首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
We have previously described a mitoxantrone-resistant MCF7 cell line that is cross-resistant to topotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11), and 9-aminocamptothecin, but not to camptothecin. A novel mechanism that resulted in decreased topotecan accumulation in MCF7/MX cells was proposed (Yang et al. Cancer Res 55: 4004-4009, 1995). We now have developed a topotecan-resistant cancer cell line from wild-type MCF7 cells. MCF7/TPT300 cells were 68.9-fold resistant to topotecan, 68.3-fold to 10-hydroxy-7-ethylcamptothecin (SN-38), and 116-fold to mitoxantrone, but only 4.1-fold to camptothecin. Topotecan efflux was increased in MCF7/TPT300 cells compared with MCF7/WT cells, and this increase was reversed upon ATP depletion by sodium azide, suggesting an energy-dependent drug efflux mechanism. However, MCF7/TPT300 cells did not overexpress P-glycoprotein or the multidrug resistance-associated protein (MRP1). In contrast, overexpression of the breast cancer resistance protein (BCRP/MXR/ABCP) was observed in MCF7/TPT300 cells as well as DNA topoisomerase I down-regulation. Our data suggest that enhanced topotecan efflux contributes partly to topotecan resistance in MCF7/TPT300 cells, possibly mediated by BCRP/MXR/ABCP.  相似文献   

3.
Breast cancer resistance protein (BCRP), an ATP-binding cassette transporter, confers resistance to a series of anticancer reagents such as mitoxantrone, 7-ethyl-10-hydroxycamptothecin, and topotecan. We reported previously that estrone and 17beta-estradiol reverse BCRP-mediated multidrug resistance. In the present study, we demonstrate that BCRP exports estrogen metabolites. First, we generated BCRP-transduced LLC-PK1 (LLC/BCRP) cells, in which exogenous BCRP is expressed in the apical membrane, and investigated transcellular transport of 3H-labeled compounds using cells plated on microporous filter membranes. The basal-to-apical transport (excretion) of mitoxantrone, estrone, and 17beta-estradiol was greater in LLC/BCRP cells than in LLC-PK1 cells. Thin-layer chromatography of transported steroids revealed that the transport of estrone and 17beta-estradiol was independent of BCRP expression. Alternatively, increased excretion of estrone sulfate and 17beta-estradiol sulfate was observed in LLC/BCRP cells. BCRP inhibitors completely inhibited the increased excretion of sulfated estrogens across the apical membrane. Conversion of estrogens into their sulfate conjugates was similar between LLC/BCRP and LLC-PK1 cells, suggesting that the increased excretion of estrogen sulfates was attributable to BCRP-mediated transport. Next, the uptake of 3H-labeled compounds in membrane vesicles from BCRP-transduced K562 (K562/BCRP) cells was investigated. 3H-labeled estrone sulfate, but not 3H-labeled estrone or 17beta-estradiol, was taken up by membrane vesicles from K562/BCRP cells, and this was ATP-dependent. Additionally, BCRP inhibitors suppressed the transport of estrone sulfate in membrane vesicles from K562/BCRP cells. These results suggest that BCRP does not transport either free estrone or 17beta-estradiol but exports sulfate conjugates of these estrogens.  相似文献   

4.
Non-P-glycoprotein-mediated multidrug-resistant C-A120 cells that overexpressed multidrug resistance protein (MRP) were 10.8- and 29. 6-fold more resistant to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) and SN-38, respectively, than parental KB-3-1 cells. To see whether MRP is involved in CPT-11 and SN-38 resistance, MRP cDNA was transfected into KB-3-1 cells. The transfectant, KB/MRP, which overexpressed MRP, was resistant to both CPT-11 and SN-38. 2-[4-Diphenylmethyl)-1-piperazinyl]ethyl-5-(trans-4,6-dimethyl-1,3 , 2-dioxaphosphorinan-2-yl)-2, 6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate P-oxide (PAK-104P) and MK571, which reversed drug resistance in MRP overexpressing multidrug-resistant cells, significantly increased the sensitivity of C-A120 and KB/MRP cells, but not of KB-3-1 cells, to CPT-11 and SN-38. The accumulation of both CPT-11 and SN-38 in C-A120 and KB/MRP cells was lower than that in KB-3-1 cells. The treatment with 10 microM PAK-104P increased the accumulation of CPT-11 and SN-38 in C-A120 and KB/MRP cells to a level similar to that found in KB-3-1 cells. The ATP-dependent efflux of CPT-11 and SN-38 from C-A120 and KB/MRP cells was inhibited by PAK-104P. DNA topoisomerase I expression, activity, and sensitivity to SN-38 were similar in the three cell lines. Furthermore, the conversion of CPT-11 to SN-38 in KB-3-1 and C-A120 cell lines was similar. These findings suggest that MRP transports CPT-11 and SN-38 and is involved in resistance to CPT-11 and SN-38 and that PAK-104P reverses the resistance to CPT-11 and SN-38 in tumors that overexpress MRP.  相似文献   

5.
6.
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP-binding cassette (ABC) transporter superfamily. It is able to efflux a broad range of anti-cancer drugs through the cellular membrane, thus limiting their anti-proliferative effects. Due to its relatively recent discovery in 1998, and in contrast to the other ABC transporters P-glycoprotein (MDR1/ABCB1) and multidrug resistance-associated protein (MRP1/ABCC1), only a few BCRP inhibitors have been reported. This review summarizes the known classes of inhibitors that are either specific for BCRP or also inhibit the other multidrug resistance ABC transporters. Information is presented on structure-activity relationship aspects and how modulators may interact with BCRP.  相似文献   

7.
8.
Members of the ATP-binding cassette (ABC) transporters including P-glycoprotein (Pgp/ABCB1), multidrug resistance proteins (MRPs/ABCC) as well as breast cancer resistance protein (BCRP/ABCG2) function as ATP-dependent drug efflux transporters, which form a unique defense network against multiple chemotherapeutic drugs and cellular toxins. Among antitumor agents is the important group of folic acid antimetabolites known as antifolates. Antifolates such as methotrexate (MTX), pemetrexed and raltitrexed exert their cytotoxic activity via potent inhibition of folate-dependent enzymes essential for purine and pyrimidine nucleotide biosynthesis and thereby block DNA replication. Overexpression of MRPs and BCRP confers resistance upon malignant cells to various hydrophilic and lipophilic antifolates. Apart from their central role in mediating resistance to antifolates and other anticancer drugs, MRPs and BCRP have been recently shown to transport naturally occurring reduced folates. This was inferred from various complementary systems as follows: (a) Cell-free systems including ATP-dependent uptake of radiolabeled folate/MTX into purified inside-out membrane vesicles from stable transfectants and/or cells overexpressing these transporters, (b) Decreased accumulation of radiolabeled folate/MTX in cultured tumor cells overexpressing these transporters, as well as (c) In vivo rodent models such as Eisi hyperbillirubinemic rats (EHBR) that hereditarily lack MRP2 in their canalicular membrane and thereby display a bile that is highly deficient in various reduced folate cofactors and MTX, when compared with wild type Sprague-Dawley (SD) rats. In all cases, these folate/antifolate transporters functioned as high capacity, low affinity ATP-driven exporters. While the mechanism of cellular retention of (anti)folates is mediated via (anti)folylpolyglutamylation, certain efflux transporters including MRP5 (ABCC5) and BCRP were shown to transport both mono-, di- as well as triglutamate derivatives of MTX and folic acid. Furthermore, overexpression of MRPs and BCRP has been shown to result in decreased cellular folate pools, whereas loss of ABC transporter expression brought about a significant expansion in the intracellular reduced folate pool. The latter finding has important implications to antifolate-based chemotherapy as an augmented cellular folate pool results in a significant level of resistance to certain antifolates. Hence, the aims of the present review are: (a) To summarize and discuss the cumulative evidence supporting a functional role for various multidrug resistance efflux transporters of the ABC superfamily which mediate resistance to hydrophilic and lipophilic antifolates, (b) To describe and evaluate the recent data suggesting a role for these efflux transporters in regulation of cellular folate homeostasis under folate replete and deplete conditions. Furthermore, novel developments and future perspectives regarding the identification of novel antifolate target proteins and mechanisms of action, as well as rationally designed emerging drug combinations containing antifolates along with receptor tyrosine kinase inhibitors are being discussed.  相似文献   

9.
10.
11.
The safety and efficacy of combination therapy with 7-ethyl-10-[4-[1-piperidino]-1-piperidino]carbonyloxycamptothecin (CPT-11, irinotecan) and S-1 composed of tegafur, a prodrug of 5-fluorouracil, gimeracil, and potassium oxonate, have been confirmed in patients with colorectal cancer. Previously, we showed that p.o. coadministration of S-1 decreased the plasma concentration of both CPT-11 and its metabolites in a patient with advanced colorectal cancer. The aim of this study was to clarify the mechanism of drug interaction using both in vivo and in vitro methods. Rats were administered S-1 p.o. (10 mg/kg) once a day for 7 consecutive days. On day 7, CPT-11 (10 mg/kg) was administered by i.v. injection. Coadministration of S-1 affected the pharmacokinetic behavior of CPT-11 and its metabolites, with a decrease in the C(max) and area under the plasma concentration curve (AUC) of the active metabolite 7-ethyl-10-hydroxycampothecin (SN-38) lactone form. Furthermore, the rate of biliary excretion of the SN-38 carboxylate form increased on coadministration of S-1. In the liver, the level of breast cancer resistance protein (BCRP), but not P-glycoprotein and multidrug resistance-associated protein 2, was elevated after administration of S-1. Enzymatic conversion of CPT-11 to SN-38 by carboxylesterase (CES) was unaffected by the liver microsomes of rats treated with S-1. In addition, components of S-1 did not inhibit the hydrolysis of p-nitrophenylacetate, a substrate of CES, in the S9 fraction of HepG2 cells. Therefore, the mechanism of drug interaction between CPT-11 and S-1 appears to involve up-regulation of BCRP in the liver, resulting in an increased rate of biliary excretion of SN-38 accompanied by a decrease in the C(max) and AUC of SN-38.  相似文献   

12.
The breast cancer resistance protein, BCRP/ABCG2, is a half-molecule ATP-binding cassette transporter that facilitates the efflux of various anticancer agents from the cell, including 7-ethyl-10-hydroxycamptothecin, topotecan and mitoxantrone. The expression of BCRP can thus confer a multidrug resistance phenotype in cancer cells, and its transporter activity is involved in the in vivo efficacy of chemotherapeutic agents. Thus, the elucidation of the substrate preferences and structural relationships of BCRP is essential to understanding its in vivo functions during chemotherapeutic treatments. Single nucleotide polymorphisms (SNPs) have also been found to be key factors in determining the efficacy of chemotherapeutics, and those therapeutics that inhibit BCRP activity, such as the SNP that results in a C421A mutant, may result in unexpected side effects of the BCRP- anticancer drugs interaction even at normal dosages. In order to modulate the BCRP activity during chemotherapy, various compounds have been tested as inhibitors of this protein. Estrogenic compounds including estrone, several tamoxifen derivatives in addition to phytoestrogens and flavonoids have been shown to reverse BCRP-mediated drug resistance. Intriguingly, recently developed molecular targeted cancer drugs, such as the tyrosine kinase inhibitors imatinib mesylate, gefitinib and others, can also interact with BCRP. Since both functional SNPs and inhibitory agents of BCRP modulate the in vivo pharmacokinetics and pharmacodynamics of its substrate drugs, BCRP activity is an important consideration in the development of molecular targeted chemotherapeutics.  相似文献   

13.
The present study examined how the multidrug resistance protein (MRP1), which is an ATP-dependent anionic conjugate transporter, also mediates the transport of reduced glutathione (GSH) and the co-transport of the cationic drug, daunorubicin, with GSH in living GLC4/Adr cells. To obtain information on the affinity of GSH for the multidrug resistance protein in GLC4/Adr cells, we investigated the GSH concentration dependence of the ATP-dependent GSH efflux. The intracellular GSH concentration was modulated by preincubation of the cells with 25 microM buthionine sulfoximine, an inhibitor of GSH synthetase, for 0-24 h. The transport of GSH was related to the intracellular GSH concentration up to approximately 5 mM and then plateaued. Fitting of the obtained data according to the Michaelis-Menten equation revealed a Km of 3.4+/-1.4 mM and a Vmax of 1.5+/-0.2x10(-18) mol/cell/s. The ATP-dependent transport of GSH was inhibited by 3-([[3-(2-[7-chloro-2-quinolinyl]ethenyl)phenyl]-[(3-dimethylamino-3-oxopropyl)-thio]-methyl]thio)propanoic acid (MK571), with 50% inhibition being obtained with 1.4 microM MK571. We investigated the GSH concentration dependence of the MRP1-mediated ATP-dependent transport of daunorubicin under conditions where the transport of daunorubicin became saturated. The daunorubicin transport was related to the intracellular GSH concentration up to approximately 5 mM and then plateaued. We were therefore in the situation where GSH acted as an activator: its presence was necessary for the binding and transport of daunorubicin by MRP1. However, GSH was also transported by the multidrug resistance protein. The concentration of GSH that gave half the maximal rate of daunorubicin efflux was 2.1+/-0.8 mM, very similar to the Km value obtained for GSH. In conclusion, the rate of daunorubicin efflux, under conditions where the transport of daunorubicin became saturated, and the rate of GSH efflux determined at any intracellular concentration of GSH were very similar, yielding a 1:1 stoichiometry with respect to GSH and daunorubicin transport. These results support a model in which daunorubicin is co-transported with GSH.  相似文献   

14.
It has been shown that the human acute lymphoblastic leukemia (ALL) T cell line (RPMI 8402) selected with irinotecan (CPT-11) is transformed to a multidrug resistant (MDR) phenotype (CPT-K5) with cross-resistance to mitoxantrone (MX). Since MX is a well-documented substrate for the efflux transporter breast cancer resistant protein (BCRP/ABCG2), we assessed the contribution of drug efflux to MX resistance in CPT-K5 cells. Our results demonstrate that CPT-K5 cells had markedly higher expression levels of BCRP, negligible expression of MRP2 and P-gp, and lower intracellular retention of MX as compared to RPMI 8402 cells. Surprisingly, MX resistance in CPT-K5 cells was not reversed by the BCRP chemical inhibitor, novobiocin (NOV), or gene-specific siRNA, although intracellular MX concentrations were significantly increased when BCRP was functionally knocked down. These results suggest that up-regulation of BCRP plays a minimal role in conferring MX resistance to CPT-K5 cells, highlighting the existence of multiple, redundant mechanisms of drug resistance. The current results support the concept of "multifactorial multidrug resistance", a recently-described phenomenon that ascribes multidrug resistance to many possible cellular mechanisms, not only by efflux drug transporters.  相似文献   

15.
16.
17.
18.
19.
20.
Breast cancer resistance protein (BCRP) is an efflux transporter that plays an important role in drug disposition. The goal of this study was to investigate the interactions of azole antifungal agents, ketoconazole, itraconazole, fluconazole, and voriconazole, with BCRP. First, the effect of the azoles on BCRP efflux activity in BCRP-overexpressing HEK cells was determined by measuring intracellular pheophorbide A (PhA) fluorescence using flow cytometry. We found that keotoconazole and itraconazole significantly inhibited BCRP-mediated efflux of PhA at low microM concentrations. However, fluconazole only mildly inhibited and voriconazole did not inhibit BCRP efflux activity at concentrations up to 100 microM. The IC(50) value of ketoconazole for inhibition of BCRP-mediated PhA efflux was 15.3 +/- 6.5 microM. Ketoconazole and itraconazole also effectively reversed BCRP-mediated resistance of HEK cells to topotecan. When direct efflux of [(3)H]ketoconazole was measured in BCRP-overexpressing HEK cells, we found that [(3)H]ketoconazole was not transported by BCRP. Consistent with this finding, BCRP did not confer resistance to ketoconazole and itraconazole in HEK cells. Taken together, ketoconazole and itraconazole are BCRP inhibitors, but fluconazole and voriconazole are not. These results suggest that BCRP could play a significant role in the pharmacokinetic interactions of ketoconazole or itraconazole with BCRP substrate drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号