal temperature of 10 degrees C was initially complicated by brain damage due to aggregation of white blood corpuscles and platelets. The introduction of hemodilution permitted safe utilization of hypothermic perfusion. Perfusion of infants should not be carried out at hematocrit below 25 ml/100 m. Early membrane oxygenators used nonporous silicone, or modified silicone membranes. High priming volumes, high pressure drop and marginal gas transfer efficiency characterized these devices. Recent advances in membrane technology have spawned a new generation of membrane oxygenators utilizing microporous polypropylene. In these new oxygenators, with either microporous hollow fibers or sheet membrane, the gas transfer characteristics are far superior to those of types produced in the past. The hollow-fiber devices typically have larger surface areas and higher pressure drop than in the new state-of-the-art flat plate models. An evaluation of one of these new-generation membrane oxygenators gave optimal oxygen and carbon dioxide exchange at a gas flow of 1 l/min of 60% oxygen in air at 30 degrees C and 2 l/min of 80% oxygen in air at normal temperature and rewarming for an adult. Today, after almost 40 years of oxygenator development, these new membrane device can offer better platelet preservation and reduced blood trauma as compared with types developed in the past. The new membrane oxygenators are fast becoming the preferred choice for use in infants and in protracted perfusion.  相似文献   

16.
During operation of the microporous membrane oxygenators at some conditions, gas microbubbles penetrate into the blood. This effect, so-called spontaneous bubbling, takes place even when the blood pressure is higher than the gas pressure. This phenomenon was confirmed experimentally both in a model cell with hydrophobic microporous hollow fibers being used in the oxygenators and in in vitro tests on the actual microporous hollow fiber oxygenator. We proposed a mechanism of spontaneous gas bubbling into liquid that contains dissolved gases. Because of a partial pressure gradient, the dissolved gases and water vapors are transported from blood into the gas pore. This causes Stefans gas flow directed from the liquid-gas interface. Because of the high hydraulic resistance of the micropores, gas pressure at the meniscus increases up to gas bubbling. A mishandled priming of the oxygenator as well as the blood pressure pulsation caused by the roller pump operation contribute to spontaneous gas bubbling in the microporous oxygenators. The flow and pressure in the hydrophobic pores were calculated for various gases.  相似文献   

17.
BACKGROUND: Volatile anesthetics are frequently used during cardiopulmonary bypass (CPB) to maintain anesthesia. Uptake and elimination of the volatile agent are dependent on the composition of the oxygenator. This study was designed to evaluate whether the in vivo uptake and elimination of isoflurane differs between microporous membrane oxygenators containing a conventional polypropylene (PPL) membrane and oxygenators with a new poly-(4-methyl-1-pentene) (PMP) membrane measuring isoflurane concentrations in blood. METHODS: Twenty-four patients undergoing elective coronary bypass surgery with the aid of CPB were randomly allocated to one of four groups, using either one of two different PPL-membrane oxygenators for CPB or one of two different PMP-membrane oxygenators. During hypothermic CPB, 1% isoflurane in an oxygen-air mixture was added to the oxygenator gas inflow line (gas flow, 3 l/min) for 15 min. Isoflurane concentration was measured in blood and in exhaust gas at the outflow port of the oxygenator. Between-group comparisons were performed for the area under the curve (AUC) during uptake and elimination of the isoflurane blood concentrations, the maximum isoflurane blood concentration (C(max)), and the exhausted isoflurane concentration (F(E)). RESULTS: The uptake of isoflurane, expressed as AUC of isoflurane blood concentration and a function of F(E), was significantly reduced in PMP oxygenators compared to PPL oxygenators (P < 0.01). C(max) was between 8.5 and 13 times lower in the PMP-membrane oxygenator groups compared to the conventional PPL-membrane oxygenator groups (P < 0.01). CONCLUSIONS: The uptake of isoflurane into blood via PMP oxygenators during CPB is severely limited. This should be taken into consideration in cases using such devices.  相似文献   

18.
Background: Volatile anesthetics are frequently used during cardiopulmonary bypass (CPB) to maintain anesthesia. Uptake and elimination of the volatile agent are dependent on the composition of the oxygenator. This study was designed to evaluate whether the in vivo uptake and elimination of isoflurane differs between microporous membrane oxygenators containing a conventional polypropylene (PPL) membrane and oxygenators with a new poly-(4-methyl-1-pentene) (PMP) membrane measuring isoflurane concentrations in blood.

Methods: Twenty-four patients undergoing elective coronary bypass surgery with the aid of CPB were randomly allocated to one of four groups, using either one of two different PPL-membrane oxygenators for CPB or one of two different PMP-membrane oxygenators. During hypothermic CPB, 1% isoflurane in an oxygen-air mixture was added to the oxygenator gas inflow line (gas flow, 3 l/min) for 15 min. Isoflurane concentration was measured in blood and in exhaust gas at the outflow port of the oxygenator. Between-group comparisons were performed for the area under the curve (AUC) during uptake and elimination of the isoflurane blood concentrations, the maximum isoflurane blood concentration (Cmax), and the exhausted isoflurane concentration (FE).

Results: The uptake of isoflurane, expressed as AUC of isoflurane blood concentration and a function of FE, was significantly reduced in PMP oxygenators compared to PPL oxygenators (P < 0.01). Cmax was between 8.5 and 13 times lower in the PMP-membrane oxygenator groups compared to the conventional PPL-membrane oxygenator groups (P < 0.01).  相似文献   


19.
Abstract: A new hollow-fiber oxygenator has become available for clinical cardiopulmonary bypass. It is available in three sizes for adult use, ranging from 3.3 to 5.4 m2. The surface area is dependent on the number of fibers, with blood and oxygen effecting very efficient gas transfer throughout the length of each of the fibers. The clinical experience now covers 100 patients, using the 3.3-m2 device in 16 patients, the 4.3-m2 device in 12 patients, and the 5.4-m2 device in 72 patients. In all cases, the oxygenator has proven highly efficient in gas transfer. The addition of an oxygen-blending unit was found to be necessary to prevent overoxygenation. It is a safe and effective device to use in routine clinical practice.  相似文献   

20.
Background. A membrane oxygenator consisting of a microporous polypropylene hollow fiber with a 0.2-μm ultrathin silicone layer (cyclosiloxane) was developed. Animal experimental and preliminary clinical studies evaluated its reliability in bypass procedures.

Methods. Five 24-hour venoarterial bypass periods were conducted on dogs using the oxygenator (group A). In 5 controls, bypass periods were conducted using the same oxygenator without silicone coating (group B). As a preliminary clinical study, 14 patients underwent cardiopulmonary bypass with the silicone-coated oxygenator.

Results. Eight to 16 hours (mean, 12.2 hours) after initiation of bypass, plasma leakage occurred in all group B animals, but none in group A. The O2 and CO2 transfer rates after 24 hours in group A were significantly higher than at termination of bypass in group B (p < 0.005 and p < 0.03, respectively). Scanning electron microscopy of silicone-coated fibers after 24 hours of bypass revealed no damage to the silicone coating of the polypropylene hollow fibers. In the clinical study, the oxygenator showed good gas transfer, acceptable pressure loss, low hemolysis, and good durability.

Conclusions. This oxygenator is more durable and offers greater gas transfer capabilities than the previous generation of oxygenators.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号