首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurotransmission at chemical synapses of the brain involves alpha-neurexins, neuron-specific cell-surface molecules that are encoded by three genes in mammals. Deletion of alpha-neurexins in mice previously demonstrated an essential function, leading to early postnatal death of many double-knockout mice and all triple mutants. Neurotransmitter release at central synapses of newborn knockouts was severely reduced, a function of alpha-neurexins that requires their extracellular sequences. Here, we investigated the role of alpha-neurexins at neuromuscular junctions, presynaptic terminals that lack a neuronal postsynaptic partner, addressing an important question because the function of neurexins was hypothesized to involve cell-adhesion complexes between neurons. Using systems physiology, morphological analyses and electrophysiological recordings, we show that quantal content, i.e. the number of acetylcholine quanta released per nerve impulse from motor nerve terminals, and frequency of spontaneous miniature endplate potentials at the slow-twitch soleus muscle are reduced in adult alpha-neurexin double-knockouts, consistent with earlier data on central synapses. However, the same parameters at diaphragm muscle neuromuscular junctions showed no difference in basal neurotransmission. To reconcile these observations, we tested the capability of control and alpha-neurexin-deficient diaphragm neuromuscular junctions to compensate for an experimental reduction of postsynaptic acetylcholine receptors by a compensatory increase of presynaptic release: Knockout neuromuscular junctions produced significantly less upregulation of quantal content than synapses from control mice. Our data suggest that alpha-neurexins are required for efficient neurotransmitter release at neuromuscular junctions, and that they may perform a role in the molecular mechanism of synaptic homeostasis at these peripheral synapses.  相似文献   

2.
Summary Nerve terminals of the common inhibitor motoneuron in a crab (Eriphia spinifrons) limb closer muscle and in a crayfish (Procambarus clarkii) limb accessory flexor muscle make neuromuscular synapses with the muscle membrane (postsynaptic inhibition) as well as axo-axonal synapses with the terminals of the excitatory axon (presynaptic inhibition). That transmission is from the inhibitor to the excitor terminals at these axo-axonal synapses is indicated by the occurrence on the inhibitor membrane of presynaptic dense bars denoting sites of transmitter release. Axo-axonal synapses with the opposite polarity, in which transmission is from an excitatory onto an inhibitory terminal, were occasionally seen either adjacent to or separate from the inhibitory axo-axonal synapse. Nerve terminals of the specific inhibitor in the crayfish opener muscle were seen to make numerous axo-axonal output synapses upon excitatory nerve terminals but excitor nerve terminals were not seen to make output synapses onto inhibitor terminals. Thus reciprocal axo-axonal synapses appear to be a feature of the common inhibitor but not of the specific inhibitor. The excitor-to-inhibitor component of these reciprocal synapses may serve to limit transmitter output in the common inhibitor axon by activating glutamateB receptors which facilitate efflux of K+ and hyperpolarization of the membrane.  相似文献   

3.
Synaptic transmission at the neuromuscular junction of the excitatory axon supplying the crayfish opener muscle was examined before and after induction of long-term facilitation (LTF) by a 10-min period of stimulation at 20 Hz. Induction of LTF led to a period of enhanced synaptic transmission, which often persisted for many hours. The enhancement was entirely presynaptic in origin, since quantal unit size and time course were not altered, and quantal content of transmission (m) was increased. LTF was not associated with any persistent changes in action potential or presynaptic membrane potential recorded in the terminal region of the excitatory axon. The small muscle fibers of the walking-leg opener muscle were almost isopotential, and all quantal events could be recorded with an intracellular microelectrode. In addition, at low frequencies of stimulation, m was small. Thus it was possible to apply a binomial model of transmitter release to events recorded from individual muscle fibers and to calculate values for n (number of responding units involved in transmission) and p (probability of transmission for the population of responding units) before and after LTF. In the majority of preparations analyzed (6/10), amplitude histograms of evoked synaptic potentials could be described by a binomial distribution with a small n and moderately high p. LTF produced a significant increase in n, while p was slightly reduced. The results can be explained by a model in which the binomial parameter n represents the number of active synapses and parameter p the mean probability of release at a synapse. Provided that a pool of initially inactive synapses exists, one can postulate that LTF involves recruitment of synapses to the active state.  相似文献   

4.
The amplitude of excitatory postsynaptic potentials and currents increases with membrane potential hyperpolarization. This has been attributed to an increase in the driving force when the membrane potential deviates from the equilibrium potential of the respective ions. Here we report that in a subset of neocortical and hippocampal synapses, postsynaptic hyperpolarization affects traditional measures of transmitter release: the number of failures, coefficient of variation of response amplitudes, and quantal content, suggesting increased presynaptic release. The result is compatible with the hypothesis of Byzov on the existence of electrical (or "ephaptic") linking in purely chemical synapses. The linking, although negligible at neuromuscular junctions, could be functionally significant in influencing transmitter release at synapses with high resistance along the synaptic cleft. Our findings necessitate reconsideration of classical amplitude-voltage relations for such synapses. Thus, synaptic strength may be enhanced by hyperpolarization of the postsynaptic membrane potential. The positive ephaptic feedback could account for "all-or-none" excitatory postsynaptic potentials at some cortical synapses, large evoked and spontaneous multiquantal events and a high efficacy of large "perforated" synapses whose number increases following behavioural learning or the induction of long-term potentiation.  相似文献   

5.
Deep and superficial flexor muscles in the crayfish abdomen are innervated respectively by small populations of physiologically distinct phasic and tonic motoneurons. Phasic motoneurons typically produce large EPSP's, releasing 100 to 1000 times more transmitter per synapse than their tonic counterparts, and exhibiting more rapid synaptic depression with maintained stimulation. Freeze-fracturing the abdominal flexor muscles yielded images of phasic and tonic synapse-bearing terminals. The two types of synapse are qualitatively similar in ultrastructure, displaying on the presynaptic membrane's P-face synaptic contacts recognized by relatively particle-free oval plaques which are often framed by the muscle fiber's E-face leaflet with its associated receptor particles. Situated within these presynaptic plaques are discrete clusters of large intramembrane particles, forming active zone (AZ) sites specialized for transmitter release. AZs of phasic and tonic synapses are similar: 80% had a range of 15–40 large particles distributed in either paired spherical clusters or in linear form, with a few depressions denoting sites of synaptic vesicle fusion or retrieval around their perimeters. The packing density of particles is similar for phasic and tonic AZs. The E-face of the muscle membrane displays oval-shaped receptor-containing sites made up of tightly packed intramembranous particles. Phasic and tonic receptor particles are packed at similar densities and the measured values resemble those of several other crustacean and insect neuromuscular junctions. Overall, the similarity between phasic and tonic synapses in the packing density of particles at their presynaptic AZs and postsynaptic receptor surfaces suggests similar regulatory mechanisms for channel insertion and spacing. Furthermore, the findings suggest that morphological differences in active zones or receptor surfaces cannot account for large differences in transmitter release per synapse.  相似文献   

6.
Earlier studies with crayfish have shown that chronic increases in neural activity, by electrical stimulation, cause a long-lasting reduction in the amount of transmitter released at low stimulus frequencies or at the beginning of a stimulus train. When such chronic stimulation is applied to phasic extensor motor neurons of the lobster abdomen, a similar change in transmitter release is apparent, as indicated by a decrease in excitatory postsynaptic potential (EPSP) size at 0.1 Hz. However, the EPSPs from unstimulated axons which innervate the same target muscle from a different nerve increase in size. Thus, activity-dependent reduction in transmitter release at one set of synapses appears to be compensated for by increased synaptic efficacy from less active synergistic inputs. The mechanism of such compensation is not known.  相似文献   

7.
1. The depression of synaptic transmission, which occurs during prolonged repetitive activation, was examined in the opener muscle of the crayfish walking leg. 2. Excitatory post-synaptic potentials (e.p.s.p.s) initially facilitated but then declined to low amplitudes after about 4000 stimulus pulses had been delivered; this depression is presynaptic in origin; 3. Axon conduction blocks occured at points of bifurcation along the entire length of the presynaptic nerve. This resulted in failure of the nerve impulse to invade some branches of the terminal arborization. 4. Nerve terminal invasion failure caused either intermittent or complete inactiviation of some synaptic release sites; this was associated with depression of the post-synaptic response. 5. The statistics of transmitter release during prolonged repetitive stimulation were examined by focal extracellular recording methods. Transmitter release could be described by binomial statistics, and depression involved a drop in m, n and p. 6. The rate of spontaneous quantal release did not decrease, however, arguing against transmitter depletion. 7. It is concluded that repetitive stimulation eventually leads to depolarization of the axon membrane. This causes impulse propagation failure which reduces the number of synaptic release sites that are activated and mimics a drop in the effective stimulation rate; both effects cause synaptic depression.  相似文献   

8.
L.L. Voronin 《Neuroscience》1983,10(4):1051-1069
Long-term potentiation of field and single neuronal responses recorded in various hippocampal fields is described on the basis of author's and literary data. Most of intrahippocampal and extrinsic connections in both in vivo and in vitro hippocampal preparations show this phenomenon after one or several conditioning trains of comparatively short duration (20 s or less) at various frequencies (from 10 to 400 Hz). Properties of hippocampal potentiation are described. The properties include long term persistence (hours and days) of the potentiated response, its low frequency depression, self-restoration after the depression, specificity of the potentiation for the tetanized pathway, necessity of activation of a sufficient number of neuronal elements (‘cooperativity’) to produce the potentiation, possible involvement of ‘reinforcing’ brain structures during conditioning tetanization. These properties are distinct from those of ‘usual’ short-term post-tetanic potentiation and lead to the suggestion that the neuronal mechanisms underlying long-term potentiation are similar to those underlying memory and behavioralconditioned reflex. Neurophysiological mechanisms of long-term potentiation are discussed. The main mechanism consists in an increase in efficacy of excitatory synapses as shown by various methods including intracellular recording and quantal analysis. The latter favours presynaptic localization of the changes of synaptic efficacy showing increase in the number of transmitter quanta released per presynaptic impulse. However, changes in the number of subsynaptic receptors or localized changes in dendritic postsynaptic membrane are not excluded. Biochemical studies indicate the increase in transmitter release and calcium-dependent phosphorylation of pyruvate dehydrogenase after tetanization. Instances of persistent response facilitations at other levels of the vertebrate central nervous system (especially at neocortical level) are considered and compared with hippocampal long-term potentiation.

It is suggested that modifiable excitatory synapses necessary for learning have been identified in studies of long-term potentiation. These synapses are presumably modified as a result of close sequential activation of the following three structures: excitatory presynaptic fibers, the postsynaptic neuron and a ‘reinforcing’ brain system.  相似文献   


9.
Release of transmitter was evoked at neuromuscular junctions of the crayfish opener muscle by passage of current through an intracellular electrode impaling a branch of the motor axon close to a muscle fiber. Membrane-potential changes in the presynaptic axon branch were monitored, together with postsynaptic potentials. Depolarization of impaled secondary axonal branches by more than 10 mV led to an increase in asynchronous transmitter release. The release was facilitated by prolonged (50-500 ms) depolarizations and it decayed rapidly when depolarization was terminated. Ca2+ was essential for facilitated release; however, no indication of a Ca spike was found at the recording site. Input-output curves for the synapse were obtained by applying depolarizing pulses of varying amplitude to the axon branch. Transmitter output was strongly influenced by both amplitude and duration of the applied depolarization. During normal synaptic transmission, propagated Na+-dependent action potentials were recorded in the secondary axonal branches but there was no evidence for a calcium-dependent component for these action potentials. Evoked release was dependent on Ca2+ and was steeply dependent on the amplitude of the action potential, which could be made variable in size by application of tetrodotoxin (TTX). Prolonged depolarization of axonal branches resulted in enhancement of transmitter release evoked by an action potential. The enhancement occurred in spite of a simultaneous reduction of the amplitude of the action potential. Morphological features of the terminals were investigated after injection of lucifer yellow into the axon. An electrical model incorporating the morphological features suggests that membrane-potential changes set up in the main axon reach the nearest terminals with 30-40% attenuation, while events originating in the terminals would be severely attenuated in the main axon. Comparison of the crayfish synapse with other frequently studied synapses shows both similarities and differences, suggesting that it is not possible to apply findings made in one synapse to all others.  相似文献   

10.
The dye Procion brown was used to identify in the light and electron microscope, synaptic contacts made between monosynaptically coupled neurons in the lamprey spinal cord whose synaptic interaction had been recorded. Synaptic contacts were made on different dendrites of the postsynaptic cell at different distances from the soma. Some of the contacts were made on dentritic spines and some on the smooth shaft of the dentrites. Serial sections through synaptic contacts made on dendritic processess of the postsynaptic cells were used for three-dimensional reconstruction of the synapses using computer graphics techniques. The computer reconstructions and detailed examination of the serial EM micrographs revealed the large proliferation of membrane involved in making these en passant synapses as well as the morphological changes due to stimulation of the presynaptic axon. These changes include depletion of synaptic vesicles and formation of complex vesicles and synaptic cisternae. Besides chemical synaptic contacts, four electrotonic contacts were located, confirming the mixed electrochemical synaptic response recorded from the postsynaptic cell. The mean quantum content was estimated and compared with the estimate of the available transmitter pool, assuming the quantal release hypothesis applies at these synapses. The total transmitter pool was estimated by counting all synaptic vesicles in all synaptic contacts. It was estimated that about 6% of the total transmitter pool is available for release at these synapses. This compares with less than 1% at the neuromuscular junction and about 20% at sympathetic synapses. These results support the hypothesis that synaptic vesicles may be recycled as described by Heuser and Reese (22) at the neuromuscular junction. Ongoing studies are investigating the effect on a variety of synaptic junctions to stimulation for different periods of time of presynaptic axons. The methods described in this study can also be used to test the models of synaptic interaction on dendritic trees described by Rall (39) and Jack and Redman (24).  相似文献   

11.
After experimentally inducing long term changes in transmitter release, a series of frog neuromuscular junctions were studied with intracellular recording and then semi-serially sectioned and examined in the electron microscope. Transmitter release per unit length of motor nerve terminal was well correlated with several measures of the length of individual presynaptic active zones and with the number of mitochondria per terminal. Total release from each terminal correlated with estimates of the total amount of active zone. This study of neuromuscular junctions in sartorius muscles of the frog Rana pipiens was undertaken to search for ultrastructural correlates of the increase in transmitter release efficacy that follows denervation of the contralateral sartorius. This treatment typically results in greatly enhanced release at some synapses while others appear unaffected. In the present study, nine identified junctions with known physiological properties were sectioned every 6 micron throughout much of their length to yield 40-105 cross-sectional profiles per junction. Overall, these 9 synapses showed a 33-fold range in quantal transmitter release and an 18-fold range in release per unit nerve terminal. Release correlated with estimates of active zone size. No correlations were found between release and the density of synaptic vesicles adjacent to active zones. Our results suggest that active zones in motor nerve terminals are plastic structures, and that changes in active zone size may be the structural basis of long term changes in transmitter release and synaptic efficacy.  相似文献   

12.
Paired neuronal activity is known to induce changes in synaptic strength that result in the synapse in question having different properties to unmodified synapses. Here we show that in layer 2/3 excitatory connections in young adult rat cortex paired activity acts to normalize the strength and quantal parameters of connections. Paired action potential firing produces long-term potentiation in only a third of connections, whereas a third remain with their amplitude unchanged and a third exhibit long-term depression. Furthermore, the direction of plasticity can be predicted by the initial strength of the connection: weak connections potentiate and strong connections depress. A quantal analysis reveals that changes in synaptic efficacy were predominantly presynaptic in locus and that the key determinant of the direction and magnitude of synaptic modification was the initial release probability (P(r)) of the synapse, which correlated inversely with change in P(r) after pairing. Furthermore, distal synapses also exhibited larger potentiations including postsynaptic increases in efficacy, whereas more proximal inputs did not. This may represent a means by which distal synapses preferentially increase their efficacy to achieve equal weighting at the soma. Paired activity thus acts to normalize synaptic strength, by both pre- and postsynaptic mechanisms.  相似文献   

13.
During the 1950s to 70s most of the mechanisms that control transmitter release from presynaptic nerve terminals were described at the neuromuscular junction. It was not, however, until the 1990s that the multiplicity of protein-protein interactions that govern this process began to be identified. The sheer numbers of proteins and the complexity of their interactions at first appears excessive, even redundant. However, studies of identified central synapses indicate that this molecular diversity may underlie a important functional diversity. The task of the neuromuscular junction is to relay faithfully the rate and pattern code generated by the motoneurone. To demonstrate phenomena such as facilitation and augmentation that are apparent only when the probability of release is low, experimental manipulation is required. In the cortex, however, low probability synapses displaying facilitation can be recorded in parallel with high probability synapses displaying depression. The mechanisms are largely the same as those displayed by the neuromuscular junction, but some are differentially expressed and controlled. Central synapses demonstrate exquisitely fine tuned information transfer, each of the many types displaying its own repertoire of pattern- and frequency-dependent properties. These appear tuned to match both the discharge pattern in the presynaptic neurone and the integrative requirements of the postsynaptic cell. The molecular identification of these differentially expressed frequency filters is now just coming into sight. This review attempts to correlate these two aspects of synaptic physiology and to identify the components of the release process that are responsible for the diversity of function.  相似文献   

14.
15.
1. Transmitter release at crayfish and frog neuromuscular junctions was studied by recording synaptic potentials with extracellular or intracellular glass micro-electrodes. 2. The binomial release parameters n and p were calculated using the experimental observations for the mean number of quanta (m) released in a series of trials, the variance (var) of the quantum content distribution and the number of transmission failures (n-o). 3. In one series of experiments on frog neuromuscular junction, action potentials were blocked by tetrodotoxin. Transmitter release was limited to a circumscribed part of the nerve terminal by focal stimulation with a glass micro-electrode. Values for m were between 0-6 and 5-7 and calculated values for n ranged from 3 to 23. p was between 0-05 and 0-48. In a second series of experiments on frog neuromuscular junction transmitter release was evoked by conventional stimulation of the nerve trunk in Mg-Ringer. m was mostly between 20 and 60 and in the same experiments n was calculated to be between 70 and 125. Values for p ranged from 0-25 to 0-48. 4. It can be concluded from the present results that transmitter release at frog neuromuscular junction is described by binomial statistics as is the case for neuromuscular junction of crayfish. 5. In comparing the values for n for the two series of experiments on frog neuromuscular junction it appears that n is dependent on the length of the activated synaptic contact. The numbers for n calculated from frog neuromuscular junction are of the same order of magnitude as the number of 'active zones' seen in the corresponding length of the synaptic nerve terminal.  相似文献   

16.
Estimation of quantal parameters at the calyx of Held synapse   总被引:4,自引:0,他引:4  
The calyx of Held has recently emerged as a convenient model system to study CNS synapses. In order to understand the mechanisms of synaptic transmission and short-term synaptic plasticity, quantal parameters and their changes should be estimated precisely. For this purpose, various methods have been applied to the calyx of Held synapse. The results confirm many aspects of the early findings on transmission at the neuromuscular junction. On the other hand, the simplest quantal hypothesis does not work at the calyx of Held, because of additional factors such as heterogeneous release probability of synaptic vesicles, intra- and intersite quantal variability, an overlap of facilitation and depression of transmitter release, changes in quantal sizes due to desensitization and saturation of postsynaptic receptors, and delayed clearance of transmitter from the synaptic cleft. These factors should always be taken into account for fully understanding the mechanisms of synaptic transmission and plasticity.  相似文献   

17.
The crayfish neuropeptide DRNFLRFamide increases transmitter release from synaptic terminals onto muscle cells. As temperature decreases from 20 to 8 degrees C, the size of excitatory junctional potentials (EJPs) decreases, and the peptide becomes more effective at increasing EJP amplitude. The goal of the present study was to determine whether the enhanced effectiveness of the peptide is strictly a temperature-related effect, or whether it is related to the fact that the EJPs are smaller at low temperature, allowing a greater range for EJP amplitude to increase. Decreasing temperature reduced the number of quanta of transmitter released per nerve impulse (assessed by recording synaptic currents) and increased input resistance in muscle fibers. As in earlier work, the ability of the peptide to increase EJP amplitude was enhanced by decreasing temperature. However, the peptide was also more effective at increasing EJP amplitude when transmitter output was lowered by reducing the ratio of calcium to magnesium ions in the bath. Thus the effectiveness of the peptide may be related to the level of output from the synaptic terminals.  相似文献   

18.
1. The effects of varying the external Ca concentration from 1.8 to 30 mM/l. ((1/8)-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals.2. The excitatory junctional potential amplitude was proportional to [Ca](0) (n), where n varied between 0.68 and 0.94 (mean 0.82) when [Ca](0) was varied from 1.8 to 15 mM/l.3. The increase in junctional potential amplitude on raising [Ca](0) resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse.4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied.  相似文献   

19.
Experiments were performed on neuromuscular preparations from frogs, in which three extracellular microelectrodes were used to record nerve ending currents and single-quantum endplate currents simultaneously from the proximal, central, and distal parts of single synaptic contacts. The rate of propagation of excitation across terminals was measured, along with the minimum synaptic delay, the intensity, and the degree of synchronicity of the secretion of transmitter quanta in different parts of the nerve ending, and the relationships between these factors and the calcium ion concentration in the medium. These studies showed that along with gradients in the rate of conduction of excitation and the intensity of secretion in different parts of the ending, there were also differences in the kinetics of the release of transmitter quanta. As the distance from the end of the myelinated part of the axon increased, the rate of conduction of the nerve impulse and the duration of the synaptic delay decreased, while the synchronicity of the release of quanta increased. Increases in the calcium concentration in the medium produced greater increases in the synchronicity of transmitter quantum release in the distal parts of the synapse than in the proximal parts. Mathematical modeling of multiple-quantum endplate currents showed that the characteristics of the kinetics of the secretion process observed here in different parts of the nerve ending represent a factor which partially compensates for the decrease in the amplitude and extending of the duration of the leading front of the multiple-quantum endplate current which are associated with the low rate of conduction of excitation across the nerve ending. The contribution of this compensation increases as the intensity of secretion of transmitter quanta increases in the distal parts of the synaptic contact.  相似文献   

20.
1. Synaptic facilitation was measured with intracellular recording at two classes of neuromuscular synapses in the opener muscle of the crayfish dactyl by placing a test stimulus at various intervals after either a single conditioning stimulus or a short conditioning train.2. The facilitative effect of one stimulus reaches approximately the same level with both the superficial central and superficial distal synapses. The facilitation decreases smoothly in two phases after the conditioning stimulus at superficial central synapses and in a more complex fashion at superficial distal synapses.3. The two synaptic types differ in the manner in which they add up the facilitative effects produced by each of the stimuli in a short train. With superficial distal synapses the facilitative effects of conditioning stimuli add linearly, while with superficial central synapses the facilitative effects accumulate exponentially.4. The linear addition of facilitation at superficial distal synapses is not altered when the quantal content is lowered by decreasing the external Ca concentration from 13.5 to 3 mM.5. The rate of decay of facilitation is the same following both one and three conditioning stimuli, even though the facilitation is nearly six times larger in the latter case.6. The results are discussed in terms of mechanisms for synaptic facilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号