首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The immunomodulatory effect of ginsan based on the production of cytokines and the activation of macrophage was studied. Murine peritoneal macrophages (PM) on in vitro treatment with ginsan isolated from Panax ginseng induced mRNA of cytokines such as tumor necrosis factor (TNF)-alpha, interleukin-1 (IL-1)beta, interleukin-6 (IL-6) and interleukin-12 (IL-12); TNF-alpha mRNA induction was maximum within 3 h, IL-6 mRNA was gradually induced up to 24 h, and IL-1beta and IL-12 mRNA were highly induced at 24 h. IL-1beta and IL-6 protein levels also increased within 24 h in a dose-dependent manner and reached a maximum with 100 microg/ml ginsan. IL-12 was induced after 3 days and a high level of induction was detected after 4 days post treatment. Ginsan enhanced the lytic death of L929 cells through TNF-alpha activation. The mRNA expression of nitric oxide synthase (iNOS) was highly induced after 24 h treatment of ginsan, and then NO production was maximum after 48-h treatment with a low dose of 1 microg/ml. The level of iNOS mRNA induction by ginsan was slightly less than that of macrophages activating agents such as LPS plus IFN-gamma. The tumoricidal activity of macrophage cultured with ginsan on Yac-1 cells was enhanced in a dose-dependent manner; growth inhibition increased 1.6-fold with 100 microg/ml ginsan. These results suggest that ginsan exerts as an effective immunomodulator and enhances antitumor activity of macrophages.  相似文献   

4.
Bee venom is used as a traditional medicine for treatment of arthritis. The anti-inflammatory activity of the n-hexane, ethyl acetate, and aqueous partitions from bee venom (Apis mellifera) was studied using cyclooxygenase (COX) activity and pro-inflammatory cytokines (TNF-alpha and IL-1beta) production, in vitro. COX-2 is involved in the production of prostaglandins that mediate pain and support the inflammatory process. The aqueous partition of bee venom showed strong dose-dependent inhibitory effects on COX-2 activity (IC50 = 13.1 microg/mL), but did not inhibit COX-1 activity. The aqueous partition was subfractionated into three parts by molecular weight differences, namely, B-F1 (above 20 KDa), B-F2 (between 10 KDa and 20 KDa) and B-F3 (below 10 KDa). B-F2 and B-F3 strongly inhibited COX-2 activity and COX-2 mRNA expression in a dose-dependent manner, without revealing cytotoxic effects. TNF-alpha and IL-1beta, are potent pro-inflammatory cytokines and are early indicators of the inflammatory process. We also investigated the effects of three subfractions on TNF-alpha and IL-1beta production using ELISA method. All three subfractions, B-F1, B-F2 and B-F3, inhibited TNF-alpha and IL-1beta production. These results suggest the pharmacological activities of bee venom on anti-inflammatory process include the inhibition of COX-2 expression and the blocking of pro-inflammatory cytokines (TNF-alpha, and IL-1beta) production.  相似文献   

5.
Mast cells are critical for initiating innate immune and inflammatory responses by releasing a number of pro-inflammatory mediators. The potential immunomodulatory properties of hydrogenated aromatic hydrocarbons have been the subject of extensive investigation, as the immune system is a sensitive target for hydrogenated aromatic hydrocarbon toxicity. In this report, the effects of polychlorinated biphenyl (PCB) on the expression of cyclooxygenase-2 and pro-inflammatory cytokines such as interleukin-1beta (IL-1beta), IL-6 and tumor necrosis factor (TNF)-alpha in the human leukemic mast cell line were investigated. TNF-alpha and IL-1beta expressed their respective mRNA in the presence or absence of PCB, while cyclooxygenase-2 (COX-2) and IL-6 mRNA expression were highly induced by PCB after 2 h. Moreover, pre-treatment with the nuclear factor (NF)-kappaB pathway inhibitor, pyrrolidine dithiocarbamate, suppressed COX-2, TNF-alpha and IL-1beta induction and reduced the IL-6 mRNA levels induced by PCB. The NF-kappaB activity was determined by electrophoretic mobility shift analysis (EMSA) using an oligonucleotide containing a consensus NF-kappaB binding sequence. Stimulating the cells with PCB activated NF-kappaB. However, pre-treating them with a NF-kappaB pathway inhibitor, pyrrolidine dithiocarbamate, suppressed PCB-induced NF-kappaB activation. This suggests that PCB induces cycloxoygenase-2 and pro-inflammatory cytokine expression, and that this induction occurs through NF-kappaB.  相似文献   

6.
Won JH  Kim JY  Yun KJ  Lee JH  Back NI  Chung HG  Chung SA  Jeong TS  Choi MS  Lee KT 《Planta medica》2006,72(13):1181-1187
During our efforts to find bioactive natural products with anti-inflammatory activity, we isolated gigantol from the whole plants of Cymbidium goeringii (Orchidaceae) by activity-guided chromatographic fractionation. Gigantol was found to have potent inhibitory effects on LPS-induced nitric oxide (NO) and prostaglandin E (2) (PGE (2)) production in RAW 264.7 cells. Consistent with these findings, gigantol suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in RAW 264.7 cells in a concentration-dependent manner. Our data also indicate that gigantol is a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) release and influenced the mRNA expression levels of these cytokines in a dose-dependent manner. Furthermore, a reporter gene assay for nuclear factor kappa B (NF-kappaB) and an electromobility shift assay (EMSA) demonstrated that gigantol effectively inhibited the activation of NF-kappaB, which is necessary for the expression of iNOS, COX-2, TNF-alpha, IL-1beta and IL-6. Thus, our studies suggest that gigantol inhibits LPS-induced iNOS and COX-2 expression by blocking NF- kappaB activation.  相似文献   

7.
8.
Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) play a key role in the pathogenesis of osteoarthritis (OA). Anti-inflammatory agents capable of suppressing the production and catabolic actions of these cytokines may have therapeutic potential in the treatment of OA and a range of other osteoarticular disorders. The purpose of this study was to examine the effects of curcumin (diferuloylmethane), a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in human articular chondrocytes maintained in vitro. The effects of curcumin were studied in cultures of human articular chondrocytes treated with IL-1beta and TNF-alpha for up to 72h. Expression of collagen type II, integrin beta1, cyclo-oxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) was monitored by western blotting. The effects of curcumin on the expression, phosphorylation and nuclear translocation of protein components of the NF-kappaB system were studied by western blotting and immunofluorescence, respectively. Treatment of chondrocytes with curcumin suppressed IL-1beta-induced NF-kappaB activation via inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation and p65 nuclear translocation. Curcumin inhibited the IL-1beta-induced stimulation of up-stream protein kinase B Akt. These events correlated with down-regulation of NF-kappaB targets including COX-2 and MMP-9. Similar results were obtained in chondrocytes stimulated with TNF-alpha. Curcumin also reversed the IL-1beta-induced down-regulation of collagen type II and beta1-integrin receptor expression. These results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.  相似文献   

9.
10.
11.
12.
Mycotoxins were fungal metabolites that were widely present in feed and food; some of them were known to associate with human and animal disease. In the present study, the effects of fumonisin B1 (FmB1) and aflatoxin B1 (AFB1) on swine alveolar macrophages (AM) were examined by exposing primary cultures of swine AM to various concentrations of mycotoxins. Incubation of AM with 5 microg/ml of FmB1 for 72 h led to a reduction in the number of viable cells to 65% of the control levels. In the presence of 1.5 microg/ml of AFB1, the viability of AM falls to less than 41% of controls after 24 h exposure. FmB1, but not AFB1, induced the apoptosis of swine AM with evidence of DNA laddering and nuclear fragmentation. However, both FmB1 and AFB1 exposure induced the expression of apoptosis-related heat shock protein 72 (HSP 72) in AM. Swine AM treated with 50 ng/ml of FmB1 and 100 ng/ml of AFB1 for 24 h led to a reduction in phagocytic ability to approximately 55 and 36% of the control levels, respectively. Incubation of AM with FmB1 (2 and 10 microg/ml) for 24 h dramatically decreased the mRNA levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). However, AFB1 treatment did not affect the expression of IL-1beta and TNF-alpha mRNA. The results suggest that both FmB1 and AFB1 are immunotoxic to swine AM but that they exert their toxic effects via different biochemical mechanisms.  相似文献   

13.
In the present study, the effects of terpenes (styraxosides A and B) and lignans (egonol, masutakeside I, and styraxlignolide A) isolated from the stem bark of Styrax japonica Sieb. et Zucc. (styracaceae) were evaluated on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by the RAW 264.7 macrophage cell line. Of the tested compounds, styraxoside A was found to most potently inhibit the productions of NO and PGE2, and also significantly reduced the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta). Consistent with these observations, the protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the mRNA expression levels of iNOS, COX-2, TNF-alpha and IL-1beta were found to be inhibited by styraxoside A in a concentration-dependent manner. Furthermore, styraxoside A inhibited the LPS-induced DNA binding activity of nuclear factor-kappaB (NF-kappaB). Taken together, our data indicate that styraxoside A inhibits LPS-induced iNOS, COX-2, TNF-alpha, and IL-1beta expressions through the down-regulation of NF-kappaB-DNA binding activity.  相似文献   

14.
In the present study, the effects of several triterpenes isolated from the leaves of Acanthopanax chiisanensis (Araliaceae), namely, chiisanoside, isochiisanoside, 22-hydroxychiisanoside and chiisanogenin (the aglycone of chiisanoside) were evaluated on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by the RAW 264.7 macrophage cell line. Of the triterpenes tested, chiisanoside was found to most potently inhibit NO and PGE2 production. In addition, chiisanoside significantly reduced the release of inflammatory cytokines like TNF-alpha and IL-1beta. Consistent with these observations, the protein and mRNA expression levels of iNOS and COX-2 enzyme were found to be inhibited by chiisanoside in a concentration-dependent manner. Furthermore, chiisanoside inhibited the nuclear factor-kappaB (NF-kappaB) activation induced by LPS and this was associated with a reduction in p65 protein in the nucleus and with the phosphorylations of ERK1/2 and JNK MAP kinases. Taken together, our data indicate that the anti-inflammatory properties of chiisanoside might be the result from the inhibition of iNOS, COX-2, TNF-alpha and IL-1beta expression through the down-regulation of NF-kappaB binding activity.  相似文献   

15.
16.
17.
Macrolides have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. We examined the in vitro effect of the macrolides tilmicosin and tylosin, which are only used in the veterinary clinic, on the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines by lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse peripheral blood mononuclear cells (PBMCs). Compared with 5 microg/mL, tilmicosin and tylosin concentrations of 10 microg/mL and 20 microg/mL significantly decreased the production of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), PGE(2), NO, tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6, and increased IL-10 production. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression were also significantly reduced. These results support the opinion that macrolides may exert an anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.  相似文献   

18.
Vimang is an aqueous extract of Mangiferia indica L., traditionally used in Cuba as an anti-inflammatory, analgesic and antioxidant. In the present study, we investigated the effects of Vimang and of mangiferin (a C-glucosylxanthone present in the extract) on rat macrophage functions including phagocytic activity and the respiratory burst. Both Vimang and mangiferin showed inhibitory effects on macrophage activity: (a) intraperitoneal doses of only 50-250 mg/kg markedly reduced the number of macrophages in peritoneal exudate following intraperitoneal injection of thioglycollate 5 days previously (though there was no significant effect on the proportion of macrophages in the peritoneal-exudate cell population); (b) in vitro concentrations of 0.1-100 microg/ml reduced the phagocytosis of yeasts cells by resident peritoneal and thioglycollate-elicited macrophages; (c) in vitro concentrations of 1-50 microg/ml reduced nitric oxide (NO) production by thioglycollate-elicited macrophages stimulated in vitro with lipopolysaccharide (LPS) and IFNgamma; and (d) in vitro concentrations of 1-50 microg/ml reduced the extracellular production of reactive oxygen species (ROS) by resident and thioglycollate-elicited macrophages stimulated in vitro with phorbol myristate acetate (PMA). These results suggest that components of Vimang, including the polyphenol mangiferin, have depressor effects on the phagocytic and ROS production activities of rat macrophages and, thus, that they may be of value in the treatment of diseases of immunopathological origin characterized by the hyperactivation of phagocytic cells such as certain autoimmune disorders.  相似文献   

19.
20.
4-O-methylgallic acid (4-OMGA) is an in vivo major metabolite of gallic acid which is abundant in red wine, tea, legumes and fruit. We examined the in vitro and in vivo effects of 4-OMGA on the production and expression of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) as well as the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). 4-OMGA inhibited the expression and production of these inflammatory genes and mediators in RAW264.7 cells and primary macrophages stimulated with lipopolysaccharide (LPS). This compound also reduced the serum levels of these inflammatory mediators in endotoxemic mice. 4-OMGA inhibited iNOS promoter activity and NF-kappaB activation in LPS-treated RAW264.7 cells. 4-OMGA inhibited the LPS-mediated increase in reactive oxygen species production and exogenous H(2)O(2)-induced NF-kappaB activation. Moreover, this compound blocked IkappaBalpha phosphorylation and degradation and nuclear translocation of the cytosolic NF-kappaB p65 subunit, which highly correlated with its inhibitory effect on IkappaB kinase activity and inflammatory mediator production. These results suggest that 4-OMGA suppresses inflammation-associated gene expression by blocking NF-kappaB activation through the inhibition of redox-sensitive IkappaB kinase activity, suggesting that this compound may be beneficial for treating endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号