首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emery-Dreifuss muscular dystrophy (EDMD) is inherited in an X-linked or autosomal manner. X-linked EDMD is caused by mutations in EMD, which encodes an integral protein of the nuclear envelope inner membrane called emerin. Autosomally inherited EDMD is caused by mutations in LMNA, which encodes A-type nuclear lamins, intermediate filament proteins associated with inner nuclear membrane. Although the causative mutations have been described and mouse models have been created, the pathogenic processes by which mutations in genes encoding nuclear envelope proteins cause striated muscle abnormalities in EDMD remain obscure. Working hypotheses include effects on nuclear structural integrity, increased cellular susceptibility to mechanical stress damage, alterations in gene expression in response to nuclear envelope changes, and effects on cell proliferation and differentiation.  相似文献   

2.
Alpha-dystroglycanopathies form a genetically heterogeneous group of congenital muscular dystrophies with a large variety of clinical phenotypes. Within this group mutations in the protein O-mannosyltransferase genes (POMT1 and POMT2) are known to cause a spectrum of CMD disorders including the Walker–Warburg Syndrome with severe brain and ocular malformations, and the limb girdle muscular dystrophy with and without mental retardation. In this case report the clinical phenotype and brain and muscle MRI findings of two siblings of 10 and 7 years (male/female) homozygous for a novel mutation in the POMT1 gene (c.2220G > C, p.Trp740Cys) and a 10 year old boy with two novel mutations in the POMT2 gene ((c.215G > A, p.Arg72His) and (c.713G > T, p.Gly238Val) are presented. Mutation detection was performed by direct sequencing of the FKRP, FKTN, POMT1 and POMT2 genes. T1-weighted axial muscle MRI of the lower limbs revealed diffuse fatty degeneration of thigh and calf muscles with predominance of gluteus maximus, adductor magnus, posterior thigh, medial gastrocnemius, and peroneus muscles, but no edematous changes. As a similar pattern of muscle involvement had been described in FKRP related α-dystroglycanopathy LGMD2I, we conclude that α-dystroglycanopathies may present with distinctive muscle MRI changes.  相似文献   

3.
Defects in glycosylations of α-dystroglycan are associated with mutations in several genes, including the fukutin gene (FKTN). Hypoglycosylation of α-dystroglycan results in several forms of muscular dystrophy with variable phenotype. Outside Japan, the prevalence of muscular dystrophies related to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due to episodes of tachycardia caused by Wolff–Parkinson–White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal <150 IU/L). A homozygous, novel c.917A>G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations as a cause of LGMD2M without mental retardation and expands the phenotypic spectrum for LGMD2M to include cardiomyopathy and rigid spine syndrome in the mildest affected non-Japanese patient reported so far.  相似文献   

4.
Autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD) is one of a number of allelic disorders caused by mutations in the nuclear lamina proteins, lamins A and C. The disorder is characterised by the early onset of skeletal muscle weakness and joint contractures and later, by dilated cardiomyopathy and cardiac arrythmias. Although the pathophysiology is not understood, one theory suggests that disordered structural organisation at weakened nuclei in contractile cells may underlie the disease. Previous work shows that mice deficient in lamin A/C develop similar skeletal and cardiac muscle signs to patients with AD-EDMD and ultrastructural examination of muscle from these mice shows abnormal localisation of desmin. We hypothesised therefore that desmin localisation may be abnormal in muscle or cells from patients with AD-EDMD and/or in cells expressing mutant lamins. In order to evaluate this, desmin immunolocalisation was determined in skeletal muscle biopsy sections from patients with AD-EDMD and cell lines including MyoD-transfected fibroblast-derived myotubes from AD-EDMD patients and murine embryonic stem cell-derived cardiomyocytes stably transfected with mutant human lamin A. Ultrastructural examination of patient muscle was also performed. Desmin was expressed and localised normally in patient muscle and cell lines and ultrastructural examination was similar to controls. These results fail to provide any evidence that dominant mutations in lamin A/C lead to a disorganisation of the desmin associated cytoskeleton.  相似文献   

5.
A Dutch cohort of 105 limb girdle muscular dystrophy (LGMD) patients were subject to subsequent genetic investigations. In half the families a causative mutation was found. Recently mutations were identified in ANO5 causing LGMD2L and Miyoshi-like myopathy (MMD3), but could also be found in patients with hyperCKemia only. Therefore, we analysed the index cases of the remaining 31 as yet undiagnosed families from our previously described cohort of LGMD patients for the presence of ANO5 mutations. Detailed history and neurological examination were available for all patients. Serum creatine kinase (CK) activity, skeletal muscle computed tomography (CT) and cardiological investigations were performed. Mutations in ANO5 were found in 16% of the families: 11 index patients and two sibs, eight males and five females. The founder mutation c.191dupA was present in 8 out of 13 patients. Ten different pathogenic mutations were identified of which seven were novel: five missense and two splice site mutations. The age of these patients ranged from 26 to 69 years and the age of onset varied from 21 to 57 years. Symptoms at onset were related to proximal leg weakness. The weakness was slowly progressive. Calf hypertrophy was present in three patients. Males were more severely affected than females. Serum CK activity was highly elevated in the early stage of disease and moderately increased in later stages. Muscle biopsy showed predominantly dystrophic changes. One patient had hypertrophic cardiomyopathy, two others had intraventricular septum thickening.  相似文献   

6.
The limb-girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies that share a similar clinical phenotype. Despite this clinical homogeneity, at least 15 different genetic forms of LGMD are now known. Some of these share pathogenetic mechanisms with other forms of muscular dystrophy, such as the sarcoglycanopathies (LGMD 2C-F) and the dystrophinopathies (Duchenne and Becker muscular dystrophy). Some are allelic with other forms of muscular dystrophy; LGMD 1B is allelic with autosomal dominant Emery-Dreifuss muscular dystrophy. Still others introduce totally unique pathogenetic mechanisms to the study of muscular dystrophy. For example, LGMD 2H appears to be due to mutations affecting the ubiquitin-proteasome pathway. A diagnostic approach is outlined based on clinical features, genetics, and commercially available testing.  相似文献   

7.
Primary laminopathies caused by mutations in the LMNA gene typically display an extremely pleiotropic clinical presentation including cardiac, muscular and metabolic phenotypes. Additionally, many atypical laminopathies have been described combining features of two or more of the distinctive disorders or syndromes associated with LMNA mutations. We report on a 46-year-old female patient with a heterozygous p.R28W LMNA mutation, who presented with a novel clinical phenotype comprising severe limb-girdle muscular dystrophy, pronounced partial lipodystrophy, cardiac conduction defect, polycystic ovary disease and a metabolic syndrome with insulin-resistant diabetes mellitus and hypertriglyceridemia. On examination, her 23-year old daughter solely showed early signs of a LGMD phenotype.  相似文献   

8.
Six genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan. We describe four new patients with FKTN mutations and phenotypes ranging from: severe WWS in a Greek-Croatian patient, to congenital muscular dystrophy and cobblestone lissencephaly resembling MEB-FCMD in two Turkish patients, and limb-girdle muscular dystrophy and no mental retardation in a German patient. Four of the five different FKTN mutations have not been previously described.  相似文献   

9.
Nuclear muscular dystrophies are referred to as inherited muscular dystrophies caused by mutations in genes--(STA) or lamina (LMNA)--encoding components of the nuclear envelope. Phenotypically, they present as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscle dystrophy 1B (LGMD1B), or dilated cardiomyopathy with conduction defects (DCM-CD). Genetically related are the Dunnigan-type of familial partial lipodystrophy (FPLD) and Charcot-Marie-Tooth neuropathy type 2 (CMT2B). Until now, approximately 70 unique STA mutations, leading to X-linked EDMD or DCM-CD, have resulted mostly in a complete lack of emerin. Further 50 mostly missense mutations in LMNA result in autosomal-dominant EDMD, autosomal-recessive EDMD, LGMD1B, DCM-CD, FPLD, or CMT2B. Independent of type or location of the mutations, emerinopathies and laminopathies show wide clinical intrafamilial and interfamilial variability. Although structural abnormalities of nuclei in animal and cell models have been observed, the molecular pathology of the nuclear muscular dystrophies needs still to be elucidated.  相似文献   

10.
Mutations in the lamin A/C gene have been reported in a variety of disorders including autosomal dominant Emery-Dreifuss muscular dystrophy and autosomal dominant limb girdle muscular dystrophy with cardiac conduction block or limb girdle muscular dystrophy type 1B (LGMD1B). However, how these mutations are involved in developing these diseases is not known. We examined morphological changes of the skeletal muscle in two cases of LGMD1B in a family, directing our attention to the nuclear envelope and its underlying structures where lamin A/C is located. Although conventional fluorescence microscope revealed no discernible abnormality in the distribution of emerin and lamin A/C, a serial multi-layer scanning with confocal laser scanning microscope showed an attenuated and uneven distribution of lamin A/C. Furthermore, under an electron microscope, the nuclear fibrous lamina and inner nuclear membrane were relatively indistinct compared to controls. These changes in the myonuclei may be related to pathomechanisms of the present cases.  相似文献   

11.

Background

One of the main complications in patients with muscular dystrophies is cardiac dysfunction. The literature on cardiac involvement in patients with Fukuyama congenital muscular dystrophy (FCMD) is limited.

Aim

To compare cardiac involvement between patients with FCMD and Duchenne muscular dystrophy (DMD).

Methods

We compared cardiac involvement between 30 patients with FCMD and 181 patients with DMD using echocardiography and serum biomarkers. All patients were receiving regular checkups at Kobe University Hospital. We used single regression analysis to compare echocardiographic parameters, age, and serum biomarkers.

Results

Almost all clinical and echocardiographic parameters were lower in patients with FCMD than DMD. The brain natriuretic peptide concentration in patients with FCMD showed no correlation with age or left ventricular ejection fraction (r = 0.231, p = 0.22 and r = 0.058, p = 0.76, respectively). A log-rank test revealed that the risk of left ventricular systolic dysfunction was lower in patients with FCMD than DMD (p = 0.046, hazard ratio = 0.348).

Conclusion

The clinical progression of cardiac dysfunction is significantly milder in patients with FCMD than DMD, while skeletal muscle involvement is significantly worse in patients with FCMD. These data suggest that the pathophysiological findings of FCMD can be explained by less severe cardiac dysfunction in FCMD than DMD.  相似文献   

12.
Nuclear envelope proteins and neuromuscular diseases   总被引:13,自引:0,他引:13  
Several neuromuscular diseases are caused by mutations in emerin and A-type lamins, proteins of the nuclear envelope. Emery-Dreifuss muscular dystrophy is caused by mutations in emerin (X-linked) or A-type lamins (autosomal dominant). Mutations in A-type lamins also cause limb-girdle muscular dystrophy type 1B, dilated cardiomyopathy with conduction defect, and Charcot-Marie-Tooth disorder type 2B1. They also cause partial lipodystrophy syndromes. The functions of emerin and A-type lamins and the mechanisms of how mutations in these proteins cause tissue-specific diseases are not well understood. The mutated proteins may cause structural damage to cells but may also affect processes such as gene regulation. This review gives an overview of this topic and describes recent advances in identification of disease-causing mutations, studies of cells and tissues from subjects with these diseases, and animal and cell culture models.  相似文献   

13.
Mutations in A-type nuclear lamins are known to cause a variety of diseases, which can affect almost all organs of the human body including striated muscle. For lamin-related congenital muscular dystrophy two different phenotypes are known to date. Here, we describe a 3-year-old, white Caucasian girl with a novel de novo mutation in the LMNA gene with marked hypotonia of neck and trunk muscles with dropped head posture, loss of cervical lordosis and marked joint laxity. In addition to this novel mutation, the patient also had cerebral white matter lesions on MRI and cognitive impairment on developmental testing. This is only the second A-type lamin-related congenital muscular dystrophy patient in which white matter lesions are described. Thus, white matter involvement might be a feature in A-type lamin-related congenital muscular dystrophy, warranting screening of these patients for both white matter lesions and cognitive impairment.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is a progressive, lethal neuromuscular disorder caused by the absence of dystrophin protein due to mutations of the dystrophin gene. Drisapersen is a 2′-O-methyl-phosphorothioate oligonucleotide designed to skip exon 51 in dystrophin pre-mRNA to restore the reading frame of the mRNA. This study assessed safety, tolerability, and pharmacokinetics of drisapersen after a single subcutaneous administration in non-ambulatory subjects. Eligible subjects were non-ambulant boys aged ⩾9 years, in wheelchairs for ⩾1 to ⩽4 years, with a diagnosis of DMD resulting from a mutation correctable by drisapersen treatment. Four dose cohorts were planned (3, 6, 9 and 12 mg/kg), but study objectives were met with the 9 mg/kg dose. Less than proportional increase in exposure was demonstrated over the 3–9 mg/kg dose range, though post hoc analysis showed dose proportionality was more feasible over the 3–6 mg/kg range. Single doses of drisapersen at 3 and 6 mg/kg did not result in significant safety or tolerability concerns; however, at the 9 mg/kg dose, pyrexia and transient elevations in inflammatory parameters were seen. The maximum tolerated dose of 6 mg/kg drisapersen was identified for further characterization in multiple dose studies in the non-ambulant DMD population.  相似文献   

15.
In this retrospective cross-sectional study clinical and muscle imaging data of patients with Miyoshi distal myopathy phenotype (MMD1 and MMD3) and limb girdle muscular dystrophy 2L (LGMD2L) were described. MMD1 and MMD3 are genetically heterogenous diseases based on DYSF and ANO5 gene defects. MMD3 and LGMD2L are clinically different diseases caused by an ANO5 gene defect. All groups showed predominant fatty degeneration of the gluteus minimus muscle and of the posterior segments of the thigh and calf muscles with sparing of the gracilis muscle. Muscle atrophy, hypertrophy and asymmetric muscle involvement on muscle imaging did not differ between groups. The pattern of fatty degeneration of muscles and of muscle weakness shows only minor differences between MMD1 (n = 6) and MMD3 (n = 8) patients with more frequently fatty degeneration of the rectus femoris, anterior tibial, and extensor digitorum muscles and more frequently muscle weakness in the anterior tibial, peroneal and calf muscle in MMD1. In the ANO5 related phenotypes the lateral head of the gastrocnemius muscle was less frequently involved in LGMD2L (n = 13) and no differences in the incidence of muscle weakness was found. Therefore, MMD3 and LGMD2L should be considered as part of one spectrum of ANO5 related muscle disease.  相似文献   

16.
Life-threatening cardiac and respiratory complications are common in LMNA-related myopathies and early diagnosis is important for optimal patient care. Lamin A/C related congenital muscular dystrophy (L-CMD) is often caused by de novo mutation in LMNA, affecting a single child in a family. Germinal mosaicism is a rarer variant that can lead to two children inheriting the same new heterozygous mutation from a clinically unaffected parent. Both patterns mimic autosomal recessive (AR) inheritance and the possibility of de novo L-CMD may be forgotten since most causes of congenital muscular dystrophy follow AR inheritance. To illustrate the challenge of diagnosing L-CMD, we present a consanguineous family in which two children have early onset LMNA-related myopathy likely due to paternal germinal mosaicism. This emphasises that germinal mosaicism (and de novo mutations) for LMNA can arise in any family and direct gene sequencing is required to confirm or exclude the diagnosis.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is strongly associated with a unique form of dilated cardiomyopathy. Cardiac complications are the leading cause of death in DMD; thus, longitudinal assessments and early intervention for cardiac dysfunction are necessary to improve prognosis. Two-dimensional echocardiography, which is routinely used for cardiac assessment, has some limitations for quantitative analyses in DMD patients with thoracic deformities and regional wall motion abnormalities in the left ventricle. Recently, real-time three-dimensional echocardiography has emerged as a feasible tool for cardiac assessment in various cardiac diseases. The aim of this study was to examine the utility of this technology in DMD. We evaluated left ventricular ejection fraction (LVEF), a major parameter of left ventricular function, in 17 male DMD patients. LVEF values measured by real-time three-dimensional echocardiography were compared with those determined by two established nuclear cardiology methods: “the first-pass method of radionuclide angiocardiography” and “quantitative electrocardiogram-gated single-photon emission computed tomography”. A good correlation was observed for LVEF values, particularly between real-time three-dimensional echocardiography and “the first-pass method of radionuclide angiocardiography” (r = 0.90, p < 0.05). Thus, real-time three-dimensional echocardiography can provide an accurate measurement of LVEF in DMD patients with echocardiographic limitations.  相似文献   

18.
This study evaluated efficacy and safety of growth hormone treatment in Duchenne muscular dystrophy boys with glucocorticoid-induced growth failure. We reviewed 39 consecutive boys (average age 11.5 years; 32 ambulatory) treated with growth hormone for 1 year during a four-year period. Boys were on long-term daily deflazacort or prednisone (mean duration 5 ± 2.2 years; dosing regimen prednisone 0.75 mg/kg/day equivalent). Primary outcomes were growth velocity and height-for-age z-scores (height SD) at 1 year. Height velocity increased from 1.3 ± 0.2 to 5.2 ± 0.4 cm/year on growth hormone (p < 0.0001). Pre-growth hormone decline in height SD (−0.5 ± 0.2 SD/year) stabilized at height SD −2.9 ± 0.2 on growth hormone (p < 0.0001). The rate of weight gain was unchanged, at 2.8 ± 0.6 kg/year pre-growth hormone and 2.6 ± 0.7 kg/year at 1 year. Motor function decline was similar pre-growth hormone and at 1 year. Cardiopulmonary function was unchanged. Three experienced side effects. In this first comprehensive report of growth hormone in Duchenne muscular dystrophy, growth hormone improved growth at 1 year, without detrimental effects observed on neuromuscular and cardiopulmonary function.  相似文献   

19.
Bethlem myopathy and Ullrich congenital muscular dystrophy are part of the heterogeneous group of collagen VI-related muscle disorders. They are caused by mutations in collagen VI (ColVI) genes (COL6A1, COL6A2, and COL6A3) while LMNA mutations cause autosomal dominant Emery-Dreifuss muscular dystrophy. A muscular dystrophy pattern and contractures are found in all three conditions, making differential diagnosis difficult especially in young patients when cardiomyopathy is absent.We retrospectively assessed upper and lower limb muscle CT scans in 14 Bethlem/Ullrich patients and 13 Emery-Dreifuss patients with identified mutations.CT was able to differentiate Emery-Dreifuss muscular dystrophy from ColVI-related myopathies in selected thigh muscles and to a lesser extent calves muscles: rectus femoris fatty infiltration was selectively present in Bethlem/Ullrich patients while posterior thigh muscles infiltration was more prominently found in Emery-Dreifuss patients. A more severe fatty infiltration particularly in the leg posterior compartment was found in the Emery-Dreifuss group.  相似文献   

20.
Alpha-dystroglycanopathy is caused by the glycosylation defects of α-dystroglycan (α-DG). The clinical spectrum ranges from severe congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all α-dystroglycanopathies, LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for α-DG and found 7 with reduced α-DG immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of α-DG. Among them, five LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c.948delC, was identified and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese LGMD patients is highly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号