首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte–colony-stimulating factor (G–CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 μg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G–CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies.
STUDY DESIGN AND METHODS: Various doses of G–CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G–CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G–CSF (median, 3.6 [range, 2.8-4.6] μg/kg/day). Group 2 included 45 patients who received a standard G–CSF dose of 6.0 (5.5-8.1) μg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens.
RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group. The number of leukapheresis procedures necessary to obtain a minimum of 3 × 106 CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups.
CONCLUSION: The administration of low-dose G–CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection. This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

2.
BACKGROUND: The peripheral blood progenitor cell (PBPC) mobilization capacity of EPO in association with either G-CSF or sequential GM-CSF/G-CSF was compared in a randomized fashion after epirubicin, paclitaxel, and cisplatin (ETP) chemotherapy. STUDY DESIGN AND METHODS: Forty patients with stage IIIB, IIIC, or IV ovarian carcinoma were enrolled in this randomized comparison of mobilizing capacity and myelopoietic effects of G-CSF + EPO and GM-/G-CSF + EPO following the first ETP chemotherapy treatment. After ETP chemotherapy (Day 1), 20 patients received G-CSF 5 microg per kg per day from Day 2 to Day 13 and 20 patients received GM-CSF 5 microg per kg per day from Day 2 to Day 6 followed by G-CSF 5 microg per kg per day from Day 7 to Day 13. EPO (150 IU per kg) was given every other day from Day 2 to Day 13 to all patients in both arms of the study. Apheresis (two blood volumes) was performed during hematologic recovery. RESULTS: The magnitude of CD34+ cell mobilization and the abrogation of patients' myelosuppression were comparable in both study arms; however, GM-/G-CSF + EPO patients had significantly higher CD34+ yields because of a higher CD34+ cell collection efficiency (57.5% for GM-/G-CSF + EPO and 46.3% for G-CSF + EPO patients; p = 0.0009). Identical doses of PBPCs mobilized by GM-/G-CSF + EPO and G-CSF + EPO drove comparable hematopoietic recovery after reinfusion in patients treated with identical high-dose chemotherapy. CONCLUSION: The sequential administration of GM-CSF and G-CSF in combination with EPO is feasible and improves the PBPC collection efficiency after platinum-based intensive polychemotherapy, associating high PBPC mobilization to high collection efficiency during apheresis.  相似文献   

3.
BACKGROUND: The optimal time for postchemotherapy granulocyte-colony stimulating factor (G-CSF) administration before peripheral blood stem and progenitor cell (PBPC) collection is not well defined. The impact of G-CSF scheduling on the number of CD34+ cells collected by leukapheresis from 65 patients with malignant disease was studied retrospectively. STUDY DESIGN AND METHODS: Chemotherapy was performed on Days 1 and 2 and was followed by G-CSF to mobilize PBPCs. In Group 1, 30 patients received the first dose of G-CSF immediately after the end of chemotherapy, as commonly recommended. In Group 2, 35 patients received the first G-CSF dose after the end of chemotherapy (Days 7 or 8). RESULTS: No difference was observed between the two groups in white cell recovery and the median number of CD34+ cells harvested. The number of leukapheresis procedures necessary to obtain the minimal number of 3 x 10(6) CD34+ cells per kg was the same. The proportion of patients with a failure of PBPC collection was similar, and G-CSF consumption was reduced in Group 2 without increasing infectious risks. CONCLUSION: Early administration of G-CSF after chemotherapy appears not to be a prerequisite for satisfactory PBPC collection. This approach could allow significant savings in terms of medical cost. A randomized and prospective study would be necessary, however, to assess the validity of these conclusions.  相似文献   

4.
BACKGROUND: The impact of amifostine on PBPC mobilization with paclitaxel and ifosfamide plus G-CSF was assessed. STUDY DESIGN AND METHODS: Forty patients with a median age of 34 years (range, 19-53) who had germ cell tumor were evaluated for high-dose chemotherapy. Patients were randomly assigned to receive either a single 500-mg dose of amifostine (Group A, n = 20) or no amifostine (Group B, n = 20) before mobilization chemotherapy with paclitaxel (175 mg/m(2)) given over 3 hours and ifosfamide (5 g/m(2)) given over 24 hours (TI) on Day 1. G-CSF at 10 microg per kg per day was given subsequent to TI with or without amifostine from Day 3 until the end of leukapheresis procedures. RESULTS: In 2 (10%) of 20 patients receiving amifostine and 3 (15%) of 20 patients not receiving it, no PBPC separation was performed because of mobilization failure. No significant differences were observed in the study arms with regard to the time from chemotherapy until first PBPC collection or the number of apheresis procedures needed to harvest more than 2.5 x 10(6) CD34+ cells per kg. Furthermore, leukapheresis procedures yielded comparable doses of CD34+ cells per kg (3.4 x 10(6) vs. 3.6 x 10(6); p = 0.82), MNCs per kg (2.7 x 10(8) vs. 2.6 x 10(8); p = 0.18), and CFU-GM per kg (15.9 x 10(4) vs. 19.3 x 10(4); p = 0.20). Patients in Group A had higher numbers of circulating CD34+ cells on Day 10 (103.0/microL vs. 46.8/microL; p = 0.10) and on Day 11 (63.0/microL vs.14.3/microL; p = 0.04) than did patients in Group B. CONCLUSION: Administration of a single dose of amifostine before chemotherapy with TI mobilized higher numbers of CD34 cells in the circulation, but did not enhance the overall collection efficiency in the present trial.  相似文献   

5.
BACKGROUND: Limited information is available on the mobilization kinetics of autologous PBPCs after induction with various chemotherapy regimens. With PBPC mobilization in patients with breast cancer used as a model for chemotherapy-induced PBPC recruitment, the kinetics of progenitor cells mobilized either with cyclophosphamide (CY) or epirubicin/paclitaxel (EPI-TAX) followed by the administration of G-CSF was compared. STUDY DESIGN AND METHODS: The study included a total of 86 patients with breast cancer (stage II-IV) receiving either CY (n = 39) or EPI-TAX (n = 47), both followed by G-CSF support. The progenitor cell content in peripheral blood and apheresis components was monitored by flow cytometric enumeration of CD34+ cells. PBPC collection was started when the threshold of >20 x 10(6) CD34+ cells per L of peripheral blood was reached. RESULTS: The PBPC collection was begun a median of 9 days after the administration of EPI-TAX followed by G-CSF support, as compared to a median of 13 days after mobilization with CY plus G-CSF. After treatment with CY, the total numbers of PBPCs peaked on Day 1 of apheresis, and they rapidly declined thereafter. In contrast, treatment with EPI-TAX followed by G-CSF administration led to a steady mobilization of CD34+ cells during leukapheresis. The difference in the mobilization patterns with CY and EPI-TAX resulted in a greater yield of CD34+ cells per L of processed blood volume. Compared to EPI-TAX, mobilization with CY required the overall processing of 30 percent less whole-blood volume to reach the target yield of > or = 10 x 10(6) CD34+ cells per kg of body weight. After a median of three apheresis procedures, however, both CY+G-CSF and EPI-TAX+G-CSF were equally effective in obtaining this target yield. CONCLUSION: These results imply that specific PBPC mobilization as part of a given chemotherapy regimen should be taken into consideration before the planning of a PBPC harvest.  相似文献   

6.
BACKGROUND: The mechanism of HPC mobilization in humans is unclear. In this study, the relationship between PBPC mobilization and blood levels of G-CSF, endogenous cytokines (IL-8, SCF, thrombopoietin [TPO]), and the vascular cell adhesion molecule-1 (VCAM-1) was analyzed in patients with malignancy who were undergoing a PBPC mobilization regimen. STUDY DESIGN AND METHODS: Fifty-four patients with multiple myeloma (MM) and 29 with breast cancer (BC) underwent a mobilization regimen combining conventional chemotherapy and G-CSF up to the last day of PBPC collection. The CD34+ cell count was determined on each day when leukapheresis was scheduled. Venous blood samples (n = 117) were drawn before apheresis for CD34+ cell count (flow cytometry) and cytokine (G-CSF, IL-8, SCF, TPO) and VCAM-1 measurements (ELISA). RESULTS: In multiple regression analysis, SCF was a significant determinant of CD34+ cell levels in BC patients (R = 0.50, p = 0.03) and of VCAM-1 levels in MM patients (R = 0.32, p = 0.02). SCF was negatively correlated with CD34+ cell count in patients with BC. SCF and VCAM-1 blood levels were correlated in MM and BC patients. CONCLUSION: SCF and VCAM-1 could play a role in PBPC mobilization in patients and could be useful measures by which to study patients undergoing a mobilization regimen.  相似文献   

7.
BACKGROUND: Mobilization with chemotherapy and G-CSF may result in poor peripheral blood HPC collection, yielding <2 x 10(6) CD34+ cells per kg or <10 x 10(4) CFU-GM per kg in leukapheresis procedures. The best mobilization strategy for oncology patients remains unclear. STUDY DESIGN AND METHODS: In 27 patients who met either the CD34 (n = 3) or CFU-GM (n = 2) criteria or both (n = 22), the results obtained with two successive strategies-that is, chemotherapy and G-CSF at 10 microg per kg (Group 1, n = 7) and G-CSF at 10 microg per kg alone (Group 2, n = 20) used for a second mobilization course-were retrospectively analyzed. The patients had non-Hodgkin's lymphoma (5), Hodgkin's disease (3), multiple myeloma (5), chronic myeloid leukemia (1), acute myeloid leukemia (1), breast cancer (6), or other solid tumors (6). Previous therapy consisted of 10 (1-31) cycles of chemotherapy with additional chlorambucil (n = 3), interferon (n = 3), and radiotherapy (n = 7). RESULTS: The second collection was undertaken a median of 35 days after the first one. In Group 1, the results of the two mobilizations were identical. In Group 2, the number of CD34+ cells per kg per apheresis (0.17 [0.02-0.45] vs. 0.44 [0.11-0.45], p = 0. 00002), as well as the number of CFU-GM (0.88 [0.00-13.37] vs. 4.19 [0.96-21.61], p = 0.00003), BFU-E (0.83 [0.00-12.72] vs. 8.81 [1. 38-32.51], p = 0.00001), and CFU-MIX (0.10 [0.00-1.70] vs. 0.56 [0. 00-2.64], p = 0.001134) were significantly higher in the second peripheral blood HPC collection. However, yields per apheresis during the second collection did not significantly differ in the two groups. Six patients in Group 1 and 18 in Group 2 underwent transplantation, and all but one achieved engraftment, with a median of 15 versus 12 days to 1,000 neutrophils (NS), 22 versus 16 days to 1 percent reticulocytes (NS), and 26 versus 26 days to 20,000 platelets (NS), respectively. However, platelet engraftment was particularly delayed in many patients. CONCLUSION: G-CSF at 10 microg per kg alone may constitute a valid alternative to chemotherapy and G-CSF to obtain adequate numbers of peripheral blood HPCs in patients who previously failed to achieve mobilization with chemotherapy and G-CSF. This strategy should be tested in prospective randomized trials.  相似文献   

8.
BACKGROUND: Selection of CD34+ cells by specific immunoselection leads to a significant loss of those cells. The factors influencing the yield and purity are not well identified. The results of CD34+ selection from peripheral blood progenitor cells (PBPCs) with high and low platelet contamination that are harvested with two different cell separators are reported. STUDY DESIGN AND METHODS: A progenitor cell concentrator (Ceprate SC, CellPro) was used to select CD34+ cells from 41 PBPC concentrates from 23 consecutive patients with relapsed non-Hodgkin's lymphoma (n = 3), breast cancer (n = 17), and multiple myeloma (n = 3). PBPC collection was performed by using two cell separators (CS3000 Plus, Fenwal: Group A, n = 11; and Spectra, COBE: Group B, n = 9). To reduce platelet contamination in the Spectra PBPC concentrates, an additional low-speed centrifugation was performed before CD34+ cell selection (Group C, n = 3). Leukapheresis components were stored overnight at 4 degrees C and combined with the next day's collection before the CD34+ selection procedure in 19 patients. RESULTS: A median of 1.5 leukapheresis procedures per patient were performed. Pooled PBPC concentrates showed no statistical difference in median numbers of white cells and CD34+ cells in Groups A and B: 3.2 (0.8-9.2) versus 4.4 (1.6-8. 3) x 10(10) white cells per kg and 15.0 (4.7-24.0) versus 12.0 (5. 6-34.0) x 10(6) CD34+ cells per kg. Platelet contamination was significantly higher in Group B: 0.67 (0.15-2.4) versus 2.3 (0.5-7. 1) x 10(11) (p = 0.0273). After the selection process, there was a significantly greater loss of CD34+ cells in Group B than in Group A: 39.1 versus 63.2 percent (p = 0.0070), with a median purity of 78. 0 percent versus 81.0 percent. An additional low-speed centrifugation before CD34+ cell selection seemed to reduce CD34+ cell loss in Group C with 16.9, 31.9, and 37.5 percent, respectively. CONCLUSION: CD34+ cell selection from PBPC concentrates resulted in an increased loss of CD34+ cells in concentrates with a higher platelet content. To improve CD34+ yield, PBPC concentrates with an initially low platelet contamination should be used, or additional low-speed centrifugation should be performed.  相似文献   

9.
Donor age-related differences in PBPC mobilization with rHuG-CSF   总被引:1,自引:0,他引:1  
BACKGROUND: Data on the administration of rHuG-CSF to normal donors <18 years old are very limited. STUDY DESIGN AND METHODS: The results of rHuG-CSF administration to 61 donors <18 years old (Group A) were retrospectively evaluated and compared with results from 353 donors > or = 18 years old (Group B) who are included in the Spanish National Donor Registry. The mean age (range) in Group A and B was 14 (1-17) and 38 (18-71) years, respectively (p<0.001). The mean dose of rHuG-CSF was 10 microg per kg per day (range, 9-16) during a mean of 5 days (range, 4-6). Central venous access was placed more frequently in younger donors (25% vs. 6%; p<0.001). RESULTS: The mean number of CD34+ cells collected was 7.6 and 6.9 x 10(6) per kg of donor's body weight in Group A and B, respectively. Fifty-six percent of Group A donors needed only one apheresis to achieve > or = 4 x 10(6) CD34+ cells per kg versus 39 percent of Group B donors (p = 0.01). Side effects were more common in Group B (71% vs. 41%; p<0.001). CONCLUSION: The administration of rHuG-CSF to donors <18 years old leads to CD34+ cell mobilization in a pattern similar to that observed in adults. Greater age was associated with a more frequent requirement for more than one apheresis to achieve a similar number of CD34+ cells.  相似文献   

10.
BACKGROUND: It is not known whether increasing the dose of filgrastim after mobilizing chemotherapy improves collection of peripheral blood progenitor cells (PBPC) and leads to faster hematopoietic engraftment after autologous transplantation. STUDY DESIGN AND METHODS: A randomized, open-label, multicenter trial was carried out in patients with breast cancer, multiple myeloma, and lymphoma, in which patients were randomized to receive 5 or 10 microg per kg per day of filgrastim after standard chemotherapy to mobilize PBPCs. After high-dose chemotherapy, the components from the first two leukapheresis procedures were returned, and all patients received 5 microg per kg day of filgrastim after transplantation. RESULTS: A total of 131 patients were randomized, of whom 128 were mobilized (Group A, 5 microg/kg, n = 66; Group B, 10 microg/kg, n = 62) and 112 were transplanted. Only six patients were not transplanted because of insufficient CD34+ cell numbers. The median number of CD34+ cells collected in the first two leukapheresis procedures tended to be higher in Group B than in Group A (12.0 vs. 7.2 x 10(6)/kg, NS), but after transplantation there was no significant difference in median times to platelet (9 days in both groups) or neutrophil (8 days in both groups) engraftment or the number of platelet transfusions (three in both groups). A subsequent subgroup analysis separating patients transplanted after first- or second-line chemotherapy also showed no measurable impact of filgrastim dose on the median CD34+ cell yield or on platelet engraftment in either subgroup. CONCLUSION: PBPC mobilization with chemotherapy and 5 microg per kg of filgrastim is very efficient, and 10 microg per kg of filgrastim does not provide additional clinical benefit.  相似文献   

11.
BACKGROUND: The collection of peripheral blood stem and progenitor cells (PBPCs) for transplantation can be time-consuming and expensive. Thus, the utility of counting CD34+ cells and white cells (WBCs) in the peripheral blood was evaluated as a predictor of CD34+ cell yield in the apheresis component. STUDY DESIGN AND METHODS: The WBC and CD34+ cell counts in the peripheral blood and the apheresis components from 216 collections were assessed. Sixty-three patients underwent mobilization with chemotherapy plus filgrastim, and 17 patients and 14 allogeneic PBPC donors did so with filgrastim alone. The relationship between the number of WBC and CD34+ cells in the peripheral blood and in the apheresis component was analyzed by using rank correlation and linear regression analysis. RESULTS: The correlation coefficient for CD34+ cells per liter of peripheral blood with CD34+ cell yield (x 10(6)/kg) was 0.87 (n = 216 collections). This correlation existed for many patient and collection variables. However, patients with acute myeloid leukemia had fewer CD34+ cells in the apheresis component at any level of peripheral blood CD34+ cell count. Components collected from patients with CD34+ cell counts below 10 x 10(6) per L in the peripheral blood contained a median of 0.75 x 10(6) CD34+ cells per kg. When the WBC count in the blood was below 5.0 x 10(9) per L, the median number of CD34+ cells in the peripheral blood was 5.6 x 10(6) per L (range, 1.0-15.5 x 10(6)/L). A very poor correlation was found between the WBC count in the blood and the CD34+ cell yield (p = 0.12, n = 158 collections). CONCLUSION: The number of CD34+ cells, but not WBCs, in the peripheral blood can be used as a predictor for timing of apheresis and estimating PBPC yield. This is a robust relationship not affected by a variety of patient and collection factors except the diagnosis of acute myeloid leukemia. Patients who undergo mobilization with chemotherapy and filgrastim also should undergo monitoring of peripheral blood CD34+ cell counts, beginning when the WBC count in the blood exceeds 1.0 to 5.0 x 10(9) per L.  相似文献   

12.
BACKGROUND: A clinical study was performed to evaluate the peripheral blood progenitor cell (PBPC) collection, transfusion, and engraftment characteristics associated with use of a blood cell separator (Amicus, Baxter Healthcare). STUDY DESIGN AND METHODS: Oncology patients (n = 31) scheduled for an autologous PBPC transplant following myeloablative therapy were studied. PBPCs were mobilized by a variety of chemotherapeutic regimens and the use of G-CSF. As no prior studies evaluated whether PBPCs collected on the Amicus separator would be viable after transfusion, to ensure patient safety, PBPCs were first collected on another cell separator (CS-3000 Plus, Baxter) and stored as backup. The day after the CS-3000 Plus collections were completed, PBPC collections intended for transfusion were performed using the Amicus instrument. For each transplant, >2.5 x 10(6) CD34+ PBPCs per kg of body weight were transfused. RESULTS: Clinical data collected on the donors immediately before and after PBPC collection with the Amicus device were comparable to donor data similarly obtained for the CS-3000 Plus collections. While the number of CD34+ cells and the RBC volume in the collected products were equivalent for the two devices, the platelet content of the Amicus collections was significantly lower than that of the CS-3000 Plus collections (4.35 x 10(10) platelets/bag vs. 6.61 x 10(10) platelets/bag, p<0.05). Collection efficiencies for CD34+ cells were 64 +/- 23 percent for the Amicus device and 43 +/- 14 percent for the CS-3000 Plus device (p<0.05). The mean time to engraftment for cells collected via the Amicus device was 8.7 +/- 0.7 days for >500 PMNs per microL and 9.7 +/- 1.5 days to attain a platelet count of >20,000 per microL-equivalent to data in the literature. No CS-3000 Plus backup cells were transfused and no serious adverse events attributable to the Amicus device were encountered. CONCLUSIONS: The mean Amicus CD34+ cell collection efficiency was better (p<0.05) than that of the CS-3000 Plus collection. Short-term engraftment was durable. The PBPCs collected with the Amicus separator are safe and effective for use for autologous transplant patients requiring PBPC rescue from high-dose myeloablative chemotherapy.  相似文献   

13.
BACKGROUND: Failure to mobilize PBPCs for auto-logous transplantation has mostly been attributed to previous therapy and poses therapeutic problems. STUDY DESIGN AND METHODS: The role of underlying disease was analyzed in 17 of 73 (23%) patients with PBPC mobilization failure, and secondary mobilization with high-dose filgrastim was attempted. RESULTS: Of 16 patients with acute leukemia, 13 (81%) mobilized poorly. In contrast, of 57 patients with non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, and solid tumor, 53 (93%, p < 0.001) showed good PBPC mobilization. Relapsed disease did not predispose to poor mobilization. As secondary mobilization attempt, 7 patients received 25 micro g per kg per day filgrastim without chemotherapy leading to a 3.7 +/- 2.8-fold (SD) increase in the maximum number of circulating CD34+ cells (p = 0.104). PBPC apheresis yielded 3.3 (+/-0.5) x 10(6) CD34+ cells per kg of body weight in 5 patients. Four poor mobilizers received 50 micro g per kg per day filgrastim as second or third mobilization attempt. Circulating CD34+ cells in these patients increased by 1.5 (+/-0.7) compared with the primary G-CSF application. CONCLUSION: Selective PBPC mobilization failure was seen in patients with acute leukemia whereas remarkably good mobilization was seen in other malignancies. Increasing the filgrastim dose to 25 micro g per kg per day may allow PBPC collection in patients failing PBPC mobilization.  相似文献   

14.
BACKGROUND: Information on the safety and efficacy of allogeneic peripheral blood progenitor cell (PBPC) collection in filgrastim-mobilized normal donors is still limited. STUDY DESIGN AND METHODS: The PBPC donor database from a 42-month period (12/94-5/98) was reviewed for apheresis and clinical data related to PBPC donation. Normal PBPC donors received filgrastim (6 microg/kg subcutaneously every 12 hours) for 3 to 4 days and subsequently underwent daily leukapheresis. The target collection was > or =4 x 10(6)CD34+ cells per kg of recipient's body weight. RESULTS: A total of 350 donors were found to be evaluable. Their median age was 41 years (range, 4-79). Their median preapheresis white cell count was 42.8 x 10(9) per L (range, 18.3-91.6). Of these donors, 17 (5%) had inadequate peripheral venous access. Leukapheresis could not be completed because of apheresis-related adverse events in 2 donors (0.5%). Of the 324 donors evaluable for apheresis yield data, 221 (68%) reached the collection target with one leukapheresis. The median CD34+ cell dose collected (first leukapheresis) was 462 x 10(6) (range, 29-1463).The main adverse events related to filgrastim administration in donors evaluable for toxicity (n = 341) were bone pain (84%), headache (54%), fatigue (31%), and nausea (13%). These events were rated as moderate to severe (grade 2-3) by 171 (50%) of the donors. In 2 donors (0.5%), they prompted the discontinuation of filgrastim administration. CONCLUSION: PBPC apheresis for allogeneic transplantation is safe and well tolerated. It allows the collection of an "acceptable" PBPC dose in most normal donors with one leukapheresis, with minimal need for invasive procedures.  相似文献   

15.
BACKGROUND: Current regimens for peripheral blood progenitor cell (PBPC) mobilization in patients with multiple myeloma are based on daily subcutaneous injections of granulocyte-colony-stimulating factor (G-CSF) starting shortly after cytotoxic therapy. Recently a polyethylene glycol-conjugated G-CSF (pegfilgrastim) was introduced that has a substantially longer t(1/2) than the original formula. STUDY DESIGN AND METHODS: The use of pegfilgrastim was examined at two dose levels for PBPC mobilization in patients with Stage II or III multiple myeloma. Four days after cytotoxic therapy with cyclophosphamide (4 g/m(2)), a single dose of either 6 mg pegfilgrastim (n = 15) or 12 mg pegfilgrastim (n = 15) or daily doses of 8 microg per kg unconjugated G-CSF (n = 15) were administered. The number of circulating CD34+ cells was determined during white blood cell (WBC) recovery, and PBPC harvesting was performed by large-volume apheresis. RESULTS: Pegfilgrastim was equally potent at 6 and 12 mg with regard to mobilization and yield of CD34+ cells. No dose dependence was observed because CD34+ cell concentration peaks were 131 and 85 per microL, respectively, and CD34+ cell yield was 10.2 x 10(6) and 7.4 x 10(6) per kg of body weight, respectively. Pegfilgrastim in either dose was associated with a more rapid WBC recovery (p = 0.03) and an earlier performance of the first apheresis procedure (p < 0.05) in comparison to unconjugated G-CSF. No difference regarding CD34+ cell maximum and yield could be observed. CONCLUSION: A single dose of 6 mg pegfilgrastim is equally potent as 12 mg for mobilization and harvest of PBPCs in patients with multiple myeloma. Because no dose dependency was seen at these dose levels, this might be also true for even smaller doses.  相似文献   

16.
BACKGROUND: High-dose chemotherapy followed by an inoculum of autologous peripheral blood progenitor cells (PBPCs) can improve survival in patients affected with primary systemic amyloidosis (AL). It has been documented, however, that the morbidity and mortality of PBPC mobilization and collection in this setting are higher than in patients with other diseases. To minimize the mobilization and collection-related risks, we developed a multidisciplinary approach involving different specialists to manage AL patients with predominant heart and renal involvement. STUDY DESIGN AND METHODS: We report our experience in 42 patients (23 men, 19 women; median age, 51.2 years; range, 28-68 years) with AL who underwent PBPC mobilization and collection. Twenty of the 42 patients (47.6%) had cardiac involvement and 35 of 42 (83.3%) renal involvement. Thirty-three patients (78.5%) were mobilized with granulocyte-colony-stimulating factor (G-CSF) alone (10 microg/kg) and 9 (21.4%) with cyclophosphamide (CTX) (3 g/m(2)) plus G-CSF (10 microg/kg). RESULTS: The median number of collections per patient after either G-CSF or CTX plus G-CSF was 1.8 (range, 1-3). The median number of CD34+ cells collected in patients mobilized with G-CSF alone was 8.2 x 10(6) per kg (range, 1.35 x 10(6)-21.3 x 10(6)/kg) and in patients mobilized with CTX plus G-CSF it was 8.9 x 10(6) per kg (range, 5.5 x 10(6)-14.9 x 10(6)/kg). Forty of the 42 (95.2%) patients produced the minimum required CD34+ cell target dose (4 x 10(6)/kg). The overall rate of morbidity during the collections was 50 percent (21/42 patients): 18 patients (42.8%) had asymptomatic hypotension, 1 (2.4%) had symptomatic hypotension with nausea and vomiting, and 2 (4.7%) experienced a life-threatening hypotensive episode. There were no procedure-related deaths. CONCLUSION: Our multidisciplinary approach was effective in limiting the serious side effects related to PBPC mobilization and collection in AL patients.  相似文献   

17.
BACKGROUND: A single injection of pegfilgrastim has been shown to be equivalent to daily filgrastim in enhancing neutrophil recovery after chemotherapy, whereas the experiences with pegfilgrastim in mobilization of peripheral blood progenitor cells (PBPCs) are limited. STUDY DESIGN AND METHODS: Forty unselected patients with lymphoma or multiple myeloma were treated with different chemotherapy regimens followed by 6 mg of pegfilgrastim for mobilization of autologous PBPCs. Patients with an inadequate mobilization (blood CD34+ cells 相似文献   

18.
We have retrospectively evaluated the results of two cycles of mobilization and collection of peripheral blood progenitor cells (PBPC) from 46 healthy donors included in the Spanish National Donor Registry. Mobilization involved the administration of granulocyte colony-stimulating factor (G-CSF) at a median dose of 10 microg/kg per day, and apheresis was begun after the fourth dose of G-CSF in both cycles. The median interval between both mobilizations was 187 days (range, 7-1428 days). The incidence and types of side-effects were similar after both donations, with 25 and 26 donors developing some toxicity after the first and second donations, respectively. The median number of CD34(+) cells collected was higher after the first mobilization than after the second (5.15 versus 3.16 x 10(6)/kg, respectively; p = 0.05), and 29 donors yielded fewer CD34(+) cells after the second mobilization (p = 0.018). A lower proportion of donors yielded CD34(+) cell counts >4 x 10(6)/kg after the second cycle than after the first (52% versus 76%, respectively; p = 0.057). Our study shows that second rounds of PBPC collection from normal donors are well tolerated but are associated with a significantly reduced number of CD34(+) cells collected when the same mobilization scheme is used.  相似文献   

19.
BACKGROUND: Although controlled-rate freezing and storage in liquid nitrogen are the standard procedure for peripheral blood progenitor cell (PBPC) cryopreservation, uncontrolled-rate freezing and storage at -80 degrees C have been reported. STUDY DESIGN AND METHODS: The prospective evaluation of 109 autologous PBPC transplantations after uncontrolled-rate freezing and storage at -80 degrees C of apheresis products is reported. The cryoprotectant solution contained final concentrations of 1-percent human serum albumin, 2.5-percent hydroxyethyl starch, and 3.5-percent DMSO. RESULTS: With in vitro assays, the median recoveries of nucleated cells (NCs), CD34+ cells, CFU-GM, and BFU-E were 60.8 percent (range, 11.2-107.1%), 79.6 percent (6.3-158.1%), 35.6 percent (0.3-149.5%), and 32.6 percent (1.7-151.1%), respectively. The median length of storage was 7 weeks (range, 1-98). The median cell dose, per kg of body weight, given to patients after the preparative regimen was 6.34 x 10(8) NCs (range, 0.02-38.3), 3.77 x 10(6) CD34+ cells (0.23-58.5), and 66.04 x 10(4) CFU-GM (1.38-405.7). The median time to reach 0.5 x 10(9) granulocytes per L, 20 x 10(9) platelets per L, and 50 x 10(9) reticulocytes per L was 11 (range, 0-37), 11 (0-129), and 17 (0-200) days, respectively. Hematopoietic reconstitution did not differ in patients undergoing myeloablative or nonmyeloablative conditioning regimens before transplantation. CONCLUSION: This simple and less expensive cryopreservation procedure can produce successful engraftment, comparable to that obtained with the standard storage procedure.  相似文献   

20.
The yield of CD34+ PBPC and colony-forming units-granulocyte-macrophage (CFU-GM) in leukapheresis products and the expression of the adhesion molecules CD11a, CD31, CD49d, CD49e, CD54, CD58, CD62L, c-kit (CD117), Thy-1 (CD90), CD33, CD38, and HLA-DR on CD34+ PBPC were analyzed in patients with cancer of the testis (n = 10), breast cancer (n = 10), Hodgkin's disease (n = 20), high-grade (n = 20) and low-grade (n = 20) non-Hodgkin's lymphoma, and healthy donors (n = 20) undergoing G-CSF (filgrastim)-stimulated PBPC mobilization. For each disease entity, G-CSF was administered in two different doses, 10 microg G-CSF/kg body weight (BW)/day s.c. vs. 24 microg G-CSF/kg BW s.c./day in steady-state condition. Data were compared for each dose group separately. Patients with cancer of the testis and breast cancer mobilized significantly more CD34+ cells than patients with high-grade and low-grade non-Hodgkin's lymphoma and Hodgkin's disease (p<0.05). Correspondingly, expression of CD49d on CD34+ PBPC was significantly lower in the same patients with cancer of the testis compared with high-grade and low-grade non-Hodgkin's lymphoma and Hodgkins' disease and in patients with breast cancer compared with high-grade and low-grade non-Hodgkin's lymphoma, Hodgkins's disease, and healthy donors. Similar results were obtained for CD49e. These data suggest that the expression of the adhesion molecules CD49d and CD49e on G-CSF-mobilized CD34+ cells of patients with solid tumors, non-Hodgkin's lymphoma, Hodgkin's disease, and healthy donors is inversely correlated with the amount of mobilized CD34+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号