首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Results of previous studies suggest that N-desmethyladinazolam, the major metabolite of adinazolam in man, contributes substantially to psychomotor effects and sedation observed following adinazolam administration. Therefore, the pharmacokinetics and pharmacodynamics of N-desmethyladinazolam were explored following administration of single oral doses of placebo and solutions containing 10, 30, and 50 mg N-desmethyladinazolam mesylate in a double-blind, randomized, four-way crossover design to 15 healthy male volunteers. Plasma concentrations of N-desmethyladinazolam were determined by HPLC. Psychomotor performance tests (digit symbol substitution and card sorting by fours and suits), memory tests and sedation scoring were also performed following drug administration. N-desmethyladinazolam pharmacokinetics were dose independent over this range. Doserelated performance effects were observed at 1, 2, and 6 h after dosing. Memory was likewise affected at 2 h. Psychomotor performance decrements correlated with log N-desmethyladinazolam plasma concentrations. Analysis of the relationship between percentage decrements in digit-symbol substitution and plasma N-desmethyladinazolam using the Hill equation revealed a EC50 of 325 ng/ml. These results establish the relationship between N-desmethyladinazolam plasma concentrations and performance effects; these data will be helpful in assessing the contribution of N-desmethyladinazolam to clinical effects observed after adinazolam administration.  相似文献   

2.
The pharmacokinetics and pharmacodynamics of adinazolam were studied in 15 normal, healthy, non-obse volunteers. Placebo capsules and capsules containing 20, 40, and 60 mg adinazolam mesylate were administered as single oral doses in a randomized, 4-way crossover design. Plasma concentrations of adinazolam and mono-N-desmethyladinazolam (NDMAD) were determined by HPLC. Psychomotor performance and memory tests were performed and the degree of sedation assessed at designated times following drug administration. Adinazolam and NDMAD pharmacokinetics were linear throughout the dosage range studied. The ratio of NDMAD to adinazolam area under the curve was approximately 4:1. Dose-related decrements in psychomotor performance and memory were observed up to 8h after dosing (P<0.025 in all cases). Psychomotor performance decrements correlated more closely with NDMAD plasma concentrations than with adinazolam concentrations. These results suggest that NDMAD is responsible for a significant degree of the sedative and psychomotor effects observed after the administration of adinazolam.  相似文献   

3.
Summary The tolerability, pharmacokinetics and pharmacodynamics of adinazolam and N-desmethyladinazolam (NDMAD) were assessed following intravenous infusions of 5, 10, 15, and 20 mg adinazolam mesylate, 10, 20, 30 and 40 mg NDMAD mesylate, and placebo. Six subjects per dose level received treatments in a double-blind crossover design.No clinically significant changes were seen in blood pressure, pulse, respiration, or clinical laboratory parameters. Untoward effects typical of benzodiazepines were observed almost exclusively after NDMAD administration. Adinazolam and NDMAD pharmacokinetics were dose-independent. NDMAD clearance was 50% of the value for adinazolam. Adinazolam and NDMAD administrations increased uric acid clearance and decreased plasma uric acid. Adinazolam administration had no significant effect on psychomotor performance. NDMAD administration produced dose related decreases in performance; 286 ng/ml NDMAD produced a 50% decrease in DSST.These results confirm that adinazolam and NDMAD both produce uricosuria and definitively show that adinazolam is devoid of benzodiazepine-like effects at therapeutic concentrations; NDMAD mediates these effects. Uricosuric activity is present for both compounds, but the relative potencies are still unknown.Presented in part at the Nineteenth Annual Meeting of the American College of Clinical Pharmacology, Las Vegas, NV, November 4–8, 1990  相似文献   

4.
The pharmacokinetics and pharmacodynamics of adinazolam (AD) were evaluated in 21 elderly subjects (mean age, 69 ± 4 years) at four dose levels during a placebo-controlled, double-blind, dose escalation regimen in which the oral dose was varied from 10 to 60 mg daily, in divided doses. Fifteen subjects received adinazolam mesylate; six received placebo. Plasma samples collected during a single dosing interval in each dosing period (3 days) were assayed for adinazolam and monodesmethyl adinazolam (NDMAD) by high-performance liquid chromatography (HPLC). Urine samples were collected during a single interval during the 20- and 40-mg daily dose periods and assayed for NDMAD by HPLC. Pharmacologic effects of adinazolam were assessed using psychomotor performance tests and sedation ratings. Adinazolam pharmacokinetics were linear over the dosage range studied. Daily dose had no significant effect on dose-normalized AUC and C max for AD. Dose-normalized NDMAD AUC values as well as values were not significantly affected by the daily dose of adinazolam. The ratio NDMAD/AD was not substantially affected by the dose. Renal clearance of NDMAD for the 20-and 40-mg daily doses were 5.6 ± 2.1 and 5.5 ± 2.2 liters/hr, respectively, and did not correlate with creatinine clearance. Adinazolam and NDMAD did not substantially accumulate in elderly subjects, even upon multiple dosing at 8-hr intervals. The dosing regimens in this experiment appeared to be well tolerated in the elderly, as performance tests and sedation scores indicated no substantial dose-related effects of adinazolam on psychomotor performance.  相似文献   

5.
Food effects on adinazolam absorption from sustained release (SR) adinazolam mesylate tablets were assessed in 28 healthy male volunteers. Subjects received 15 mg SR tablets, 15 mg immediate release tablets, 15 mg oral solution, administered after an overnight fast, and 15 mg SR tablets after a high fat breakfast. Treatments were administered in a crossover design. Plasma adinazolam and N-desmethyladinazolam (NDMAD) concentrations were determined by HPLC. Adinazolam and NDMAD AUC values were unaffected by food. Cmax for SR tablets was increased 33 per cent and 18 per cent for adinazolam and NDMAD, respectively, when administered postprandially. Tmax occurred later in the fed state; no dose dumping was observed. Meal timing effects on adinazolam absorption from SR tablets were assessed in 24 healthy subjects, who received 30 mg SR tablets 1 h before, 0.5 h after, 2 h after a high fat meal, and in the fasted state. Postprandial administration had no effect on AUC, but resulted later and higher adinazolam and NDMAD Cmax. Differences in these values were less than 11 per cent. Administration of SR tablets before meals yielded Cmax and Tmax values which were similar to the fasted state. Results suggest that meal timing does not substantially affect adinazolam absorption from the SR tablet.  相似文献   

6.
Adinazolam is a triazolobenzodiazepine with anxiolytic and antidepressant activity. Adinazolam is metabolized extensively; the major metabolite, N-desmethyladinazolam (NDMAD), possesses significant pharmacologic activity. NDMAD is eliminated predominantly by renal excretion. Ranitidine, a histamine H2-receptor antagonist, is also excreted renally and may compete with NDMAD for renal secretion. The purpose of this study was to examine the effect of ranitidine on the pharmacokinetics and pharmacodynamics of adinazolam and NDMAD. In a randomized, cross-over study, 12 healthy male volunteers received 300 mg of ranitidine orally followed by 30 mg of adinazolam 1 hour later (treatment A), or adinazolam alone (treatment B). Pharmacodynamic alterations were assessed using card sorting, digit-symbol substitution, and short-term memory tests. Venous blood samples were obtained over 24 hours for analysis of adinazolam and NDMAD by high-performance liquid chromatography. Urine samples also were collected and analyzed for NDMAD. No significant difference in adinazolam oral clearance (1,149 vs. 1,135 ml/hr/kg) was noted between treatments (A vs. B, respectively). Furthermore, the renal clearance of NDMAD (196 vs. 198 ml/min) and the cumulative urinary excretion of NDMAD (% dose; 61.2 vs. 62.3) were not significantly different. Repeated-measures analysis of variance indicated no significant differences in psychomotor performance or short-term memory between treatments. Results suggest that ranitidine has no effect on adinazolam disposition, NDMAD renal clearance, or the central nervous system effects mediated by the drug.  相似文献   

7.
Summary Effects on psychomotor and cognitive performance of adinazolam (15 or 30 mg), alone and in combination with ethanol (0.8 g/kg), were studied in healthy male volunteers and compared to effects of 10 mg diazepam.Adinazolam 30 mg produced relatively long-lasting impairments on tests of tracking, attention, verbal and nonverbal information processing, and memory. Adinazolam 15 mg resulted in descreased visual information processing. Adinazolam decreased supine mean arterial pressure, but only the 15 mg resulted in a tendency for decreased plasma norepinephrine concentrations.After standing for 5 min, 30 mg adinazolam was associated with increased heart rate.Although ethanol consumption produced additive decrements on a continuous performance task, there was little evidence to support a synergistic effect.Adinazolam 30 mg was accompanied by increased self-reports of side effects, especially drowsiness.  相似文献   

8.
Summary Adinazolam is a new triazolobenzodiazepine bearing an alkyl-amino side chain. A cross-over double-blind placebo controlled study was carried out in 12 healthy volunteers, in order to check the possible interaction between cimetidine and adinazolam after repeated co-administration.Cimetidine or placebo were given during 17 days. Beginning on Day 8 of each treatment, adinazolam was given in the increasing doses following sequence of doses for 3 days: 10 mg b.i.d., 20 mg b.i.d. and 20 mg t.i.d. A pharmacokinetic and pharmacodynamic study was performed on the third day at each dose. A wash-out of three weeks was included between the two treatments.Cimetidine increased significantly the AUC values of both adinazolam and N-desmethyladinazolam, reduced the oral clearance of adinazolam, and prolonged adinazolam's half-life.The digit symbol substitution test was significantly affected at each dose level while the manual dexterity was marginally impaired by adinazolam plus cimetidine.Saftee-up interview and Clyde mood scale indicated an increased sedation under adinazolam plus cimetidine in four subjects.  相似文献   

9.
The pharmacokinetics and pharmacodynamics of adinazolam and N-demethyladinazolam (NDMAD), its major active metabolite, were compared in 39 healthy male volunteers (13 Asian, 12 Caucasian and 14 African-American). In a four-way, double-blind crossover design, subjects were administered (1) 30 mg oral adinazolam mesylate SR tablets, (2) 10 mg parenteral (IV) adinazolam mesylate, (3) 30 mg IV NDMAD and (4) placebo. Venous blood samples were collected at specific time intervals after drug administration and assayed for adinazolam and NDMAD concentrations. Sedation was rated at the time of each blood draw according to the Nurse-Rated Sedation Scale, and the digit-symbol substitution test was administered to evaluate psychomotor performance. After IV administration of adinazolam, Asians manifested significantly higher Cmax, larger AUC and lower CL of both adinazolam and NDMAD than their Caucasian and African-American counterparts. Likewise, after IV NDMAD Asians had significantly higher NDMAD Cmax and AUC than Caucasians and African-Americans. Most of these differences remained statistically significant after controlling for body surface area. With PO adinazolam, Asians also manifested substantially higher Cmax, larger AUC and lower CL for both adinazolam and NDMAD; however, with the exception of Cmax, these differences did not reach statistical significance. These results are in accordance with previous observations for ethnic-related differences in drug pharmacokinetics. In contrast, pharmacodynamic differences were not noted among the three study groups. Received: 19 June 1996/Final version: 17 September 1996  相似文献   

10.
The effect of adinazolam release rate on psychomotor performance and sedation was assessed by administering 40 mg adinazolam mesylate immediate-release (CT) tablets, 60 mg sustained-release (SR) tablets, and placebo in a double-blind crossover study in 15 healthy male subjects. A separate panel of 16 subjects received the above single doses and multiple-dose regimens of 40 mg CT tablets every 8 hr and 60 mg SR tablets every 12 hr according to a crossover design. Psychomotor performance was assessed by digit symbol substitution test, card sorting tasks, and sedation ratings. Following single-dose administration, dose-corrected adinazolam and N-desmethyladinazolam (NDMAD) AUC values were equivalent for SR and CT tablets. Peak adinazolam and NDMAD levels were lower and occurred later for the SR tablets. Decrements in card sorting were 50 and 3% at 1 hr and 17 and 20% at 6 hr for the CT and SR tablets, respectively. Maximal sedation scores were lower for the SR tablets compared to the CT. Dose-corrected AUC was comparable between single and multiple doses for both adinazolam and NDMAD; no differences were observed in 24-hr AUC at steady-state between CT and SR tablets. Fluctuation ratios were reduced for both adinazolam and NDMAD following SR tablets. Psychomotor and sedative effects were attenuated upon multiple dosing. Thus, the reduction in peak plasma NDMAD following SR tablet administration results in a lesser sedation and psychomotor impairment on acute administration, and tolerance to these effects occurs on mulitiple dosing.  相似文献   

11.
The pharmacokinetics and pharmacodynamics of adinazolam were investigated in six patients with cirrhosis and six sex-matched control subjects. These subjects received a single 30-mg oral dose of adinazolam mesylate. Serial blood samples were collected for 24 hours after drug administration. Plasma was assayed for adinazolam and mono-desmethyl-adinazolam (NDMAD) concentrations by a specific HPLC technique. Pharmacokinetic parameters were estimated by noncompartmental methods. Psychomotor effects of adinazolam were assessed using a digit-symbol substitution test (DSST) and aiming test (AIM). Memory effects were assessed by a modification of the Randt memory test (MEM); sedation was assessed using an observer-rated scale. Differences in pharmacokinetics of the parent drug were noted: adinazolam oral clearance was lower in patients with cirrhosis (35.0 +/- 27.9 L/hr) than in normal subjects (73.7 +/- 22.1 L/hr; P = .024); Kel was significantly lower in patients with cirrhosis (.126 +/- .084 vs. .278 +/- .070; P = .007), whereas the mean t1/2 in patients with cirrhosis was 7.70 hours as compared with 2.67 hours in normal subjects. Cmax was higher in the group with cirrhosis (266 +/- 95.5 vs. 153 +/- 29.3 ng/mL; P = .019). For NDMAD, Kel was lower in cirrhotic subjects and resulted in a prolonged t1/2 in cirrhotic subjects compared with normal subjects (6.70 vs. 3.79 hr; P = .0152). NDMAD AUC tended to be higher in cirrhotic subjects (1515 +/- 254 vs. 1162 +/- 254 ng.hr/mL; P = .064). No significant differences were noted in psychomotor performance, memory, or sedation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A gradient high performance liquid chromatographic method was developed to determine degradation products of adinazolam mesylate in a sustained release tablet formulation. Sample preparations were chromatographed on a YMC-Basic column using a formate buffer/acetonitrile gradient with absorbance detection at 254 nm. Adinazolam mesylate was found to degrade at high relative humidity and temperature to form a major product, the 6-aminoquinoline analog, plus numerous other compounds. Five of these compounds were identified and their structures indicate that the solid-state degradation of adinazolam, in the presence of sufficient moisture, involves not only a hydrolytic mechanism, but also an oxidative mechanism. Potential process impurities were resolved from the drug and degradation products. Recovery was near 100% over the 0.5 to 10% range for the major degradate (6-aminoquinoline) and over the 0.5 to 1% range for the other analytes. The method was applied to tablet samples stressed at high relative humidity and temperature. The relative standard deviation of the assay for the 6-aminoquinoline was less than 2% and less than 13% for the minor components. Calculated mass balances (sum of adinazolam plus degradation products in the degraded tablet divided by the same sum in the undegraded tablet) were less than 100% and were dependent on the extent of degradation in the tablet. The average mass balance result obtained for samples that were an average of 9.5% degraded was 95.0 ± 1.5%. It is possible that the decrease in mass balance with increase in percent degradation may be explained by the formation of many components at trace levels due to degradation by various permutations of hydrolytic and oxidative reaction pathways.  相似文献   

13.
The pharmacokinetics and pharmacodynamics of adinazolam mesylate (10 mg), N-desmethyl adinazolam mesylate (NDMAD, 10 mg), and alprazolam (1 mg) were investigated in 9 healthy male subjects in a randomized, blinded, single-dose, 4-way crossover study. All drugs were intravenously infused over 30 minutes. Plasma adinazolam, NDMAD, and alprazolam concentrations, electroencephalographic (EEG) activity in the beta (12-30 Hz) range, performance on the Digit Symbol Substitution Test (DSST), and subjective measures of mood and sedation were monitored for 12 to 24 hours. Mean pharmacokinetic parameters for adinazolam, NDMAD, and alprazolam, respectively, were as follows: volume of distribution (L), 106, 100, and 77; elimination half-life (hours), 2.9, 2.8, and 14.6; and clearance (mL/min), 444, 321, and 84. More than 80% of the total infused adinazolam dose was converted to systemically appearing NDMAD. All 3 benzodiazepine agonists significantly increased beta EEG activity, with alprazolam showing the strongest agonist activity and adinazolam showing the weakest activity. Alprazolam and NDMAD significantly decreased DSST performance, whereas adinazolam had no effect relative to placebo. Adinazolam, NDMAD, and alprazolam all produced significant observer-rated sedation. Plots of EEG effect versus plasma alprazolam concentration demonstrated counterclockwise hysteresis, consistent with an effect site delay. This was incorporated into a kinetic-dynamic model in which hypothetical effect site concentration was related to pharmacodynamic EEG effect via the sigmoid E(max) model, yielding an effect site equilibration half-life of 4.8 minutes. The exponential effect model described NDMAD pharmacokinetics and EEG pharmacodynamics. The relation of both alprazolam and NDMAD plasma concentrations to DSST performance could be described by a modified exponential model. Pharmacokinetic-dynamic modeling was not possible for adinazolam, as the data did not conform to any known concentration-effect model. Collectively, these results indicate that the benzodiazepine-like effects occurring after adinazolam administration are mediated by mainly NDMAD.  相似文献   

14.
Thirty outpatients between the ages of 60 and 85 with DSM-III Major Depression entered an 8 week randomized, double-blind comparison of desipramine and adinazolam mesylate, a triazolobenzodiazepine derivative. Outcome was assessed on several measures including the Hamilton Depression Rating Scale (HDRS), Montgomery-Asberg Rating Scale, Clinical Global Impressions (CGI), the 35-item Self-Rating Symptom Scale, and Carroll Depression Scale. Patients in both groups demonstrated a highly significant decrease in average HDRS scores (p less than 0.001) over the course of the study. Adinazolam was associated with significantly greater reduction in average HDRS scores by the third day. Repeated measures analysis of variance showed a significantly greater reduction in HDRS scores for adinazolam over the course of the study. The study medications were associated with distinct patterns of adverse reactions. Desipramine more often produced dry mouth, constipation and nervousness, while adinazolam was more likely to cause drowsiness and lightheadedness. Three of these elderly patients, all of whom were taking desipramine reported at least one fall during the study. Adinazolam may be a promising agent in the treatment of depression in the elderly.  相似文献   

15.
Effects of age and gender on the pharmacokinetics and pharmacodynamics of ramelteon, a hypnotic acting via binding to melatonin MT(1) and MT(2) receptors, were evaluated in healthy young (18-34 years) and elderly (63-79 years) volunteers. Part 1 evaluated the pharmacokinetics of open-label oral ramelteon, 16 mg. Part 2 was a double-blind, randomized, 2-trial crossover pharmacodynamic study of 16-mg ramelteon and matching placebo. Ramelteon clearance was significantly reduced in elderly vs young volunteers (384 vs 883 mL/min/kg, P<.01) and half-life significantly increased (1.9 vs 1.3 h, P<.001). Gender did not significantly influence clearance or half-life. Ramelteon was extensively transformed to its hydroxylated M-II metabolite, with serum AUC values averaging about 30 times those of the parent drug. Compared to placebo, ramelteon increased self- and observer-rated sedation, but age and gender did not influence the magnitude of the ramelteon-placebo difference. Ramelteon did not significantly impair digit-symbol substitution test performance or impair information acquisition and recall. Thus, the reduced clearance and higher serum levels of ramelteon in elderly subjects were not associated with enhanced pharmacodynamic effects. The usually recommended clinical dose of ramelteon (8 mg) does not require modification based on age or gender.  相似文献   

16.
Adinazolam mesylate, a new triazolobenzodiazepine with antidepressant properties, was significantly superior to placebo based on the following efficacy measures: number of subjects who completed the study; number of subjects whose total score on the 21-item Hamilton Rating Scale for Depression (HAM-D) decreased by 50% or more; and number of subjects who reported that the drug helped them. Mean scores on three HAM-D clusters (anxiety/somatization, sleep disturbance, and an endogenomorphic cluster) also showed significant differences in favor of adinazolam. Side effects were generally mild and transient; however, a seizure of moderate intensity occurred during rapid tapering of adinazolam from 90 to 40 mg/day. There were no significant anticholinergic effects, and no mania or hypomania was reported in any subject. No consistently significant differences were observed between subjects whose primary diagnosis was major depression and those with a diagnosis of bipolar II depression.  相似文献   

17.
Single doses of alprazolam (0, 0.5, 1.5 mg) or adinazolam mesylate sustained release tablets (SR) (0, 15, 45 mg) were administered to separate groups of 12 healthy men in a crossover design. Psychomotor performance was assessed by digit symbol substitution (DSST), and memory was assessed using a test battery which reflects various aspects of memory, including attention/working memory, explicit memory (recall of categorically related words), semantic memory (fragmented picture recognition, generation of category exemplars), and implicit memory (time saved in resolving fragmented pictures on the second exposure). Maximal psychomotor performance and memory decrements for the highest active doses were significantly different from placebo for all tasks at some time after dosing. The maximum decrement in DSST was not significantly different between drugs at the high dose (P=0.288). Maximum attention/working memory decrements were significantly different between the high doses of the active compounds (P=0.031), and the difference in maximum category recall decrement was marginally significant (P=0.067). Access to knowledge memory was not significantly altered by these drugs; these results are similar to those obtained for other benzodiazepines. Both drugs exhibited slight effects on implicit memory. The results suggest that the sedative and memory effects of these triazolobenzodiazepines may not be closely related and suggest that adinazolam has a somewhat different spectrum of cognitive effects relative to alprazolam.  相似文献   

18.
Purpose. A mathematical model is described for the prediction of the relative change in drug release rate as a function of formulation composition for HPMC-based extended-release (ER) tablets of adinazolam mesylate and alprazolam. Methods. The model is based on the equation derived by Higuchi for the diffusional release of soluble drugs from polymeric matrices and on our recent measurements of the concentration dependency of adinazolam diffusivity in dilute HPMC gels and solutions. The assumptions made in applying the model include (i) that diffusion is the sole mechanism of drug release (i.e. swelling kinetics are ignored), and (ii) that the surface area-to-volume ratio and concentrations of adinazolam, lactose and HPMC in the gel layer are proportional to that of the dry tablet. Results. Reasonable correlations were obtained between the experimental drug release rate ratios and the predicted drug release rate ratios for ER adinazolam mesylate (R2 = 0.82) and low-dose (0.5 mg) ER alprazolam tablets (R2 = 0.87). The predictive power for a 6-fold higher dose of ER alprazolam tablets was not as good (R2 = 0.52). Conclusions. These results are consistent with previous knowledge of the release mechanisms of these formulations. ER adinazolam mesylate and ER alprazolam 0.5 mg exhibit primarily a diffusion controlled release mechanism, while ER alprazolam 3 mg deviates from pure diffusional release. The limitations of the model are discussed and point to the need for continued study of the swelling kinetics of matrix ER systems.  相似文献   

19.
The pharmacokinetics of adinazolam and N-desmethyladinazolam (NDMAD) were studied in 14 healthy male volunteers who received 15 mg adinazolam mesylate orally as a solution and 5 mg adinazolam mesylate intravenously in a crossover design. Two weeks prior to the crossover study, each subject received 5 mg/kg indocyanine green (ICG) as an intravenous bolus injection to estimate liver blood flow. The absolute bioavailability (F), calculated as the dose-corrected ratio of oral to iv adinazolam area under the curve (AUC) values, was found to be 39%. NDMAD AUC values were similar following oral and iv administration, and adinazolam mean absorption time was approximately 0.77 hr. Thus, adinazolam is completely and rapidly absorbed after oral administration in man; the incomplete bioavailability is due to first-pass metabolism. Mean liver blood flow, adinazolam systemic clearance, blood/plasma ratio, and extraction ratio were 1189 ml/min, 498 ml/min, 0.70, and 0.57, respectively. The extraction ratio agrees with that calculated as 1-F (0.62), suggesting that the liver is primarily responsible for first-pass metabolism of adinazolam. The unbound fraction of adinazolam in plasma was 0.31 (range, 0.25–0.36); adinazolam free intrinsic clearance (a reflection of metabolic capacity) was 4285 ml/min (range, 2168–6312 ml/min). These results suggest that the majority of the variability in adinazolam plasma concentrations following oral administration is due to the variability in the metabolic capacity of the liver for adinazolam, rather than variability in plasma protein binding.  相似文献   

20.
A single dose open labelled two-way randomized crossover study was used to assess the pharmacokinetics of diazepam from a controlled release capsule relative to standard release tablets in elderly volunteers. Eighteen volunteers received a single 15 mg controlled release capsule or a 5 mg tablet t.i.d. on one day. Diazepam plasma concentrations were determined at specific times over a 96-h interval by an electron capture-gas chromatographic method. Mean plateau plasma concentrations endured from 2 to 24 h avoiding the peak to trough fluctuations associated with conventional t.i.d. dosing. Similar areas under the plasma concentration-time curve (AUC) values indicated equal extent of absorption between formulations and regimens. Comparing parameters in this same elderly population to a young adult population, previously administered the controlled release capsule, shows lower maximum concentrations and a longer plateau duration in the elderly volunteers. Although there is a twofold increase in the mean diazepam half-life in the elderly when compared to young adults, the estimated apparent volume of distribution increased proportionately with half-life to maintain a constant clearance. Thus, the total body clearance of diazepam appears to be age independent. The age-dependent pharmacokinetics observed in this study are consistent with previously reported data involving diazepam. Overall, the controlled release capsule administered once daily mimics a t.i.d. regimen in elderly volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号