首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular characterization is important for an accurate diagnosis in hereditary spastic paraplegia (HSP). Mutations in the gene SPAST (SPG4) are the most common cause of autosomal dominant forms. We performed targeted next generation sequencing (NGS) in a SPAST-negative HSP sample. Forty-four consecutive HSP patients were recruited from an adult neurogenetics clinic in Sydney, Australia. SPAST mutations were confirmed in 17 subjects, and therefore 27 SPAST-negative patients were entered into this study. Patients were screened according to mode of inheritance using a PCR-based library and NGS (Roche Junior 454 sequencing platform). The screening panel included ten autosomal dominant (AD) and nine autosomal recessive (AR) HSP-causing genes. A genetic cause for HSP was identified in 25.9 % (7/27) of patients, including 1/12 classified as AD and 6/15 as AR or sporadic inheritance. Several forms of HSP were identified, including one patient with SPG31, four with SPG7 (with one novel SPG7 mutation) and two with SPG5 (including two novel CYP7B1 frameshift mutations). Additional clinical features were noted, including optic atrophy and ataxia for patients with SPG5 and ataxia and a chronic progressive external ophthalmoplegia-like phenotype for SPG7. This protocol enabled the identification of a genetic cause in approximately 25 % of patients in whom one of the most common genetic forms of HSP (SPG4) was excluded. Targeted NGS may be a useful method to screen for mutations in multiple genes associated with HSP. More studies are warranted to determine the optimal approach to achieve a genetic diagnosis in this condition.  相似文献   

2.
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive weakness and spasticity in the lower limbs. Spasticity may occur in isolation (‘‘pure’’ HSP) or may be accompanied by other features. Although autosomal recessive HSPs usually have clinically complex phenotypes, mutations within a few genes underlie pure forms. Recently the gene (CYP7B1) responsible for SPG5, a pure recessive HSP, has been identified. The six CYP7B1 coding exons were analysed in four Italian families. Complete clinical assessment was performed in all patients. Blood CYP7B1 mRNA levels were assessed in three patients and six controls. Brain MRI and 18F-fluoro-deoxy-glucose positron emission tomography (PET) scan were conducted in three patients. Two novel homozygous mutations were identified. Both result in a frameshift and the introduction of a premature stop codon at the C-terminal of the protein. Patients have reduced blood CYP7B1 mRNA levels, suggesting nonsense mediated RNA decay. Although clinical assessment showed a pure form of spastic paraplegia, MRI demonstrated white matter abnormalities in three patients and PET scan revealed cerebellar hypometabolism in one. Based on the results, we report the first Italian families with SPG5 molecular characterization and describe two novel truncating mutations in CYP7B1. The recessive character, the truncating nature of the mutations, and the reduced peripheral blood CYP7B1 mRNA levels suggest that the development of the disease is associated with a loss of function. SPG5 is considered a pure form of HSP, but MRI and PET findings in our patients suggest that SPG5 phenotype may be broader than the pure presentation.  相似文献   

3.
Pathogenic mutations in CYP7B1 account for SPG5, an autosomal recessive hereditary spastic paraplegia characterized by a complex phenotype including visual problems and cerebellar dysfunction. Sensory ataxia is not usually regarded as a typical clinical feature of SPG5. The purpose of this study was to describe six patients showing features of sensory ataxia as the prominent and/or initial symptoms of SPG5. Six patients from three distinct pedigrees (three women, three men; age 49.5 ± 18.2 years), all presenting gait unsteadiness and frequent falls since childhood, underwent clinical and molecular investigations. All showed marked sensory ataxic gait with positive Romberg's sign, as well as severely impaired position and vibration sense. Comparatively minor signs of pyramidal involvement were also detected. In four of the patients, brain MRI showed white matter hyperintensities on T2-weighted images. An already reported homozygous c.889A>G (p.T297A) mutation in SPG5/CYP7B1 was found in five patients from two families, whereas the remaining case harbored the novel c.250_251delC/p.L84Ffs*6 and c.266A>C/p.Y89S variants. Marked and enduring sensory ataxia can be a pivotal sign in SPG5, and expands the phenotypic spectrum associated with mutations in CYP7B1.  相似文献   

4.
Hereditary spastic paraplegia (HSP) is a neurodegenerative condition defined clinically by lower limb spasticity and weakness. Homozygous mutations in CYP7B1 have been identified in several consanguineous families that represented HSP type 5 (SPG5), one of the many genetic forms of the disease. We used direct sequencing and multiplex ligation-dependent probe amplification to screen for CYP7B1 alterations in apparently sporadic HSP patients (n = 12) as well as index patients from non-consanguineous families with recessive (n = 8) and dominant (n = 8) transmission of HSP. One sporadic patient showing HSP as well as optic atrophy carried a homozygous nonsense mutation. Compound heterozygosity was observed in a recessive family with a clinically pure phenotype. A heterozygous missense change segregated in a small dominant family. We also found a significant association of a known coding polymorphism with cerebellar signs complicating a primary HSP phenotype. Our findings suggest CYP7B1 alterations to represent a rather frequent cause of HSP that should be considered in patients with various clinical presentations.  相似文献   

5.
Background: Hereditary spastic paraplegias (HSP) are a group of neurodegenerative disorders characterized by progressive lower extremity spastic weakness. SPG7, SPG4 and SPG3A are some of the autosomal genes recently found as mutated in recessive or dominant forms of HSP in childhood. SPG31 is more often associated with a pure spastic paraplegia phenotype, but genotype–phenotype correlation is still unclear. The aims of the current study was: (i) to verify the mutational frequency of SPG4, SPG3A, SPG31 and SPG7 genes in our very‐well‐selected childhood sample, and (ii) to improve our knowledge about the clinical and electrophysiological HSP phenotypes and their possible correlation with a specific mutation. Methods: A sample of 14 Italian children affected by pure HSP (mean age at diagnosis 5.9 years) was extensively investigated with electrophysiological, neuroradiological and genetic tests. Results: Three SPG4 mutations were identified in three patients: two novel missense mutations, both sporadic, and one multiexonic deletion already reported. A novel large deletion in SPG31 gene involving exons 2–5 was also detected in one young patient. No mutations in the SPG7 and in the SPG3A genes were found. Conclusions: Our data confirm that HSP represent a heterogeneous group of genetic neurodegenerative disorders, also in sporadic or autosomal recessive early onset forms. Multiplex Ligation‐dependent Probe Amplification‐based mutation screening for SPG4 and SPG31 genes would be added to sequencing‐based screening of SPG4, SPG31 and SPG3A genes in the routine diagnosis of HSP children.  相似文献   

6.
Complicated hereditary spastic paraplegias (HSP) are a heterogeneous group of HSP characterized by spasticity associated with a variable combination of neurologic and extra-neurologic signs and symptoms. Among them, HSP with thin corpus callosum and intellectual disability is a frequent subtype, often inherited as a recessive trait (ARHSP-TCC). Within this heterogeneous subgroup, SPG11 and SPG15 represent the most frequent subtypes. We analyzed the mutation frequency of three genes associated with early-onset forms of ARHSP with and without TCC, CYP2U1/SPG56, DDHD2/SPG54 and GBA2/SPG46, in a large population of selected complicated HSP patients by using a combined approach of traditional-based and amplicon-based high-throughput pooled-sequencing. Three families with mutations were identified, one for each of the genes analyzed. Novel homozygous mutations were identified in CYP2U1 (c.1A>C/p.Met1?) and in GBA2 (c.2048G>C/p.Gly683Arg), while the homozygous mutation found in DDHD2 (c.1978G>C/p.Asp660His) had been previously reported in a compound heterozygous state. The phenotypes associated with the CYP2U1 and DDHD2 mutations overlap the SPG56 and the SPG54 subtypes, respectively, with few differences. By contrast, the GBA2 mutated patients show phenotypes combining typical features of both the SPG46 subtype and the recessive ataxia form, with marked intrafamilial variability thereby expanding the spectrum of clinical entities associated with GBA2 mutations. Overall, each of three genes analyzed shows a low mutation frequency in a general population of complicated HSP (<1 % for either CYP2U1 or DDHD2 and approximately 2 % for GBA2). These findings underline once again the genetic heterogeneity of ARHSP-TCC and the clinical overlap between complicated HSP and the recessive ataxia syndromes.  相似文献   

7.
Mutations in the SPG4 gene are the most common causes of hereditary spastic paraplegia (HSP) accounting for up to 40% of autosomal dominant (AD) forms and 12–18% of sporadic cases. The phenotype associated with HSP due to mutations in the SPG4 gene tends to be pure. There is increasing evidence, however, of patients with complicated forms of spastic paraplegia in which SPG4 mutations were identified. A cohort of 38 unrelated Italian patients with spastic paraplegia, of which 24 had a clear dominant inheritance and 14 were apparently sporadic, were screened for mutations in the SPG4 gene.We identified 11 different mutations, six of which were novel (p.Glu143GlyfsX8, p.Tyr415X, p.Asp548Asn, c.1656_1664delinsTGACCT, c.1688-3C>G and c.*2G>T) and two exon deletions previously reported. The overall rate of SPG4 gene mutation in our patients was 36.8% (14/38); in AD-HSP we observed a mutation frequency of 45.8% (11/24), in sporadic cases the frequency was 21.4% (3/14). Furthermore, we found a mutational rate of 22.2% (2/9) and 41.4% (12/29) in the complicated and pure forms, respectively. The results underlie the importance of genetic testing in all affected individuals.  相似文献   

8.
Park SY  Ki CS  Kim HJ  Kim JW  Sung DH  Kim BJ  Lee WY 《Archives of neurology》2005,62(7):1118-1121
BACKGROUND: Hereditary spastic paraplegia (HSP), a genetically and clinically heterogeneous group of neurodegenerative disorders, is characterized by progressive lower limb weakness and spasticity. Among the 8 loci associated with the autosomal dominant uncomplicated HSP (AD-HSP), the spastin (SPG4) and atlastin (SPG3A) genes have been known to account for approximately 40% and 10% of all cases, respectively. OBJECTIVE: To investigate the contribution of these 2 genes in the occurrence of HSP in Korean patients. DESIGN: Clinical and genetic study. SETTING: Tertiary care center. PATIENTS: Eighteen patients with uncomplicated HSP (11 AD and 7 sporadic) underwent screening for gene mutation. MAIN OUTCOME MEASURES: Mutations in the SPG4 and SPG3A genes as detected by direct sequencing of all coding exons and flanking intronic sequences. RESULTS: We identified 8 different SPG4 mutations, 7 of which have not been reported elsewhere. Among the detected mutations were 3 missense mutations, 2 in-frame deletions, 2 frameshift mutations, and 1 splice-site mutation. No mutation was found in the SPG3A gene. CONCLUSION: Compared with previous studies, a higher frequency of SPG4 gene mutations in AD-HSP (7/11; 64%) was observed, suggesting that a mutation analysis for the SPG4 gene might be helpful for molecular diagnosis of AD-HSP in Korean patients.  相似文献   

9.
The few epidemiological studies conducted to date on the heterogeneous group of hereditary spastic paraplegias (HSPs) indicate a prevalence of 1.27–12.1 per 100,000. This study aims to explore the epidemiological, clinical, and genetic variability of HSPs among Sardinians, a population of peculiar ethnicity.A population-based prevalence study was performed in north-western Sardinia between January 2000 and December 2010. Multiple sources were used for case ascertainment. Familial and sporadic cases were diagnosed according to generally accepted criteria, and clinical diagnoses were validated by expert neurological examination. Clinical data and pedigree information were recorded and blood samples drawn for genetic testing.Sixty-seven HSP patients were included in the study: 59 belonged to 11 families with autosomal dominant transmission (AD-HSP), three cases were from two unrelated autosomal recessive families, and the remaining five cases were apparently sporadic. On 31 December 2010, the total crude prevalence was 19.9 per 100,000 (95 % CI 18.4–21.4), while the crude prevalence of AD-HSP was 17.5 (24.4 M, 15.7 F; M:F ratio 1.55). The mean age at examination was 48.4 years, and the mean age at onset of HSP was 36.6 years. A molecular diagnosis was obtained in 82.1 % of the cases (52 cases with mutations in SPAST/SPG4, two in SPG7, and one in SPG11).The prevalence of HSP among Sardinians is high compared with other Western European populations. The multiple search strategy used in this study and the specific socio-demographic characteristics of Sardinians may account for this finding.  相似文献   

10.
To establish the phenotypic variation and frequency of SPAST mutations or deletions in Norwegian patients with hereditary spastic paraplegia (HSP), we examined 59 unrelated patients with HSP and screened for DNA point mutations and microdeletions in SPG4 . Forty-one had a familial history, 35 had a clear dominant inheritance, six had other affected sibs and 18 were sporadic. We found 12 mutations in SPG4 , seven of them novel, and four different heterozygous exon deletions, two of them novel. Mutations were found in 16 families showing autosomal dominant (AD) inheritance, and in one sporadic case. In two non-SPG4 families the S44L polymorphism/modifier was found in both affected and unaffected individuals. This is the first study of Norwegian patients with HSP since the 1970s, and the first report on SPG4 in Norway. Our results show that SPG4 mutations and deletions are a significant cause of HSP in our population and warrant SPG4 screening in AD families and selected sporadic cases.  相似文献   

11.
Background and purpose: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative diseases. Mutations in the spastin (SPG4) gene are responsible for approximately 40% of autosomal dominant HSP (AD‐HSP) and 6.5–18% of sporadic cases. Methods: Spastin mutations were screened in 11 AD‐HSP families and 11 sporadic cases by direct sequencing and MLPA assay. Novel mutations were detected in 100 healthy controls by PCR‐RFLP. Results: We identified seven different spastin mutations in five probands and one sporadic patient. Two of seven mutations were novel. The c.458delT was a pathogenic mutation, but the effect of c.1724 G>T remained unknown. Conclusions: This study allowed us to estimate the frequency of the SPG4 mutations in Chinese at 45% (5/11) in families with AD‐HSP and 9% (1/11) in sporadic cases. In addition, our data showed p.T614I was not associated with congenital arachnoid cysts.  相似文献   

12.
Hereditary spastic paraplegia (HSP) is a very heterogeneous disease, both genetically and clinically. To date, approximately 52 loci and 31 genes have been reported to be involved in the causality of HSP. The pattern of inheritance of the disease can be autosomal dominant, autosomal recessive, or X-linked recessive. Autosomal recessive HSP with thin corpus callosum (ARHSP-TCC) is one form of this disease, and a recessive gene, SPG11, is responsible for 41–77% of all ARHSP-TCC cases. SPG11 encodes the protein SPATACSIN, which is most prominently expressed in the cerebellum. However, little is known about its function. Despite diverse clinical presentations, diffuse hypometabolism in the cerebellum has not been reported previously. We have identified an HSP-TCC patient that presented with prominent intellectual disability rather than spasticity. 18Fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/CT) examination showed diffuse hypometabolism in both cerebella. Mutation screening of the SPG11 gene using Sanger sequencing identified the novel compound heterozygous mutation c.[5121_5122insAG]+[6859C>T] (p.[I1708RfsX2]+[Q2287X]) in the patient. The mother bears the c.5121_5122insAG mutation, which results in a frameshift and is predicted to truncate the 735 amino acids from the C-terminus, and the father carries the c.6859C>T mutation, which terminates the 157 amino acids from the C-terminus. Therefore, these mutations may result in the loss of function of wild-type SPATACSIN. Our results suggest that SPATACSIN may be involved in cerebella metabolism, and the novel mutations provide more data for the mutational spectrum of this gene, which will aid in the development of quick and accurate genetic diagnostic tools for this disease.  相似文献   

13.
BACKGROUND: Hereditary spastic paraplegia (HSP) is a group of genetically heterogeneous disorders characterized by progressive spasticity of the lower limbs. Mutations in the SPG4 gene, which encodes spastin protein, are responsible for up to 45% of autosomal dominant cases. OBJECTIVE: To search for disease-causing mutations in a large series of Italian patients with HSP. DESIGN: Samples of DNA were analyzed by direct sequencing of all exons in SPG4. Samples from a subset of patients were also analyzed by direct sequencing of all exons in SPG3A, SPG6, SPG10, and SPG13. SETTING: Molecular testing facility in Italy. PATIENTS: Sixty unrelated Italian patients with pure (n = 50) and complicated (n = 10) HSP. MAIN OUTCOME MEASURES: Mutations in SPG4, SPG3A, SPG6, SPG10, and SPG13. RESULTS: We identified 12 different mutations, 8 of which were novel, in 13 patients. No mutations of any of the other HSP genes tested were found in 15 patients with sporadic pure HSP who did not have mutations in the SPG4 gene. CONCLUSIONS: The overall rate of mutation in the SPG4 gene within our sample was 22%, rising to 26% when only patients with pure HSP were considered. The negative result obtained in 15 patients without mutations in SPG4 in whom 4 other genes were analyzed (SPG3A, SPG6, SPG10, and SPG13) indicate that these genes are not frequently mutated in sporadic pure HSP.  相似文献   

14.
Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) and mental impairment is a frequent subtype of complicated HSP, often inherited as an autosomal recessive (AR) trait. It is clear from molecular genetic analyses that there are several underlying causes of this syndrome, with at least six genetic loci identified to date. However, SPG11 and SPG15 are the two major genes for this entity. To map the responsible gene in a large AR-HSP-TCC family of Tunisian origin, we investigated a consanguineous family with a diagnosis of AR-HSP-TCC excluded for linkage to the SPG7, SPG11, SPG15, SPG18, SPG21, and SPG32 loci. A genome-wide scan was undertaken using 6,090 SNP markers covering all chromosomes. The phenotypic presentation in five patients was suggestive of a complex HSP that associated an early-onset spastic paraplegia with mild handicap, mental deterioration, congenital cataract, cerebellar signs, and TCC. The genome-wide search identified a single candidate region on chromosome 9, exceeding the LOD score threshold of +3. Fine mapping using additional markers narrowed the candidate region to a 45.1-Mb interval (15.4 cM). Mutations in three candidate genes were excluded. The mapping of a novel AR-HSP-TCC locus further demonstrates the extensive genetic heterogeneity of this condition. We propose that testing for this locus should be performed, after exclusion of mutations in SPG11 and SPG15 genes, in AR-HSP-TCC families, especially when cerebellar ataxia and cataract are present.  相似文献   

15.
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), “mutilating sensory neuropathy with spastic paraplegia” owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.  相似文献   

16.
SPG8 is a rare autosomal dominant hereditary spastic paraplegia (AD-HSP), with only six SPG8 families described so far. Our purpose was to screen for KIAA0196 (SPG8) mutations in AD-HSP patients and to investigate their phenotype. Extensive family investigation was performed after positive KIAA0196 mutation analysis, which was part of an on-going mutation screening effort in AD-HSP patients. A novel pathogenic KIAA0196 mutation p.(Gly696Ala) was identified in two AD-HSP patients, who subsequently were shown to belong to a single large Dutch pedigree with more than 10 affected family members. The phenotype consisted of a pure HSP with ages at onset between 20 and 60 years, distally reduced vibration sense in the legs in all, and urinary urgency in seven out of 10 patients. Frequent features were exercise- or emotion-induced increase of spasticity and gait problems and chronic nonspecific lower back and joint pains. We have identified a fourth pathogenic KIAA0196 mutation in a Dutch HSP-family, the seventh family worldwide, with a less severe clinical course than described before.  相似文献   

17.
18.
OBJECTIVE: To perform a clinical and genetic study of Tunisian families with autosomal recessive (AR) hereditary spastic paraplegia with thin corpus callosum (HSP-TCC). DESIGN: Linkage studies and mutation screening. SETTING: Reference Center for Neurogenetics in South and Center Tunisia. PARTICIPANTS: Seventy-three subjects from 33 "apparently" unrelated Tunisian families with AR HSP. MAIN OUTCOME MEASURES: Families with AR HSP-TCC were subsequently tested for linkage to the corresponding loci using microsatellite markers from the candidate intervals, followed by direct sequencing of the KIAA1840 gene in families linked to SPG11. RESULTS: We identified 8 Tunisian families (8 of 33 [24%]), including 19 affected patients, fulfilling the clinical criteria for HSP-TCC. In 7 families, linkage to either SPG11 (62.5%) or SPG15 (25%) was suggested by haplotype reconstruction and positive logarithm of odds score values for microsatellite markers. The identification of 2 recurrent mutations (R2034X and M245VfsX) in the SPG11 gene in 5 families validated the linkage results. The neurological and radiological findings in SPG11 and SPG15 patients were relatively similar. The remaining family, characterized by an earlier age at onset and the presence of cataracts, was excluded for linkage to the 6 known loci, suggesting further genetic heterogeneity. CONCLUSIONS: Autosomal recessive HSP-TCC is a frequent subtype of complicated HSP in Tunisia and is clinically and genetically heterogeneous. SPG11 and SPG15 are the major loci for this entity, but at least another genetic form with unique clinical features exists.  相似文献   

19.

Background

Hereditary spastic paraplegia type 6 (SPG6) is caused by mutations in the NIPA1 gene, this is a rare cause of HSP, until now, all the affected individuals reported displayed “pure” spastic paraplegia.

Objectives

To analyze the genotype/phenotype correlation of mutations so far described in NIPA1.

Methods

Eighty-six Chinese Han HSP patients were investigated for SPG6 mutations by direct sequencing of the NIPA1 gene.

Results

One heterozygous missense mutation c.316G > C/p.G106R was identified in a complicated form of ADHSP family with peripheral nerves disease, and SPG6 mutation in our sample accounted for 3.6% (1/28) of ADHSP families and 1.1% (1/86) of non-ARHSP patients who were negative for SPG4, SPG3A and SPG31 mutations.

Conclusions

We report the first complicated case of SPG6 in the world by the presence of peripheral neuropathy, which extends the phenotype initially described.  相似文献   

20.
Mutations in ganglioside-induced differentiation-associated-protein 1 (GDAP1) are associated with several subtypes of Charcot-Marie-Tooth (CMT) disease, including autosomal recessive and demyelinating (CMT4A); autosomal recessive and axonal (AR-CMT2K); autosomal dominant and axonal (CMT2K); and an intermediate and recessive form (CMTRIA). To date, at least 103 mutations in this gene have been described, but the relative frequency of GDAP1 mutations in the Brazilian CMT population is unknown. In this study, we investigated the frequency of GDAP1 mutations in a cohort of 100 unrelated Brazilian CMT patients. We identified five variants in unrelated axonal CMT patients, among which two were novel and probably pathogenic (N64S, P119T) one was novel and was classified as VUS (K207L) and two were known pathogenic variants (R125* and Q163*). The prevalence rate of GDAP1 among the axonal CMT cases was 7,14% (5/70), all of them of recessive inheritance, thus suggesting that the prevalence was higher than what is observed in most countries. All patients exhibited severe early-onset CMT that was rapidly progressive. Additionally, this study widens the mutational spectrum of GDAP1-related CMT through identification of two novel likely pathogenic variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号