首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To detect joint movement, the brain relies on sensory signals from muscle spindles that sense the lengthening and shortening of the muscles. For single-joint muscles, the unique relationship between joint angle and muscle length makes this relatively straightforward. However, many muscles cross more than one joint, making their spindle signals potentially ambiguous, particularly when these joints move in opposite directions. We show here that simultaneous movement at adjacent joints sharing biarticular muscles affects the threshold for detecting movements at either joint whereas it has no effect for non-adjacent joints. The angular displacements required for 70% correct detection were determined in 12 subjects for movements imposed on the shoulder, elbow and wrist at angular velocities of 0.25–2 deg s−1. When moved in isolation, detection thresholds at each joint were similar to those reported previously. When movements were imposed on the shoulder and wrist simultaneously, there were no changes in the thresholds for detecting movement at either joint. In contrast, when movements in opposite directions at velocities greater than 0.5 deg s−1 were imposed on the elbow and wrist simultaneously, thresholds increased. At 2 deg s−1, the displacement threshold was approximately doubled. Thresholds decreased when these adjacent joints moved in the same direction. When these joints moved in opposite directions, subjects more frequently perceived incorrect movements in the opposite direction to the actual. We conclude that the brain uses potentially ambiguous signals from biarticular muscles for kinaesthesia and that this limits acuity for detecting joint movement when adjacent joints are moved simultaneously.  相似文献   

2.
In experiments on position sense at the elbow joint in the horizontal plane, blindfolded subjects were required to match the position of one forearm (reference) by placement of their other arm (indicator). Position errors were measured after conditioning elbow muscles of the reference arm with an isometric contraction while the arm was held either flexed or extended. The difference in errors after the two forms of conditioning was large when the conditioned muscles remained relaxed during the matching process and it became less when elbow muscles were required to lift a load during the match (10 and 25% of maximal voluntary contraction, respectively). Errors from muscle conditioning were attributed to signals arising in muscle spindles and were hypothesized to result from the thixotropic property of passive intrafusal fibres. Active muscle does not exhibit thixotropy. It is proposed that during a voluntary contraction the errors after conditioning are less, because the spindles become coactivated through the fusimotor system. The distribution of errors is therefore seen to be a reflection of fusimotor recruitment thresholds. For elbow flexors most, but not all, fusimotor fibres appear to be recruited by 10% of a maximal contraction.  相似文献   

3.
Summary Subjects made simultaneously movements from a common rest position and attempted to align corresponding joints (elbow joints, or distal joints of thumb), on opposite sides of the body. When misalignments were expressed in angular terms, variability of performance within and between subjects was greater for thumb than for elbow joints. When the misalignments were expressed in terms of linear misalignment at the end of the moved lever arms, variability of performance within and between subjects was less for thumb than elbow joints. However, when the misalignments were expressed in terms of mean proportional changes in the lengths of fascicles in muscles operating at the joints, variabilities of performances at both joints were similar. In another test, subjects made small unloaded movements at either the elbow joint or the distal thumb joint to guide a cursor along a narrow path. When the movement task was made similar for the elbow and thumb joints in terms of either the angular excursion required, or the required linear excursion of the moved lever tip, accuracy of performances at the two joints varied greatly. Only when the tasks were similar in terms of the mean proportional changes of length in fascicles of muscles operating at the joints, were performances at the two joints of similar accuracy. The results suggest that proportional change in muscle fascicle length is a significant variable for the CNS in proprioception and the control of voluntary movement.  相似文献   

4.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

5.
Small muscles, such as those producing movements of the digits, are known to contain high densities of muscle spindles compared to larger muscles of the limb. These high densities have been associated with an increased need for proprioceptive feedback during precise manipulative movements. A recent study has indicated that spindle densities are related to muscle size rather than to functional capability. By contrast, the current study examined whether spindle numbers, actual spindle densities and relative spindle densities correlated with the complexity of joint movements in two species with different muscle sizes, human and guinea pig. Published data were used for the histological parameters of each species and measurements were made of movement range in each kinematic degree of freedom for each joint of the human and guinea pig pectoral and pelvic limbs. Muscle weights of newborn humans were 315 times greater than those of guinea pigs but joint movement complexities were almost the same in the two species and actual spindle numbers of human were only 7.3 times those of guinea pig. Joint movement complexity tended to be greatest most proximally on each limb and progressively decreased more distally. Regardless of muscle weight differences, actual spindle numbers and relative spindle densities correlated positively and significantly with joint movement complexity and actual spindle densities correlated negatively in each species. Hence muscle spindle numbers and densities around joints appear to reflect joint functional capability for appropriate proprioceptive feedback to the central nervous system in the control of joint movement.  相似文献   

6.
We have examined EMG-movement relations in two-joint planar arm movements to determine the influence of interactional torques on movement coordination. Explicitly defined combinations of elbow movements (ranging from 20 to 70°) and wrist movements (ranging from 20 to 40°) were performed during a visual, step-tracking task in which subjects were specifically required to attend to the initial and final angles at each joint. In all conditions the wrist and elbow rotated in the same direction, that is, flexion-flexion or extension-extension. Elbow movement kinematics were only slightly influenced by motion about the wrist. In contrast, the trajectory of the wrist movement was significantly influenced by uncompensated reaction torques resulting from movement about the elbow joint. At any given wrist amplitude, wrist movement duration increased and peak velocity decreased as elbow amplitude increased. In addition, as elbow amplitude increased, wrist movement on-set was progressively delayed relative to this elbow movement. Surprisingly, the changes between joint movement onsets were not accompanied by corresponding changes between agonist EMG onsets at the elbow and wrist joints. The mean difference in onset times between elbow and wrist agonists (22–30 ms) remained unchanged across conditions. In addition, a basic pattern of muscle activation that scaled with movement amplitude was observed at each joint. Phasic agonist activity at the wrist and elbow joints remained remarkably similar across conditions and thus the changes in joint movement onset could not be attributed to changes in the motor commands. Rather, the calculated torques from the averaged data showed that the difference in timing of joint movement onsets was influenced by joint interactional torques. These findings suggest that during simple two-joint planar movements of the elbow and the wrist joint, the central nervous system does not alter the basic motor commands at each joint and as a result the actual trajectory of each joint is determined by interactional torques.  相似文献   

7.
Studies of multijoint arm movements have demonstrated that the nervous system anticipates and plans for the mechanical effects that arise from motion of the linked limb segments. The general rules by which the nervous system selects appropriate muscle activities and torques to best deal with these intersegmental effects are largely unknown. In order to reveal possible rules, this study examined the relationship of muscle and interaction torques to joint acceleration at the shoulder, elbow and wrist during point-to-point arm movements to a range of targets in the horizontal plane. Results showed that, in general, dynamics differed between the joints. For most movements, shoulder muscle torque primarily determined net torque and joint acceleration, while interaction torque was minimal. In contrast, elbow and wrist net torque were determined by a combination of muscle and interaction torque that varied systematically with target direction and joint excursion. This "shoulder-centered pattern" occurred whether subjects reached targets using straight or curved finger paths. The prevalence of a shoulder-centered pattern extends findings from a range of arm movement studies including movement of healthy adults, neurological patients, and simulations with altered interaction effects. The shoulder-centered pattern occurred for most but not all movements. The majority of the remaining movements displayed an "elbow-centered pattern," in which muscle torque determined initial acceleration at the elbow and not at the shoulder. This occurred for movements when shoulder excursion was <50% of elbow excursion. Thus, both shoulder- and elbow-centered movements displayed a difference between joints but with reversed dynamics. Overall, these findings suggest that a difference in dynamics between joints is a general feature of horizontal plane arm movements, and this difference is most commonly reflected in a shoulder-centered pattern. This feature fits well with other general shoulder-elbow differences suggested in the literature on arm movements, namely that: (a) agonist muscle activity appears more closely related to certain joint kinematics at the shoulder than at the elbow, (b) adults with neurological damage display less disruption of shoulder motion than elbow motion, and (c) infants display adult-like motion first in the shoulder and last at the wrist.  相似文献   

8.
Characteristics of control at the shoulder and elbow during nine types of drawing movements were studied in the present work. The task was to repetitively track a template, depicted on a horizontal table, with the index finger at a cyclic frequency of 1.5 Hz. The templates were a circle, four ovals and four lines of different orientations. The wrist was immobilized and the movement consisted of rotations at the shoulder and elbow joints. The studied movements varied in a wide range with respect to the amplitude of elbow and shoulder movements and relative phase between them. Kinetic analysis included analysis of torque signs, impulses, and timing. It demonstrated that the role of muscle torque in movement production was different at the two joints. During eight out of the nine movement types, the muscle torque at the shoulder accelerated and decelerated this joint and almost completely coped with the influence of the interactive torque arising from elbow motion. Conversely, interactive torque generated by shoulder motion played a dominant role in elbow acceleration and deceleration, whereas muscle torque at the elbow adjusted passive elbow movement to the various template shapes. EMG data were in agreement with the conclusions made from the kinetic analysis. Collectively, these data support the hypothesis that the two joints have different functions in movement production. The shoulder creates a foundation for motion of the entire arm through the interactive torque, and the elbow serves as a fine-tuner of the end-point movement. Control of the shoulder was similar across the eight movement types and the differences in the end-point path were provided by variations in elbow control. The two joints exchanged roles during one movement type, namely, drawing the line tilted right. During this movement, the elbow musculature generated motion at this joint and the shoulder musculature counteracted mechanical influence of this motion on the shoulder position. The findings suggest that during drawing movements, the control strategy exploits intersegmental dynamics of the shoulder-elbow mechanical linkage.  相似文献   

9.
When a muscle relaxes after a contraction, cross-bridges between actin and myosin in sarcomeres detach, but about 1 % spontaneously form new, non-force-generating attachments. These bridges give muscle its thixotropic property. They remain in place for long periods if the muscle is left undisturbed and give the muscle a passive stiffness in response to a stretch. They are detached by stretch, but reform at the new length. If the muscle is then shortened, the presence of these bridges prevents muscle fibres from shortening and they fall slack. So, resting muscle can be in one of two states, where it presents in response to a stretch with a high stiffness, if no slack is present, or with a compliant response in the presence of slack. Intrafusal fibres of muscle spindles show thixotropic behaviour. For spindles, after a conditioning contraction, they are left stretch sensitive, with a high level of background discharge. Alternatively, if after the contraction the muscle is shortened, intrafusal fibres fall slack, leaving spindles with a low level of background activity and insensitivity to stretch. Muscle spindles are receptors involved in the senses of human limb position and movement. The technique of muscle conditioning can be used to help understand the contribution of muscle spindles to these senses and how the brain interprets signals arising in spindles. When, in a two-arm position-matching task, elbow muscles of the two arms are deliberately conditioned in opposite ways, the blindfolded subject makes large position errors of which they are unaware. The evidence suggests that the brain is concerned with the difference signal coming from the antagonists acting at the elbow and with the overall difference in signal from the two arms. Another way of measuring position sense is to use a single arm and indicate its perceived position with a pointer. Here, there is no access to a signal from the other limb, and position sense relies on referral to a central map of the body, the postural schema.  相似文献   

10.
Summary The characteristics of vibration-induced illusory joint movements were studied in healthy human subjects. Unseen by the subject, constant frequency vibration trains applied to the distal tendon of the Triceps or Biceps induced an almost constant velocity illusory movement of the elbow whose direction corresponded to that of a joint rotation stretching the vibrated muscle. Vibration trains of the same duration and frequency applied alternatively to the Biceps and Triceps evoked alternating flexion-extension illusory movements.During successive application of vibration trains at frequencies from 10 to 120 Hz, the perceived velocity of the illusory movements increased progressively from 10 to 70–80 Hz, then decreased from 80 to 120 Hz. The maximal perceived velocity was three times higher during alternating vibration of the Biceps and Triceps than during single muscle stimulation.Unit activity from 15 muscle spindle primary endings and five secondary endings located in Tibialis anterior and Extensor digitorum longus muscles were recorded using microneurography in order to study their responses to tendon vibration and passive and active movements of the ankle.Primary endings were all activated by low amplitude tendon vibration (0.2–0.5 mm) previously used to induce illusory movements of the elbow. The discharge of some was phase-locked with the vibration cycle up to 120 Hz, while others responded one-to-one to the vibration cycle up to 30–50 Hz, then fired in a sub-harmonic manner at higher frequencies. Secondary endings were much less sensitive to low amplitude tendon vibration.Primary and secondary ending responses to ramp and sinusoïdal movements of the ankle joint were compared. During the movement, the primary ending discharge frequency was almost constant, while the secondary ending activity progressively increased. During ankle movements the primary ending discharge appeared mainly related to velocity, while some secondary activities seemed related to both movement velocity and joint angle position.Muscle spindle sensory ending responses to active and passive ankle movements stretching the receptor-bearing muscle (plantar flexion) were qualitatively and quantitatively similar. During passive reverse movements (dorsiflexion) most of the sensory endings stopped firing when their muscle shortened. Active muscle shortening (isotonic contraction) modulated differently the muscle spindle sensory ending discharge, which could stop completely, decrease or some times increase during active ankle dorsiflexion. During isometric contraction most of the muscle spindle sensory endings were activated.The characteristics of the vibration-induced illusory movements and the muscle spindle responses to tendon vibration and to active and passive joint movements strengthened the possibility of the contribution of primary endings to kinaesthesia, as suggested by several previous works. Moreover, the present results led us to attribute to proprioception in the muscle stretched during joint movement a predominant, but not exclusive, role in this kind of perception.  相似文献   

11.
In the present study, we investigated the influence of external force manipulations on movements in different directions, while keeping the amplitude invariant. Subjects (n=10) performed a series of cyclical anteroposterior, mediolateral, and oblique line-drawing movements (star drawing task) with their dominant limb in the horizontal plane. To dissociate kinematics from the underlying patterns of muscle activation, spring loading was applied to the forearm of the moving limb. Whereas spring loading of the arm resulted in considerable changes in the overall amount of muscle activation in the elbow and shoulder muscles, invariance was largely maintained at the kinematic level. Subjects produced the required movement directions and amplitudes of the star drawing largely successfully, irrespective of the force bias induced by the spring. These observations demonstrate motor equivalence and strengthen the notion that the spatial representation of drawing movements is encoded in the higher brain regions in a rather abstract form that is dissociated from the concrete muscle activation patterns underlying a particular movement direction. To achieve this goal, the central nervous system shifted between two or more muscle grouping strategies to overcome modulations in the interaction among posture-dependent (joint stiffness), dynamic (inertial), and elastic (spring) torque components in the joints. Spring loading induced general changes in the overall amount of EMG activity, which was largely muscle but not direction specific, presumably to represent the posture-dependent biasing force of the spring. Loading was mainly shown to increase muscle coactivation in the elbow joint. This indicates that the subjects tended to increase stiffness in the elbow to compensate for changes in the spring bias forces in order to minimize trajectory errors. Changes in muscle grouping of the shoulder antagonists were mainly a consequence of movement direction but were also affected partly by loading, presumably reflecting the influence of dynamic force components. Taken together, the results confirmed the hypothesis that changes of movement direction and direction of force in the end-effector generated specific sets of muscle grouping to overcome the dynamic requirements in the joints while keeping the kinematics largely unchanged. This suggests that directional tuning in muscle activity and changes in muscle grouping reflects the formation of appropriate internal models in the CNS that give rise to motor equivalence. Electronic Publication  相似文献   

12.
The organization and pattern of cutaneous reflex modulation is unknown during rhythmic cyclical movements of the human upper limbs. On the assumption that these cyclic arm movements are central pattern generator (CPG) driven as has been suggested for leg movements such as walking, we hypothesized that cutaneous reflex amplitude would be independent of electromyographic (EMG) muscle activation level during rhythmic arm movement (phase-dependent modulation, as is often the case in the lower limb during locomotion). EMG was recorded from eight muscles crossing the human shoulder, elbow, and wrist joints while whole arm rhythmic cyclical movements were performed. Cutaneous reflexes were evoked with trains of electrical stimulation delivered at non-noxious intensities (approximately 2 x threshold for radiating paresthesia) to the superficial radial nerve innervating the lateral portion of the back of the hand. Phasic bursts of rhythmic muscle activity occurred throughout the movement cycle. Rhythmic EMG and kinematic patterns were similar to what has been seen in the human lower limb during locomotor activities such as cycling or walking: there were extensive periods of reciprocal activation of antagonist muscles. For most muscles, cutaneous reflexes were modulated with the movement cycle and were strongly correlated with the movement-related background EMG amplitude. It is concluded that cutaneous reflexes are primarily modulated by the background muscle activity during rhythmic human upper limb movements, with only some muscles showing phase-dependent modulation.  相似文献   

13.
A fundamental issue in the neuromotor control of arm movements is whether the nervous system can use distinctly different muscle activity patterns to obtain similar kinematic outcomes. Although computer simulations have demonstrated several possible mechanical and torque solutions, there is little empirical evidence that the nervous system actually employs fundamentally different muscle patterns for the same movement, such as activating a muscle one time and not the next, or switching from a flexor to an extensor. Under typical conditions, subjects choose the same muscles for any given movement, which suggests that in order to see the capacity of the nervous system to make a different choice of muscles, the nervous system must be pushed beyond the normal circumstances. The purpose of this study, then, was to examine an atypical condition, reaching of cervical spinal cord injured (SCI) subjects who have a reduced repertoire of available distal arm muscles but otherwise a normal nervous system above the level of lesion. Electromyography and kinematics of the shoulder and elbow were examined in the SCI subjects performing a center-out task and then compared to neurologically normal control subjects. The findings showed that the SCI-injured subjects produced reaches with typical global kinematic features, such as straight finger paths, bell-shaped velocities, and joint excursions similar to control subjects. The SCI subjects, however, activated only the shoulder agonist muscle for all directions, unlike the control pattern that involved a reciprocal pattern at each joint (shoulder, elbow, and wrist). Nonetheless, the SCI subjects could activate their shoulder antagonist muscles, elbow flexors, and wrist extensor (extensor carpi radialis) for isometric tasks, but did not activate them during the reaching movements. These results demonstrate that for reaching movements, the SCI subjects used a strikingly different pattern of intact muscle activities than control subjects. Hence, the findings imply that the nervous system is capable of choosing either the control pattern or the SCI pattern. We would speculate that control subjects do not select the SCI pattern because the different choice of muscles results in kinematic features (reduced fingertip speed, multiple shoulder accelerations) other than the global features that are somehow less advantageous or efficient.  相似文献   

14.
Ten subjects made rapid, simultaneous movements of jaw (elevation or lowering) and right foot (ankle flexion or extension) in two experimental situations: (1) in response to an external signal (reaction-time situation), and (2) in a self-paced situation. We calculated the mean time intervals between the onsets of electromyographic (EMG) activity of agonist muscles (tibialis anterior or gastrocnemius lateralis compared with masseter or digastricus pars anterior) and those between the onsets of movement acceleration at each joint. Despite the fact that subjects reported simultaneous jaw-foot movements, there was always a short time interval between the two movements as between the agonist EMG activities. When the subjects were asked to perform a jaw elevation movement simultaneously with an ankle movement (flexion or extension), the sign of the time interval was dependent on the situation of movement initiation. In the reaction-time situation, the jaw motor activity preceded that of the ankle, whereas the reverse temporal order was observed in the self-paced situation. This is consistent with a previous hypothesis suggesting that the simultaneity of two motor actions is centrally established through two separate central processes: reactive or predictive. When subjects tried to perform simultaneous jaw lowering and foot flexion or extension movements, the strict temporal order observed when considering jaw elevation and ankle movements disappeared. The jaw motor activity generally preceded that of ankle in the reactive situation, but, depending on the subjects, it preceded or followed the ankle motor activity during self-paced movements. It is likely that the specific spindle supply of jaw muscles accounts for these results. Indeed, the jaw depressor muscles, in contrast to the elevators, lack muscle spindles. Our results suggest that the kinesthetic inputs used by the upper central nervous system to synchronize two rapid voluntary movements are mainly those from spindles located in the muscles that accelerate the movement, suggesting a strong α-γ linkage. Received: 31 October 1996 / Accepted: 1 September 1997  相似文献   

15.
This study re-investigates the characteristics of segmental postural adjustments associated with rapid mono-articular movements and analyses their dependence on initial postural conditions. Subjects performed rapid voluntary wrist flexions and extensions while maintaining their upper limb posture as stable as possible, with or without an elbow support. Surface electromyographic activity (EMG) was recorded from Flexor carpi ulnaris, Extensor carpi radialis, Biceps brachii, Triceps brachii and Deltoideus anterior. The kinematics of the three joints and kinetics in the support condition were also recorded. A planar mechanical model was used to determine the muscle torque required to keep the upper limb posture constant while performing wrist movements. All subjects showed anticipatory postural adjustments (APA) which, unlike those described for whole-body postural control, could not counteract in advance the perturbing inter-segmental forces created by the movement. Postural muscles were activated before the wrist movement with a chronology specific to the direction of the wrist movement. Some postural muscular activities anticipated that of the prime-movers in accordance with muscle torque, which had to be applied to the joints to keep the upper limb posture constant. These results reveal that the central nervous system (CNS) uses the same organization of the motor command for the control of both segmental and whole-body posture: APA and corrective postural adjustments (CPA), which are based on well-organized anticipatory postural muscle activities (APMA), except that APA can be non-efficient in segmental postural control. The presence or absence of an elbow support influenced the level of activation of postural muscle but not their chronology. This result suggests that the CNS uses a sequence of APMA: a postural muscle synergy which is predetermined as a function of the intended direction of the movements and modulates the gain towards certain muscles, in accordance with the gravitational effects, and supports reaction changes.  相似文献   

16.
Previous studies have shown that deficits in agonist–antagonist muscle activation in the single-joint elbow system in patients with spastic hemiparesis are directly related to limitations in the range of regulation of the thresholds of muscle activation. We extended these findings to the double-joint, shoulder-elbow system in these patients. Ten non-disabled individuals and 11 stroke survivors with spasticity in upper limb muscles participated. Stroke survivors had sustained a single unilateral stroke 6–36 months previously, had full pain-free passive range of motion of the affected shoulder and elbow and had some voluntary control of the arm. EMG activity from four elbow and two shoulder muscles was recorded during quasi-static (<5°/s) stretching of elbow flexors/extensors and during slow voluntary elbow flexion/extension movement through full range. Stretches and active movements were initiated from full elbow flexion or extension with the shoulder in three different initial positions (60°, 90°, 145° horizontal abduction). SRTs were defined as the elbow angle at which EMG signals began to exceed 2SD of background noise. SRT angles obtained by passive muscle stretch were compared with the angles at which the respective muscles became activated during voluntary elbow movements. SRTs in elbow flexors were correlated with clinical spasticity scores. SRTs of elbow flexors and extensors were within the biomechanical range of the joint and varied with changes in the shoulder angle in all subjects with hemiparesis but could not be reached in this range in all healthy subjects when muscles were initially relaxed. In patients, limitations in the regulation of SRTs resulted in a subdivision of all-possible shoulder-elbow arm configurations into two areas, one in which spasticity was present (“spatial spasticity zone”) and another in which it was absent. Spatial spasticity zones were different for different muscles in different patients but, taken together, for all elbow muscles, the zones occupied a large part of elbow-shoulder joint space in each patient. The shape of the boundary between the spasticity and no-spasticity zones depended on the state of reflex inter-joint interaction. SRTs in single- and double-joint flexor muscles correlated with the positions at which muscles were activated during voluntary movements, for all shoulder angles, and this effect was greater in elbow flexor muscles (brachioradialis, biceps brachii). Flexor SRTs correlated with clinical spasticity in elbow flexors only when elbow muscles were at mid-length (90°). These findings support the notion that motor impairments after CNS damage are related to deficits in the specification and regulation of SRTs, resulting in the occurrence of spasticity zones in the space of elbow-shoulder configurations. It is suggested that the presence of spatial spasticity zones might be a major cause of motor impairments in general and deficits in inter-joint coordination in particular in patients with spasticity.  相似文献   

17.
Independent coactivation of shoulder and elbow muscles   总被引:1,自引:0,他引:1  
 The aim of this study was to examine the possibility of independent muscle coactivation at the shoulder and elbow. Subjects performed rapid point-to-point movements in a horizontal plane from different initial limb configurations to a single target. EMG activity was measured from flexor and extensor muscles acting at the shoulder (pectoralis clavicular head and posterior deltoid) and elbow (biceps long head and triceps lateral head) and flexor and extensor muscles acting at both joints (biceps short head and triceps long head). Muscle coactivation was assessed by measuring tonic levels of electromyographic (EMG) activity after limb position stabilized following the end of the movements. It was observed that tonic EMG levels following movements to the same target varied as a function of the amplitude of shoulder and elbow motion. Moreover, for the movements tested here, the coactivation of shoulder and elbow muscles was found to be independent – tonic EMG activity of shoulder muscles increased in proportion to shoulder movement, but was unrelated to elbow motion, whereas elbow and double-joint muscle coactivation varied with the amplitude of elbow movement and were not correlated with shoulder motion. In addition, tonic EMG levels were higher for movements in which the shoulder and elbow rotated in the same direction than for those in which the joints rotated in opposite directions. In this respect, muscle coactivation may reflect a simple strategy to compensate for forces introduced by multijoint limb dynamics. Received: 7 July 1998 / Accepted: 28 July 1998  相似文献   

18.
The speed of arm movements is normally increased by increasing agonist muscle activity, but in overarm throwing, an additional effect on speed may come from exploitation of interaction torques (a passive torque associated with motion at adjacent joints). We investigated how the central nervous system (CNS) controls interaction torques at the shoulder and elbow to increase speed in 2-D overarm throwing. Twelve experienced throwers made slow, medium, and fast 2-D throws in a parasagittal plane. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. For slow and medium-speed throws, elbow extension was primarily produced by elbow muscle torque. For fast throws, there was an additional late-occurring elbow extensor interaction torque. Parceling out this elbow extension interaction torque revealed that it primarily arose from shoulder extension deceleration. Surprisingly, shoulder deceleration before ball release was not caused by shoulder flexor (antagonist) muscle torque. Rather, shoulder deceleration was produced by passive elbow-to-shoulder interaction torques that were primarily associated with elbow extension acceleration and velocity. It is concluded that when generating fast 2-D throws, the CNS utilized the arm’s biomechanical properties to increase ball speed. It did this by coordinating shoulder and elbow motions such that an instantaneous mechanical positive feedback occurred of interaction torques between shoulder and elbow before ball release. To what extent this mechanism is utilized in other fast multijoint arm movements remains to be determined.  相似文献   

19.
It has been proposed that unconstrained upper limb movements are coordinated via a kinetic constraint that produces dynamic muscle torques at each moving joint that are a linear function of a single torque command. This constraint has been termed linear synergy (Gottlieb et al. J Neurophysiol 75:1760–1764, 1996). The current study tested two hypotheses: (1) that the extent of covariation between dynamic muscle torques at the shoulder and elbow varied with the direction of movement and (2) that the extent to which muscle torques deviated from linear synergy would be reproduced by a simulation of pointing movements in which the path of the hand was constrained to be straight. Dynamic muscle torques were calculated from sagittal plane pointing movements performed by 12 participants to targets in eight different directions. The results of principal component analyses performed on the muscle torque data demonstrated direction-dependent variation in the extent to which dynamic muscle torques covaried at the shoulder and elbow. Linear synergy was deviated from substantially in movement directions for which the magnitude of muscle torque was low at one joint. A simulation of movements with straight hand paths was able to accurately estimate the amount of covariation between muscle torques at the two joints in many directions. These results support the idea that a kinematic constraint is imposed by the central nervous system during unconstrained pointing movements. Linear synergy may also be applied as a coordinating constraint in circumstances where its application allows the path of the moving endpoint to remain close to a straight line.  相似文献   

20.
The thoracolumbar fascia attaches to the lumbar spinous processes and encloses the paraspinal muscles to form a muscle compartment. Because muscle spindles can respond to transverse forces applied at a muscle's surface, we were interested in the mechanical effects this fascia may have on proprioceptive signaling from lumbar paraspinal muscles during vertebral movement. The discharge of paraspinal muscle spindles at rest and in response to muscle history were investigated in the presence and absence of the thoracolumbar fascia in anesthetized cats. Muscle-history was induced by positioning the L6 vertebra in conditioning directions that lengthened and shortened the paraspinal muscles. The vertebra was then returned to an intermediate position for testing the spindles. Neither resting discharge ( P  = 0.49) nor the effects of muscle history ( P  >   0.30) was significantly different with the fascia intact vs. removed. Our data showed that the thoracolumbar fascia did not influence proprioceptive signaling from lumbar paraspinal muscles spindles during small passive vertebral movements in cats. In addition, comparison of the transverse threshold pressures needed to stimulate our sample of muscle spindles in the cat with the thoracolumbar fascia compartmental pressures measured in humans during previous studies suggests that the thoracolumbar fascia likely does not affect proprioceptive signaling from lumbar paraspinal muscle spindles in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号