首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri‐methylation of H3K27. Chromatin‐modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non‐coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.  相似文献   

3.
4.
Context and Objective: Epigenetic dysregulation is implicated in pituitary neoplasia as the cause of silencing of several tumor suppressor genes. However, the upstream mediators of such events remain unknown. Design: We examined the three members of the DNA methyltransferase (DNMT) enzyme family in normal and neoplastic human and mouse pituitary cells. Setting: This study was performed at a university-affiliated cancer research institute. Main Outcome Measures: Gene expression, promoter DNA methylation, histone modifications, and cell proliferation were determined. Results: In contrast to DNMT1 and DNMT3a, DNMT3b was expressed at relatively higher levels in neoplastic pituitary cells. However, examination of the human DNMT3b 5' region showed uniformly low DNA methylation levels with little difference between normal and tumor samples. Through pharmacological methylation inhibition or histone deacetylation inhibition, we identified that DNMT3b gene expression is subject to histone modifications. Down-regulation of DNMT3b resulted in induction of retinoblastoma, p21, and p27, and reduction in cell proliferation. These targeted effects were associated with enhanced histone 3 acetylation and diminished histone methylation. Conclusion: Our findings identify DNMT3b as a putative mediator of epigenetic control through histone modifications of gene expression in pituitary cells.  相似文献   

5.
Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.  相似文献   

6.
7.
8.
Epigenetic regulation: a new research area for melatonin?   总被引:2,自引:2,他引:2  
Epigenetic, modifications of DNA and histones, i.e. heritable alterations in gene expression that do not involve changes in DNA sequences, are known to be involved in disease. Two important epigenetic changes that contribute to disease are abnormal methylation patterns of DNA and modifications of histones in chromatin. Epimutations, such as the hypermethylation and epigenetic silencing of tumor suppressor genes, have revealed a new area for cancer treatment. Studies using DNA methyltransferase inhibitors such as procaine, hydralazine, and RG108 have had promising outcomes against cancer therapy. Melatonin, one of the most versatile molecules in nature, may hypothetically be involved in epigenetic regulation. In this review, the potential role of melatonin in inhibiting DNA methyltransferase and epigenetic regulation is discussed.  相似文献   

9.
10.
During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.  相似文献   

11.
Epigenetic biomarkers for human cancer: the time is now   总被引:1,自引:0,他引:1  
The importance of epigenetic processes in the development of cancer is clear. The study of epigenetics is therefore bound to contribute to the improvement of human health. Aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns are the main epigenetic alterations, and these are associated with tumorigenesis. Epigenetic technologies in cancer studies are helping increase the number of cancer candidate genes and allow us to examine changes in 5-methylcytosine DNA and histone modifications at a genome-wide level. In fact, all the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. They are being explored as biomarkers in clinical use for early detection of disease, tumor classification and response to treatment with classical chemotherapy agents, target compounds and epigenetic drugs. Encouraging results have been obtained with histone deacetylase and DNA methyltransferase inhibitors, leading the US Food and Drug Administration to approve several of them for the treatment of hematological malignancies and lymphoproliferative disorders, such as myelodysplastic syndrome and cutaneous lymphoma. However, many tasks remains to be done, such as the clinical validation of epigenetic biomarkers to allow the accurate prediction of the outcome of cancer patients and their potential chemosensitivity to current pharmacological treatments.  相似文献   

12.
13.
14.
15.
Polycomb-mediated repression and DNA methylation are important epigenetic mechanisms of gene silencing. Recent evidence suggests a functional link between the polycomb repressive complex (PRC) and Dnmts in cancer cells. Here we provide evidence that Lsh, a regulator of DNA methylation, is also involved in normal control of PRC-mediated silencing during embryogenesis. We demonstrate that Lsh, a SNF2 homolog, can associate with some Hox genes and regulates Dnmt3b binding, DNA methylation, and silencing of Hox genes during development. Moreover, Lsh can associate with PRC1 components and influence PRC-mediated histone modifications. Thus Lsh is part of a physiological feedback loop that reinforces DNA methylation and silencing of PRC targets.  相似文献   

16.
17.
18.
Fathallah H  Weinberg RS  Galperin Y  Sutton M  Atweh GF 《Blood》2007,110(9):3391-3397
Butyrate is a prototype of histone deacetylase inhibitors that is believed to reactivate silent genes by inducing epigenetic modifications. Although butyrate was shown to induce fetal hemoglobin (HbF) production in patients with hemoglobin disorders, the mechanism of this induction has not been fully elucidated. Our studies of the epigenetic configuration of the beta-globin cluster suggest that DNA methylation and histone H3 acetylation are important for the regulation of developmental stage-specific expression of the beta-like globin genes, whereas acetylation of both histones H3 and H4 seem to be important for the regulation of tissue-specific expression. These studies suggest that DNA methylation may be important for the silencing of the beta-like globin genes in nonerythroid hematopoietic cells but may not be necessary for their silencing in nonhematopoietic cells. Furthermore, our studies demonstrate that butyrate exposure results in a true reversal of the normal developmental switch from gamma- to beta-globin expression. This is associated with increased histone acetylation and decreased DNA methylation of the gamma-globin genes, with opposite changes in the beta-globin gene. These studies provide strong support for the role of epigenetic modifications in the normal developmental and tissue-specific regulation of globin gene expression and in the butyrate-mediated pharmacologic induction of HbF production.  相似文献   

19.
Epigenetic alterations that do not involve a change in the DNA sequence have been increasingly recognized to be important key events in the regulation of the gene expression and carcinogenesis. Major epigenetic mechanisms include the methylation of cytosine in DNA, changes in the histone and chromatin structure due to covalent posttranslational modification of histone proteins and the RNA-mediated regulation of the gene expression. Esophageal squamous cell carcinoma (ESCC) continues to be associated with a very poor prognosis, indicating that obtaining a clear understanding of the pathogenesis of ESCC is desired for improving clinical outcomes. In this review, we discuss the recent progress in research on epigenetic alterations in ESCC, with respect to the following points: (1) DNA methylation, including global hypomethylation and DNA hypermethylation at CpG islands in the promoters of tumor suppressor genes, (2) histone acetylation/deacetylation and histone methylation with the alteration of histone-modifying enzymes and (3) alterations in the expression of microRNA and the recently emerging long non-coding RNA. We then discuss the interplay among these epigenetic events and the crosstalk between epigenetic and genetic changes in ESCC. It is therefore important to understand the molecular mechanisms underlying the development and progression of ESCC to improve the treatment outcome of this devastating disease, although this information is quite complicated and confusing.  相似文献   

20.
Xing M 《Endocrinology》2007,148(3):948-953
Aberrant gene methylation plays an important role in human tumorigenesis, including thyroid tumorigenesis. Many tumor suppressor genes are aberrantly methylated in thyroid cancer, and some even in benign thyroid tumors, suggesting a role of this epigenetic event in early thyroid tumorigenesis. Methylation of some of these genes tends to occur in certain types of thyroid cancer and is related to specific signaling pathways. For example, methylation of PTEN and RASSF1A genes occurs mostly in follicular thyroid cancer, and its tumorigenic role may be related to the phosphatidylinositol 3-kinase/Akt signaling pathway, whereas methylation of genes for tissue inhibitor of metalloproteinase-3, SLC5A8, and death-associated protein kinase occurs in papillary thyroid cancer and is related to the BRAF/MAPK kinase/MAPK pathway. Methylation of thyroid-specific genes, such as those for sodium/iodide symporter and thyroid-stimulating hormone receptor, is also common in thyroid cancer. Although its tumorigenic role is not clear, methylation, and hence silencing, of these thyroid-specific genes is a cause for the failure of clinical radioiodine treatment of thyroid cancer. Unlike gene methylation, histone modifications have been relatively poorly investigated in thyroid tumors. Future studies need to emphasize the mechanistic aspects of these two types of epigenetic alterations to uncover new molecular mechanisms in thyroid tumorigenesis and to provide novel therapeutic targets for thyroid cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号