首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium channels are involved in the mechanisms of anesthetic action, the authors examined the effects of general anesthetics in mutant mice lacking alpha1G T-type calcium channels. METHODS: The hypnotic effects of volatile and intravenous anesthetics administered to mutant and C57BL/6 control mice were evaluated using the behavioral endpoint of loss of righting reflex. To investigate the immobilizing effects of volatile anesthetics in mice, the minimum alveolar concentration (MAC) values were determined using the tail-clamp method. RESULTS: The 50% effective concentration for loss of righting reflex and MAC values for volatile anesthetics were not altered after alpha1G channel knockout. However, mutant mice required significantly more time to develop anesthesia/hypnosis after exposure to isoflurane, halothane, and sevoflurane and after intraperitoneal administration of pentobarbital. CONCLUSIONS: The 50% effective concentration for loss of righting reflex and MAC values for the volatile anesthetics were not altered after alpha1G calcium channel knockout, indicating that normal functioning of alpha1G calcium channels is not required for the maintenance of anesthetic hypnosis and immobility. However, the timely induction of anesthesia/hypnosis by volatile anesthetic agents and some intravenous anesthetic agents may require the normal functioning of these channel subunits.  相似文献   

2.
BACKGROUND: Barbiturates enhance gamma-aminobutyric acid type A (GABA(A)) receptor function and also inhibit the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates. METHODS: GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABA(A) receptors. RESULTS: Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 microM), thiopental (IC50, 153 vs. 34 microM), and phenobarbital (IC50, 930 vs. 205 microM) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABA(A) receptors by pentobarbital. CONCLUSIONS: The GluR2 null mutant mice were more sensitive to pentobarbital anesthesia despite a reduced sensitivity of GluR2-deficient AMPA receptors to barbiturate blockade. Our results indicate that the inhibition of AMPA receptors does not correlate with the anesthetic effects of barbiturates in this animal model. We postulate that the increase in the sensitivity to anesthetics results from a global suppression of excitatory neurotransmission in GluR2-deficient mice.  相似文献   

3.
Minimum alveolar anesthetic concentrations (MAC) values of volatile anesthetics in cardiovascular diseases remain unknown. We determined MAC values of volatile anesthetics in spontaneously breathing normal and cardiomyopathic hamsters exposed to increasing (0.1%-0.3% steps) concentrations of halothane, isoflurane, sevoflurane, or desflurane (n = 30 in each group) using the tail-clamp technique. MAC values and their 95% confidence interval were calculated using logistic regression. In normal hamsters, inspired MAC values were: halothane 1.15% (1.10%-1.20%), isoflurane 1.62% (1.54%-1.69%), sevoflurane 2.31% (2.22%-2.40%), and desflurane 7.48% (7.30%-7.67%). In cardiomyopathic hamsters, they were: halothane 0.89% (0.83%-0.95%), isoflurane 1.39% (1.30%-1.47%), sevoflurane 2.00% (1.85%-2.15%), and desflurane 6.97% (6.77%-7.17%). Thus, MAC values of halothane, isoflurane, sevoflurane, and desflurane were reduced by 23% (P < 0.05), 14% (P < 0.05), 13% (P < 0.05), and 7% (P < 0.05), respectively in cardiomyopathic hamsters. IMPLICATIONS: Minimum alveolar anesthetic concentrations of volatile anesthetics were significantly lower in cardiomyopathic hamsters than in normal hamsters.  相似文献   

4.
Studies using molecular modeling, genetic engineering, neurophysiology/pharmacology, and whole animals have advanced our understanding of where and how inhaled anesthetics act to produce immobility (minimum alveolar anesthetic concentration; MAC) by actions on the spinal cord. Numerous ligand- and voltage-gated channels might plausibly mediate MAC, and specific amino acid sites in certain receptors present likely candidates for mediation. However, in vivo studies to date suggest that several channels or receptors may not be mediators (e.g., gamma-aminobutyric acid A, acetylcholine, potassium, 5-hydroxytryptamine-3, opioids, and alpha(2)-adrenergic), whereas other receptors/channels (e.g., glycine, N-methyl-D-aspartate, and sodium) remain credible candidates.  相似文献   

5.
Several previous studies concluded that opioid receptors do not mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation because administration of naloxone (a nonspecific opioid receptor antagonist) does not increase the minimum alveolar anesthetic concentration (MAC) of inhaled anesthetic that produces immobility in 50% of subjects given a noxious stimulation. In contrast, a recent study found that 0.1 mg/kg naloxone given intraperitoneally increased sevoflurane MAC in mice by 18% (P < 0.01). We repeated the recent study with sevoflurane in the same strain of mice, administering nothing (control), 0.1 mg/kg, and 1.0 mg/kg of naloxone. Our study differed in that we also tested a parallel group given saline rather than naloxone. We were blinded to drug administration. MAC decreased 4.8% +/- 11.0% (mean+/- sd) and 2.4% +/- 12.5% with the first and second administrations of saline. Similarly, MAC decreased 4.7% +/- 7.1% and 5.5% +/- 10.0% with the administration of 0.1 mg/kg and 1.0 mg/kg of naloxone. We do not find that naloxone increases MAC. Opioid receptors do not underlie a portion of the capacity of inhaled anesthetics to produce immobility.  相似文献   

6.
PURPOSE: gamma-Aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptors are important targets for anesthetic action at the in vitro cellular level. Gabaculine is a GABA-trans-aminase inhibitor that increases endogenous GABA in the brain, and enhances GABA activity. We have recently shown that unconsciousness is associated with the enhanced GABA activity due to gabaculine, but that immobility is not. MK-801 is a selective NMDA channel blocker. In this study, we examined behaviourally whether gabaculine in combination with MK-801 could produce these components of the general anesthetic state. We further compared the effect of MK-801 with ketamine, another NMDA channel blocker. METHODS: All drugs were administered intraperitoneally to adult male ddY mice. To assess the general anesthetic components, two endpoints were used. One was loss of the righting reflex (LORR; as a measure of unconsciousness) and the other was loss of movement in response to tail-clamp stimulation (as a measure of immobility). RESULTS: Large doses of MK-801 alone (10-50 mg.kg(-1)) induced neither LORR nor immobility in response to noxious stimulation. However, even a small dose (0.2 mgxkg(-1)) significantly enhanced gabaculine-induced LORR (P < 0.05), although gabaculine in combination with MK-801 (0.2-10 mgxkg(-1)) produced no immobility. However, gabaculine plus a subanesthetic dose of ketamine (30 mgxkg(-1)), which acts on NMDA, opioid and nicotinic acetylcholine receptors and neuronal Na(+) channels, suppressed the pain response, but did not achieve a full effect. Ketamine alone dose-dependently produced both LORR and immobility. CONCLUSION: These findings suggest that gabaculine-induced LORR is modulated by blocking NMDA receptors, but that immobility is not mediated through GABA or NMDA receptors.  相似文献   

7.
BACKGROUND: Enhancement of the function of gamma-aminobutyric acid type A receptors containing the alpha1 subunit may underlie a portion of inhaled anesthetic action. To test this, the authors created gene knock-in mice harboring mutations that render the receptors insensitive to isoflurane while preserving sensitivity to halothane. METHODS: The authors recorded miniature inhibitory synaptic currents in hippocampal neurons from hippocampal slices from knock-in and wild-type mice. They also determined the minimum alveolar concentration (MAC), and the concentration at which 50% of animals lost their righting reflexes and which suppressed pavlovian fear conditioning to tone and context in both genotypes. RESULTS: Miniature inhibitory postsynaptic currents decayed more rapidly in interneurons and CA1 pyramidal cells from the knock-in mice compared with wild-type animals. Isoflurane (0.5-1 MAC) prolonged the decay phase of miniature inhibitory postsynaptic currents in neurons of the wild-type mice, but this effect was significantly reduced in neurons from knock-in mice. Halothane (1 MAC) slowed the decay of miniature inhibitory postsynaptic current in both genotypes. The homozygous knock-in mice were more resistant than wild-type controls to loss of righting reflexes induced by isoflurane and enflurane, but not to halothane. The MAC for isoflurane, desflurane, and halothane did not differ between knock-in and wild-type mice. The knock-in mice and wild-type mice did not differ in their sensitivity to isoflurane for fear conditioning. CONCLUSIONS: gamma-Aminobutyric acid type A receptors containing the alpha1 subunit participate in the inhibition of the righting reflexes by isoflurane and enflurane. They are not, however, involved in the amnestic effect of isoflurane or immobilizing actions of inhaled agents.  相似文献   

8.
Gerstin KM  Gong DH  Abdallah M  Winegar BD  Eger EI  Gray AT 《Anesthesia and analgesia》2003,96(5):1345-9, table of contents
Several reports suggest that clinically used concentrations of inhaled anesthetics can increase conductance through noninactivating potassium channels and that the resulting hyperpolarization might decrease excitability, thereby leading to the anesthetic state. We speculated that animals deficient in such potassium channels might be resistant to the effects of anesthetics. Thus, in the present study, we measured the minimum alveolar anesthetic concentration (MAC) needed to prevent movement in response to a noxious stimulus in 50% of adult mice lacking functional KCNK5 potassium channel subunits and compared these results with those for heterozygous and wild-type mice. We also measured MAC in weaver mice that had a mutation in the potassium channel Kir3.2 and compared the resulting values with those for wild-type mice. MAC values for desflurane, halothane, and isoflurane for KCNK5-deficient mice and isoflurane MAC values for weaver mice did not differ from MAC values found in control mice. Our results do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility. In addition, we found that the weaver mice did not differ from control mice in their susceptibility to convulsions from the nonimmobilizers flurothyl [di-(2,2,2,-trifluoroethyl)ether] or 2N (1,2-dichlorohexafluorocyclobutane). IMPLICATIONS: Mice harboring mutations in either of two different potassium channels have minimum alveolar anesthetic concentration (MAC) values that do not differ from MAC values found in control mice. Such findings do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation.  相似文献   

9.
TWIK-related acid-sensitive K(+)-1 (TASK-1 [KCNK3]) and TASK-3 (KCNK9) are tandem pore (K(2P)) potassium (K) channel subunits expressed in carotid bodies and the brainstem. Acidic pH values and hypoxia inhibit TASK-1 and TASK-3 channel function, and halothane enhances this function. These channels have putative roles in ventilatory regulation and volatile anesthetic mechanisms. Doxapram stimulates ventilation through an effect on carotid bodies, and we hypothesized that stimulation might result from inhibition of TASK-1 or TASK-3 K channel function. To address this, we expressed TASK-1, TASK-3, TASK-1/TASK-3 heterodimeric, and TASK-1/TASK-3 chimeric K channels in Xenopus oocytes and studied the effects of doxapram on their function. Doxapram inhibited TASK-1 (half-maximal effective concentration [EC50], 410 nM), TASK-3 (EC50, 37 microM), and TASK-1/TASK-3 heterodimeric channel function (EC50, 9 microM). Chimera studies suggested that the carboxy terminus of TASK-1 is important for doxapram inhibition. Other K2P channels required significantly larger concentrations for inhibition. To test the role of TASK-1 and TASK-3 in halothane-induced immobility, the minimum alveolar anesthetic concentration for halothane was determined and found unchanged in rats receiving doxapram by IV infusion. Our data indicate that TASK-1 and TASK-3 do not play a role in mediating the immobility produced by halothane, although they are plausible molecular targets for the ventilatory effects of doxapram.  相似文献   

10.
11.
BACKGROUND AND OBJECTIVE: The aim was to determine the effect of acute and chronic administration of 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, on the righting reflex ED50 and the minimum alveolar concentration during sevoflurane anaesthesia in rats. METHODS: 7-Nitroindazole was acutely (0, 50 and 100 mg kg(-1)) and chronically (0 and 150 mg kg(-1) day(-1), 4 days) administered to rats. After the preparation, the minimum alveolar concentration and the righting reflex ED50 were measured. The concentration of cGMP in the brain, cerebellum and spinal cord was also measured. RESULTS: Acute administration reduced the minimum alveolar concentration (50 mg kg(-1), 58.8% (95% CI: 50.3-67.3%) of the baseline value, P < 0.01; 100 mg kg(-1), 55.8 (46.9-64.7), P < 0.01) and the righting reflex ED50 (50 mg kg(-1), 27.2 (17.2-37.2), P < 0.01; 100 mg kg(-1), 14.3 (6.6-22.0), P < 0.01). Chronic administration did not reduce the minimum alveolar concentration; however, it reduced the righting reflex ED50 (65.3 (52.9-77.7), P < 0.01). Overall, the reduction in minimum alveolar concentration in the acute and chronic protocol did not correlate with that of the righting reflex ED50. 7-Nitroindazole (100 mg kg(-1), acute) reduced the cGMP concentration within the cerebellum by 55.4%; however, it did not decrease concentrations in the brain or spinal cord. CONCLUSIONS: Different mechanisms are responsible for the observed alterations to the minimum alveolar concentration and the righting reflex ED50 following treatment with 7-nitroindazole. The nitric oxide-cGMP pathway might play a less important role in the determination of minimum alveolar concentration than the righting reflex ED50.  相似文献   

12.
The Meyer-Overton hypothesis predicts that anesthetic potency correlates inversely with lipophilicity; e.g., MAC times the olive oil/gas partition coefficient equals a constant of approximately 1.82 +/- 0.56 atm (mean +/- sd) for conventional inhaled anesthetics. MAC is the minimum alveolar concentration of anesthetic required to eliminate movement in response to a noxious stimulus in 50% of subjects. In contrast to conventional inhaled anesthetics, MAC times the olive oil/gas partition coefficient for normal alcohols from methanol through octanol equals a constant one tenth as large as that for conventional inhaled anesthetics. The alcohol (C-OH) group causes a great affinity of alcohols to water, and the C-OH may tether the alcohol at the hydrophobic-hydrophilic interface where anesthetics are thought to act. We hypothesized that the position of the C-OH group determined potency, perhaps by governing the maximum extent to which the acyl portion of the molecule might extend into a hydrophobic phase. Using the same reasoning, we added studies of ketones with similar numbers of carbon atoms between the C=O group and the terminal methyl group. The results for both alcohols and ketones showed the predicted correlation, but the correlation was no better than that with carbon chain length regardless of the placement of the oxygen. The oil/gas partition coefficient predicted potency as well as, or better than, either chain length or oxygen placement. Hydrophilicity, as indicated by the saline/gas partition coefficient, also seemed to influence potency.  相似文献   

13.
Computer simulations for the technique of estimating minimum alveolar anesthetic concentration (MAC) in patients (quantal design) suggest that incremental concentration changes and the number of crossovers affect MAC. We hypothesized that these variables may also apply to estimating MAC in rats (bracketing design). This study tested that hypothesis and also examined whether these variables might mask differences in MAC between groups in which MAC might be expected to differ (pregnant [P] versus nonpregnant [NP]). There were 2 cohorts (n = 27 and n = 30 rats). Each cohort included NP females, females in early P, and females in late P. MAC was tested by using an incremental concentration change of 0.20% and one within-subject crossover in the first cohort and by using an increment size of 0.10% and four crossovers in the second cohort. MAC was statistically significantly increased in the three groups in the second cohort (NP, 1.16 +/- 0.12; early P, 1.14 +/- 0.10; late P, 1.07 +/- 0.10; mean +/- sd) compared with values in the three comparable groups in the first cohort (NP, 0.95 +/- 0.06; early P, 1.01 +/- 0.09; late P, 0.93 +/- 0.13). Values did not differ among groups within each cohort. Post hoc simulations indicated that up to 36% of the difference between cohorts was due to increment size, with the balance due to experimental factors. Our findings confirmed the hypothesis that increment size affects estimates of MAC when a bracketing design is used.  相似文献   

14.
Background: The [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor mediates fast excitatory neurotransmission in the central nervous system. Many general anesthetics inhibit AMPA receptors in vitro; however, it is not certain if this inhibition contributes to the behavioral properties of these drugs. AMPA receptors lacking the GluR2 subunit are resistant to blockade by barbiturates in vitro. Paradoxically, GluR2 null mutant (-/-) mice are more sensitive to barbiturate-induced loss of the righting reflex (LORR) compared with wild-type (+/+) littermates. To determine if interactions between anesthetics and AMPA receptors account for the increased sensitivity of (-/-) mice, the effects of volatile anesthetics that do not directly inhibit AMPA receptors were examined.

Methods: Isoflurane, halothane, desflurane, or sevoflurane were administered to (-/-) and (+/+) littermate controls. Anesthetic requirements for LORR, movement to tail clamp (minimum alveolar concentration [MAC]), and hind-paw withdrawal latency (HPWL) were determined. Electrophysiologic methods examined the inhibition of AMPA receptors by isoflurane and halothane.

Results: Anesthetic requirements for LORR and HPWL were decreased, whereas MAC values were unchanged in (-/-) mice. Isoflurane and halothane caused minimal inhibition of AMPA receptors at clinically relevant concentrations.  相似文献   


15.
16.
We investigated the cerebral hemodynamic effects of 1 minimum alveolar anesthetic concentration (MAC) sevoflurane anesthesia in nine male patients scheduled for elective coronary bypass grafting. For measurement of cerebral blood flow (CBF), a modified Kety-Schmidt saturation technique was used with argon as an inert tracer gas. Measurements of CBF were performed before the induction of anesthesia and 30 min after induction under normocapnic, hypocapnic, and hypercapnic conditions. Compared with the awake state under normocapnic conditions, sevoflurane reduced the mean cerebral metabolic rate of oxygen by 47% and the mean cerebral metabolic rate of glucose by 39%. Concomitantly, CBF was reduced by 38%, although mean arterial pressure was kept constant. Significant changes in jugular venous oxygen saturation were absent. Hypocapnia and hypercapnia caused a 51% decrease and a 58% increase in CBF, respectively. These changes in CBF caused by variation of Paco2 indicate that cerebrovascular CO2 reactivity persists during 1 MAC sevoflurane anesthesia. Implications: We used a modified Kety-Schmidt saturation technique to investigate the effects of 1 minimum alveolar anesthetic concentration (MAC) sevoflurane on cerebral blood flow, metabolism, and CO2 reactivity in cardiac patients. We found that the global cerebral blood flow and global cerebral metabolic rate of oxygen remained coupled and that cerebrovascular CO2 reactivity is not impaired by the administration of 1 MAC sevoflurane.  相似文献   

17.
Background: Barbiturates enhance [gamma]-aminobutyric acid type A (GABAA) receptor function and also inhibit the [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates.

Methods: GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABAA receptors.

Results: Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 [mu]M), thiopental (IC50, 153 vs. 34 [mu]M), and phenobarbital (IC50, 930 vs. 205 [mu]M) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABAA receptors by pentobarbital.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号