首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impairment of cognitive performance by galanin administration in rodents indicates a possible modulating effect of this neuropeptide on long-term potentiation (LTP) induction in the hippocampal formation. Galnon is a non-peptide, systemically active galanin receptor agonist which has been tested in feeding, seizure and forced swim task in in vivo rodent experimental models. Similarly to galanin (1-29) (i.c.v.), galnon (i.p.) has exhibited anticonvulsant effects in rats. We have investigated the effect of galnon on the synaptic transmission and plasticity in hippocampal dentate gyrus (DG) of C57Bl/6 mice and compared the galnon effects to the effect of galanin (1-29) and galmic, a non-peptide galanin receptor agonist. Similarly to galanin (1-29) and galmic, superfusion of galnon did not alter the input-output responses in DG. Administration of galnon (1 microM) significantly attenuated the LTP induction by 85.5 +/- 1% by 51 min after high frequency trains stimulation. This result was very similar to the effect of galanin (1-29) and galmic, which caused an 80 +/- 1.5% and 94 +/- 2% reduction in the level of field potentiation, respectively. The PPF responses, however, were not altered due to galnon superfusion which is in contrast to the effect of galanin (1-29) or galmic. In summary, these data indicate that the systemically active, non-peptide galanin receptor agonist, galnon can exert similar effects to galanin (1-29) in attenuation of DG LTP in mice.  相似文献   

2.
Galnon is a low-molecular weight galanin receptor ligand, with affinity towards the three galanin receptors in the micromolar range. Galnon is of interest as a drug candidate due to its stability and ability to pass the blood-brain barrier. Like galanin, galnon has also been shown to affect various physiological functions; however, occasionally galanin and galnon act in opposing ways. Since its introduction in 2002, galnon has been characterized to inhibit seizures, decrease feeding behaviour, diminish physical signs of opiate withdrawal and to alleviate heat-hyperalgesic response to partial sciatic nerve injury. In this review, we will summarize what is known about galnon to date.  相似文献   

3.
Galnon was first reported as a low molecular weight non-peptide agonist at galanin receptors [Saar et al. (2002) Proc. Natl. Acad. Sci. USA 99, 7136-7141]. Following its systemic administration, this synthetic ligand affected a range of important physiological processes including appetite, seizures and pain. Physiological activity of galnon could not be explained solely by the activation of the three known galanin receptors, GalR1, GalR2 and GalR3. Consequently, it was possible that galnon generates its manifold effects by interacting with other signaling pathway components, in addition to via GalR1-3. In this report, we establish that galnon: (i) can penetrate across the plasma membrane of cells, (ii) can activate intracellular G-proteins directly independent of receptor activation thereby triggering downstream signaling, (iii) demonstrates selectivity for different G-proteins, and (iiii) is a ligand to other G-protein coupled receptors (GPCRs) in addition to via GalR1-3. We conclude that galnon has multiple sites of interaction within the GPCR signaling cascade which mediate its physiological effects.  相似文献   

4.
A selective 5-HT reuptake inhibitor, fluvoxamine (10 and 30 mg/kg, i.p.) suppressed long-term potentiation (LTP) in the hippocampal CA1 field of anesthetized rats. Fluvoxamine (30 mg/kg, i.p.)-induced suppression of LTP was completely reversed by the 5-HT(1A) receptor antagonist NAN-190 (0.5 mg/kg, i.p), but not by the 5-HT(4) receptor antagonist GR 113808 (20 microg/rat, i.c.v.) and the 5-HT(7) receptor antagonist DR 4004 (10 microg/rat, i.c.v.). These data suggest that the inhibitory effect of fluvoxamine on LTP induction is mediated via 5-HT(1A) receptors.  相似文献   

5.
Regulation of feeding by galnon   总被引:4,自引:0,他引:4  
Galanin is a neuropeptide that has been implicated in multiple bioactivities, inter alia eating disorders. In this study, we have examined the effects of galnon, a novel low molecular weight galanin receptor ligand. Previous studies have shown that galnon acts as a systemically active, blood-brain barrier crossing agonist on galanin signaling both in vitro and in vivo, inhibiting pentylenetetrazole-induced seizures. Here, intracerebroventricular (10-20 microg) and intraperitoneal (1.5-5 mg/kg) administration of galnon induced a strong, dose-dependent reduction of food intake in rats and mice. This reduction in feeding occurred without reducing general activity and was shown to be attenuated by an intracerebroventricular administration of M35, a peptide galanin antagonist. These data demonstrate that galnon is a promising tool for studies of the involvement of galanin in feeding disorders and other behavioral processes.  相似文献   

6.
This study was performed to distinguish central and peripheral alpha(2)-adrenoceptors in the inhibition of rat pineal melatonin synthesis. The rats received lipo- or hydrophilic alpha(2)-adrenoceptor ligand injections at middark; after 1 or 2 h the pineal melatonin contents were measured. The lipophilic agonist medetomidine (100 microg/kg s.c.) suppressed the melatonin contents significantly, while the hydrophilic agonists ST-91 and p-aminoclonidine (10 or 100 microg/kg i.v.) did not. The suppression by medetomidine was counteracted by the lipophilic antagonist yohimbine (0.3-3.0 mg/kg i.p.) but not by the hydrophilic antagonist L-659,066 (1-10 mg/kg i.v.). In conclusion, the suppression of nocturnal melatonin synthesis by alpha(2)-adrenoceptor agonists is mainly of central origin.  相似文献   

7.
An alpha(1) adrenoceptor (alpha(1)-AdR) assay using [(3)H]prazosin binding in mouse brain is described which allows in vivo determination of central alpha(1)-AdR occupancy for ligands with alpha(1)-AdR affinity. Binding of [3H]prazosin in rat and mouse brain membranes in vitro was used to characterise the pharmacological profile of alpha(1)-AdRs in order to determine any potential species variations. Saturation and displacement studies yielded comparable affinity and pharmacological profile for [(3)H]prazosin binding in mouse and rat brain homogenates. These studies confirmed the absence of species variation for ligands in central alpha(1)-AdR pharmacology which is in good agreement with previous studies in rat brain. Subsequently, in vivo binding of [(3)H]prazosin in mouse whole brain was used to measure the occupancy of a number of AdR ligands. Timecourse studies revealed that a [3H]prazosin (5 mu Ci/mouse) pretreatment time of at least 20 min following intravenous (i.v.) administration was required for optimal specific binding. Ligands were administered systemically 40 min prior to i.v. administration of radiolabel. The alpha(1)-adrenoceptor ligands prazosin (ED(50)=0.15 mg/kg i.p.), benoxathian (0.52 mg/kg i.p.) and phentolamine (51 mg/kg i.p.) were all able to block in vivo [(3)H]prazosin binding from mouse brain. In addition, receptor occupancy values for a number of compounds including haloperidol (ED(50)=0.83 mg/kg s.c.), clozapine (2.2 mg/kg s.c.) and MDL-100907 [R(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol], (10 mg/kg s.c.)], which possess high to moderate affinity at alpha(1)-adrenoceptors, were also determined. These results suggest that in the mouse, [(3)H]prazosin binding can be used to measure in vivo receptor occupancy of ligands with affinity at central alpha(1)-adrenoceptors.  相似文献   

8.
DOI [(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] displays a high affinity for the rat 5-HT2A, 5-HT2B and 5-HT2C receptors (pKi 7.3, 7.4 and 7.8, respectively) and acts as an agonist. DOI (0.5-4 mg/kg, i.p. 30 min pre-test) increased the number of punished passages in the mouse four plates test (FPT). The anti-punishment action of DOI (1 mg/kg, i.p. 30 min pre-test) was abolished by prior treatment with the selective 5-HT2A receptor antagonist SR 46949B (0.1 and 1 mg/kg, i.p. 45 min pre-test) but not by the selective 5-HT2C receptor antagonist RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor the selective 5-HT2C/2B receptor antagonist SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). An anxiolytic-like action was also observed for DOI (1 mg/kg) in the elevated plus maze (EPM). The anxiolytic-like action of DOI (1 mg/kg, i.p. 30 min pre-test) was antagonised by pre-treatment with SR 46949B (0.125 and 0.5 mg/kg, i.p. 45 min pre-test) but not by RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). In conclusion, DOI produced an anxiolytic-like profile in the mouse FPT and EPM. These effects are likely to be 5-HT2A receptor mediated.  相似文献   

9.
This study investigated the involvement of the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in the antidepressant-like effect of an acute administration of memantine in the forced swimming test (FST) in mice, since this signaling pathway is supposed to play a significant role in depression. The antidepressant-like effect of memantine (3 mg/kg, i.p.) was prevented by pretreatment with L-arginine (750 mg/kg, i.p.) or S-nitroso-N-acetyl-penicillamine (SNAP, 25 microg/site, i.c.v.), but not with d-arginine (750 mg/kg, i.p.).The treatment of mice with NG-nitro-L-arginine (L-NNA, 0.03 and 0.3 mg/kg, i.p.) potentiated the effect of a subeffective dose of memantine (0.3 mg/kg, i.p.) in the FST. Moreover, the pretreatment of mice with (1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one) (ODQ, 30 pmol/site, i.c.v.) produced a synergistic antidepressant-like effect with subeffective doses of memantine (0.3 and 1 mg/kg, i.p.) in the FST. Furthermore, the reduction in the immobility time elicited by memantine (3 mg/kg, i.p.) in the FST was prevented by pretreatment with sildenafil (5 mg/kg, i.p.). Taken together, the results demonstrate that memantine produced an antidepressant-like effect in the FST that seems to be mediated through an interaction with the L-arginine-NO-cGMP pathway.  相似文献   

10.
The present study used the endpoint of hypothermia to investigate cannabinoid and nociceptin/orphanin FQ (N/OFQ) interactions in conscious animals. Prior work has established that cannabinoids produce hypothermia by activating central cannabinoid CB(1) receptors. The administration of N/OFQ into the brain also causes significant hypothermia. Those data suggest a link between cannabinoid CB(1) receptors and N/OFQ peptide (NOP) receptors in the production of hypothermia. Therefore, we determined if NOP receptor activation is required for cannabinoid-evoked hypothermia and if cannabinoid CB(1) receptor activation is necessary for N/OFQ-induced hypothermia. In actual experiments, a cannabinoid agonist, WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.), caused significant hypothermia in male Sprague-Dawley rats (200-225 g). A NOP receptor antagonist, JTC-801 (1 mg/kg, i.p.), did not affect body temperature. For combined administration, JTC-801 (1 mg/kg, i.p.) blocked a significant proportion of the hypothermia caused by each dose of WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.). JTC-801 (1 mg/kg, i.p.) also blocked the hypothermia caused by another cannabinoid agonist, CP-55, 940 (1 mg/kg, i.p.). In separate experiments, the direct administration of N/OFQ (9 microg/rat, i.c.v.) into the brain produced significant hypothermia. The hypothermic effect of N/OFQ was blocked by JTC-801 (1 mg/kg, i.p.) but not by a selective cannabinoid CB(1) antagonist, SR 141716A (5 mg/kg, i.m.). The finding that a NOP receptor antagonist abolishes a significant percentage of cannabinoid-induced hypothermia suggests that NOP receptor activation is required for cannabinoids to produce hypothermia. This interaction, quantitated in the present study, is the first evidence that NOP receptors mediate a cannabinoid-induced effect in conscious animals.  相似文献   

11.
The antiplatelet and antithrombotic activity of SL65.0472 (7-fluoro-2-oxo-4-[2-[4-(thieno [3,2-c]pyrin-4-yl) piperazin-1-yl]ethyl]-1,2-di-hydroquinoline-acetamide), a mixed 5-HT1B/5-HT2A receptor antagonist was investigated on 5HT-induced human platelet activation in vitro, and in rat, rabbit and canine platelet dependent thrombosis models. SL65.0472 inhibited 5-HT-induced platelet shape change in the presence of EDTA (IC50 values = 35, 69 and 225 nM in rabbit, rat and human platelet rich plasma (PRP)), and also inhibited aggregation induced in human PRP by 3-5 microM 5-HT + threshold concentrations of ADP (0.5-1 microM) or collagen (0.3 microg/ml) with mean IC50 values of 49 +/- 13 and 48 +/- 6 nM respectively. SL65.0472 inhibited thrombus formation when given both intravenously 5 min and orally 2 h prior to assembly of an arterio-venous (A-V) shunt in rats as from 0.1 and 0.3 mg/kg respectively. It was active in a rabbit A-V shunt model with significant decreases in thrombus weight as from 0.1 mg/kg i. v. and at 10 mg/kg p.o. The delay to occlusion in an electric current-induced rabbit femoral artery thrombosis model was increased by 251% (p <0.05) after 20 mg/kg p.o. SL65.0472 (30 microg/kg i.v.) virtually abolished coronary cyclic flow variations (7.2 +/- 1.0/h to 0.6 +/- 0.6/h, p <0.05) and increased minimum coronary blood flow (1.2 +/- 0.8 ml/min to 31.8 +/- 8.4 ml/min, p <0.05) in a coronary artery thrombosis model in the anaesthetised dog. Finally, SL65.0472 significantly increased the amount of blood lost after rat tail transection at 3 mg/kg p.o. Thus the anti-5-HT2A component of SL65.0472 is reflected by its ability to inhibit 5-HT-induced platelet activation, and platelet-rich thrombus formation.  相似文献   

12.
Antidepressant drugs are reported to be used as co-analgesics in clinical management of migraine and neuropathic pain. The mechanism through which they alleviate pain remains unknown. The present study explores the possible mechanism of a selective serotonin reuptake inhibitor (SSRI) fluoxetine-induced antinociception in animals. Acetic acid-induced writhing, hot plate and tail-flick test were used to assess fluoxetine-induced antinociception. Fluoxetine (5-20 mg kg(-1), i.p.) produced a significant and dose-dependent antinociceptive effect against acetic acid-induced writhing in mice. Fluoxetine (20 mg kg(-1)) also exhibited antinociceptive effect in tail flick as well as hot plate assays. Further, i.c.v. administration of fluoxetine showed significant antinociception against writhing test in rats. However, fluoxetine (1 microg/10 microl/rat, i.c.v.) did not exhibit any antinociceptive effect in serotonin-depleted animals. Further, pindolol (10 mg kg(-1), i.p.) enhanced fluoxetine-induced antinociceptive effect. The antinociceptive effect of fluoxetine was sensitive to blockade by naloxone (5 mg kg(-1), i.p.) and naltrexone (5 mg kg(-1), i.p.). These data suggest that fluoxetine-induced antinociception involves both central opioid and the serotoninergic pathways.  相似文献   

13.
Electrophysiological and in vivo microdialysis were used to investigate and compare the effect of tonic activation of serotonin(2C/2B) (5-HT(2C/2B)) receptors on nigrostriatal and mesolimbic dopaminergic (DA) function. Thus, extracellular single unit recordings of neurochemically-identified DA neurons in the SNc and the VTA, as well as simultaneous monitoring of striatal and accumbal DA release were performed following the administration of the unselective 5-HT(2C/2B) agonists, mCPP (m-chlorophenylpiperazine) and MK 212 [6-chloro-2-(1-piperazinyl)piperazine]. Both mCPP (5-320 microg/kg i. v.) and MK 212 (5-320 microg/kg i.v.) dose-dependently decreased the firing rate of VTA DA neurons. The maximal effect was reached at the cumulative dose of 320 microg/kg mCPP and MK 212, which caused a decrease of 42.6 +/- 12.8% and 56.4 +/- 12.6%, respectively. In addition, the total number of events in bursts and the number of bursts of VTA DA cells were significantly reduced by both mCPP and MK 212. On the other hand, mCPP (5-320 microg/kg i.v.) and MK 212 (5-320 microg/kg i.v.) induced a slight decrease in the basal firing rate, but not in bursting activity of SNc DA neurons. Consistent with electrophysiological data, dialysate DA levels in the nucleus accumbens decreased significantly, reaching the maximum of 26.6 +/- 9.6% below baseline levels 120 min after mCPP (1 mg/kg i.p.) administration, and of 25.2 +/- 5.5% 140 min after MK 212 (1 mg/kg i. p.) injection. DA outflow in the striatum was unaffected by both drugs. The inhibitory effect of both mCPP and MK 212 on VTA DA cell activity was blocked completely by pretreatment with the selective 5-HT(2C) antagonist SB 242084 ?6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-oxy)-pyrid-5-yl carbamoyl] indoline? (200 microg/kg), given intravenously 10 min before the first injection of the 5-HT(2C/2B) agonists. SB 242084 (2. 5 mg/kg i.p.) antagonized also the decrease in DA release induced by mCPP and MK 212 in the nucleus accumbens. Taken together, these data indicate that mCPP and MK 212 selectively inhibit mesolimbic dopaminergic function by acting on 5-HT(2C) receptors. Therefore, selective 5-HT(2C) receptor agonists might be useful in clinical conditions where it is necessary to reduce the mesolimbic dopaminergic activity without affecting the nigrostriatal function.  相似文献   

14.
Improgan is a derivative of cimetidine that induces non-opioid antinociception after intracerebroventricular (i.c.v.) administration, but the mechanism of action of this compound remains unknown. Since activation of either supraspinal or spinal alpha(2) adrenergic receptors can induce antinociception, and since improgan showed affinity for these receptors in vitro, the effects of the alpha(2) antagonist yohimbine on improgan antinociception were presently studied in rats on the hot plate and tail flick tests. Systemic yohimbine pretreatment (4 mg/kg, i.p.) completely blocked improgan antinociception (80 microg, i.c.v.), suggesting a mediator role for alpha(2) receptors. However, i.c.v. pretreatment with yohimbine (30 microg) had no effect on improgan antinociception. Since this treatment completely antagonized clonidine antinociception (40 microg, i.c.v.), supraspinal alpha(2) receptors seem to mediate the antinociceptive effects of clonidine, but not that produced by improgan. In contrast, intrathecal (i.t.) yohimbine pretreatment (30 microg) completely blocked the antinociception elicited by i.c.v. improgan and i.c.v. morphine. These results suggest that spinal (but not supraspinal) alpha(2) adrenergic receptors play a significant role in the pain-relieving actions of improgan. Furthermore, although improgan shows some affinity at alpha(2) receptors, this drug does not act directly at these receptors to induce antinociceptive responses. Like several other classes of analgesics, improgan-like drugs seem to activate non-opioid, descending pain-relieving circuits.  相似文献   

15.
Acetaminophen (Paracetamol), a most commonly used antipyretic/analgesic agent, is metabolized to AM404 (N-arachidonoylphenolamine) that inhibits uptake and degradation of anandamide which is reported to mediate the analgesic action of acetaminophen via CB1 receptor. AM404 and anandamide are also reported to produce anxiolytic-like behavior. In view of the implication of endocannabinoids in the effect of acetaminophen, we contemplated that acetaminophen may have anxiolytic-like effect. Therefore, this possibility was tested by observing the effects of various doses of acetaminophen in mice on anxiety-related indices of Vogel conflict test and social interaction test. The results from both the tests indicated that acetaminophen (50, 100, or 200 mg/kg, i.p.) or anandamide (10 or 20 µg/mouse, i.c.v.) dose dependently elicited anxiolytic-like effect, that was comparable to diazepam (2 mg/kg, i.p.). Moreover, co-administration of sub-effective dose of acetaminophen (25 mg/kg, i.p.) and anandamide (5 µg/mouse, i.c.v) produced similar anxiolytic effect. Further, pre-treatment with AM251 (a CB1 receptor antagonist; 1 mg/kg, i.p.) antagonized the effects of acetaminophen and anandamide with no per se effect at 1 mg/kg dose, while anxiogenic effect was evident at a higher dose (5 mg/kg, i.p.). None of the treatment/s was found to induce any antinociceptive or locomotor impairment effects. In conclusion, the findings suggested that acetaminophen (50, 100, or 200 mg/kg, i.p.) exhibited dose dependent anxiolytic effect in mice and probably involved endocannabinoid-mediated mechanism in its effect.  相似文献   

16.
Cho J  Seo H  Yun C  Koo B  Yoshida S  Koga T  Dan T  Kim H 《Thrombosis research》2000,100(1):97-107
AT-1362 was found to be a potent, selective, and competitive inhibitor of thrombin, with a Ki value of 6.7 nM. In a rat model of venous thrombosis induced by partial stasis and endothelial disruption, the ID(50) values (a dose required to obtain 50% inhibition of thrombus formation over each vehicle group) of AT-1362 and argatroban were 0.03 mg/kg i.v. plus 0.5 microg/kg/minute and 0. 13 mg/kg i.v. plus 8.7 microg/kg/minute, respectively, and the antithrombotic effect of AT-1362 without prolongation of bleeding time lasted for 2 hours and disappeared 4 hours after oral administration of 30 mg/kg. In the rat tail transection model, the BT(2) values (a dose causing two-fold prolongation of the bleeding time over each vehicle group) of AT-1362 and argatroban were 0.56 mg/kg i.v. plus 9.3 microg/kg/minute and 1.1 mg/kg i.v. plus 73.3 microg/kg/minute, respectively. The reduction of thrombus formation and the prolongation of bleeding time were correlated with an ex vivo activated partial thromboplastin time (APTT) for both drugs. AT-1362 at 0.3 mg/kg i.v. plus 5 microg/kg/minute and argatroban at 0.6 mg/kg i.v. plus 40 microg/kg/minute significantly (p<0.05 and p<0.01, respectively) improved the vessel patency in a FeCl(2)-induced carotid artery thrombosis model in rats. These results suggest that AT-1362 may be a potent antithrombotic agent for the treatment of thrombotic diseases.  相似文献   

17.
The influence of both acute and chronic restraint stress on the rewarding properties of morphine (1, 2 or 3 mg/kg i.p.) and the aversive effects of naloxone (0.5 mg/kg i.p. x3 or 1.0 mg/kg i.p.) or bremazocine (0.4 mg/kg i.p.) was investigated. An acute (2 h) but not chronic restraint (2 h daily for 7 days) enhanced the morphine place preference, and elicited a place aversion with a subthreshold dose of bremazocine. This enhancing effect on the reinforcing properties induced by the drugs was prevented by either R(+)-SCH-23390 hydrochloride (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H3-benzazepine, 30 microg/kg i.p.) or (+/-)-sulpiride (60 mg/kg i.p.), 10-20 min prior to the stress session. Naltrexone pretreatment (1 mg/kg i.p.) abolished the stress effect on morphine place preference but not that on bremazocine aversion. Instead, nor-BNI (30 microg/3 microl i.c.v.) abolished the stress's effects on bremazocine aversion, but did not modify those on morphine preference. These results show that: (1) acute stress enhanced the morphine and bremazocine conditioned reinforcing effects meanwhile chronic stress did not modify them; (2) the stimulation of D(1) and D(2) dopamine receptors is necessary for the development of restraint stress-induced sensitization to the conditioned reinforcing effects of drugs; and (3) the stimulation mu/delta- and kappa-opioid receptors seems to be differentially involved.  相似文献   

18.
To investigate the involvement of central or peripheral catecholaminergic systems in the MK-801-induced increase in plasma corticosterone and interleukin-6 levels, we pretreated mice either intracerebroventricularly (i.c.v.) or intraperitoneally (i.p.) with 6-hydroxydopamine (6-OHDA) which depletes catecholamines. Pretreatment of animals with 6-OHDA (50 microg i.c.v. or 100 mg/kg i.p.) significantly enhanced the MK-801 (1 microg i.c.v.)-induced increase in plasma corticosterone level. On the other hand, pretreatment of mice with 6-OHDA (50 microg i.c.v. or 100 mg/kg i.p.) did not affect the MK-801 (1 microg i.c.v.)-induced increase in plasma IL-6 level. These results suggest that central and peripheral catecholaminergic systems are involved in the suppressive regulation of MK-801-induced plasma corticosterone level.  相似文献   

19.
The anxiolytic-like potential of anpirtoline was assessed in a mouse light/dark aversion test. Anpirtoline (1.0 ng kg(-1)-1.0 micrograms kg-1 i.p.) reduced the aversive responding of mice. This was detected as an increase in the latency to locate the non-aversive compartment and by decreases in the percentage of the time spent in the dark compartment, and the numbers of rears and line crossings in the dark compartment. In radioligand binding studies anpirtoline displayed submicromolar affinity for 5-HT1A, 5-HT1B and 5-HT3 receptor recognition sites (Ki = 151, 28 and 30 nM, respectively) and more modest affinity for 5-HT2 receptor recognition sites (Ki = 1.48 microM). It is concluded that anpirtoline has a unique spectrum of affinity for 5-HT receptor subtypes, its interaction with which may account for its anxiolytic-like activity.  相似文献   

20.
Memory function after olfactory bulbectomy (OBX) was examined in two tasks, namely, step-through passive avoidance task and elevated plus-maze task. OBX mice showed a significant impairment of learning and memory-related behavior on the 7th and 14th day, as measured by passive avoidance task but not elevated plus maze task. The impairment of learning and memory-related behavior on the 14th day was improved by administration of the cholinesterase inhibitor physostigmine (0.1 mg/kg, i.p.), the non-selective muscarinic agonist oxotremorine (0.1 mg/kg, i.p.) or the selective muscarinic M(1) agonist McN-A-343 (10 microg/mouse, i.c.v.). In contrast, administration of the nicotinic agonist lobeline (5-9.8 mg/kg, i.p.) or the selective muscarinic M(2) antagonist methoctramine (2.25-18 microg/mouse, i.c.v.) has no effect on the impairment of learning and memory-related behavior induced by OBX. In addition, we have demonstrated that the intensity of choline acetyltransferase (ChAT) fluorescence is significantly decreased in the cortex, hippocampus and amygdala on the 14th day after OBX. These results suggest that the impairment of learning and memory-related behavior induced by OBX may be caused by degeneration of cholinergic neurons and muscarinic M(1) receptors play an important role in the improvement process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号