首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic spines are major sites of excitatory synaptic transmission and changes in their densities have been linked to alterations in learning and memory. The neurotrophins brain-derived neurotrophic factor and neurotrophin-3 and their receptors, trkB and trkC, are thought to be involved in learning, memory and long-term potentiation (LTP). LTP is known to induce trkB and trkC gene expression as well as spinogenesis in the hippocampus. In the aging hippocampus, declines in trkB and trkC mRNA levels may underlie, at least in part, impairments in spatial memory and reductions in spine densities. To determine the significance of trkB and trkC for the maintenance of dendritic spines, we have analyzed Golgi-impregnated hippocampi of adult and aged mice heterozygous for trkB, trkC, or both along with respective wildtype littermates. Deletion of one allele of trkB, but not trkC, significantly reduces spine densities of CA1 pyramidal neurons in both adult and aged mice, as compared to age-matched controls. This indicates that trkB, but not trkC, receptors are necessary for the maintenance of hippocampal spines during postnatal life.  相似文献   

2.
Previous research has shown that corticospinal as well as rubrospinal neurons express the high-affinity trkB and trkC receptors but not the high-affinity trkA receptor. To determine if bulbospinal neurons in other brainstem areas show the same pattern of trk receptor expression, bulbospinal cells were labelled via the injection of the retrograde tracer FluoroGold into the spinal cord. Brainstem sections were then processed for in situ hybridization using oligonucleotide probes to the trkA, trkB, and trkC receptors. The results indicated that, although trkA expression occurred in brainstem areas that contain bulbospinal neurons (e.g., the vestibular nuclei, and the pontine reticular formation), very few FluoroGold-labelled cells expressed the trkA receptor. In contrast, at least 90% of bulbospinal cells in each brainstem area examined expressed the trkB receptor. Quantitative analysis indicated differences in the level of trkB labelling between bulbospinal cells in different brainstem areas, with the highest levels seen in the locus coeruleus and magnocellular portion of the red nucleus, and the lowest levels seen in the medial and superior vestibular nuclei and the raphe obscurus. With the exception of the accessory trigeminal nucleus, over 84% of bulbospinal cells in each brainstem area also expressed the trkC receptor. TrkC receptor expression was greatest in the locus coeruleus and subcoeruleus and lowest in the accessory trigeminal nucleus, the raphe magnus, and the vestibular nuclei. Results indicate that, as with other descending pathways, virtually all bulbospinal pathways should be amenable to treatment with brain-derived neurotrophic factor, neurotrophin-4/5 or neurotrophin-3, but not nerve growth factor, following spinal cord damage.  相似文献   

3.
NGF、BDNF及受体trkA、trkB、trkC在正常猴脊髓的表达   总被引:3,自引:1,他引:3  
采用免疫组织化学方法观察了神经生长因子 (NGF) ,脑源性神经营养因子 (BDNF)以及 NGF家族因子受体 trk A、trk B、trk C的免疫阳性反应在正常猴脊髓的分布。结果表明 :NGF免疫反应阳性的神经元在脊髓灰质各层中均有分布 ,灰、白质内也可见较多的 NGF免疫反应阳性的胶质细胞。 BDNF在脊髓各型神经无有明显的表达 ,特别是前角运动神经元。 trk A、trk B、trk C的免疫阳性反应产物主要分布在灰质的神经元及胶质细胞。本实验结果揭示了在正常猴脊髓中神经营养因子 (NGF、BDNF )及受体 trk A、trk B、trk C的表达状况 ,提示这些神经营养因子及受体在维持猴脊髓神经元的正常生理功能中具有重要作用。  相似文献   

4.
5.
Pacinian corpuscles depend on either A or Aβ nerve fibers of the large- and intermediate-sized sensory neurons for the development and maintenance of the structural integrity. These neurons express TrkB and TrkC, two members of the family of signal transducing neurotrophin receptors, and mice lacking TrkB and TrkC lost specific neurons and the sensory corpuscles connected to them. The impact of single or double targeted mutations in trkB and trkC genes in the development of Pacinian corpuscles was investigated in 25-day-old mice using immunohistochemistry and ultrastructural techniques. Single mutations on trkB or trkC genes were without effect on the structure and S100 protein expression, and caused a slight reduction in the number of corpuscles. In mice carrying a double mutation on trkB;trkC genes most of the corpuscles were normal with a reduction of 17% in trkB−/−;trkC+/− mice, and 8% in trkB +/−;trkC −/− mice. Furthermore, a subset of the remaining Pacinian corpuscles (23% in trkB−/−;trkC+/− mice; 3% in trkB+/−;trkC−/− mice) were hypoplasic or atrophic. Present results strongly suggest that the development of a subset of murine Pacinian corpuscles is regulated by the Trk-neurotrophin system, especially TrkB, acting both at neuronal and/or peripheral level. The precise function of each member of this complex in the corpuscular morphogenesis remains to be elucidated, though.  相似文献   

6.
7.
In the months following transection of adult rat peripheral nerve some sensory neurons undergo apoptosis. Two weeks after sciatic nerve transection some neurons in the L4 and L5 dorsal root ganglia begin to show immunoreactivity for nestin, a filament protein expressed by neuronal precursors and immature neurons, which is stimulated by neurotrophin-3 (NT-3) administration. The aim of this study was to examine whether NT-3 administration could be compensating for decreased production of neurotrophins or their receptors after axotomy, and to determine the effect on nestin synthesis. The levels of mRNA in the ipsilateral and contralateral L4 and L5 dorsal root ganglia were analyzed using real-time polymerase chain reaction, 1 day, 1, 2 and 4 weeks after unilateral sciatic nerve transection and NT-3 or vehicle administration via s.c. micro-osmotic pumps. In situ hybridization was used to identify which cells and neurons expressed mRNAs of interest, and the expression of full-length trkC and p75NTR protein was investigated using immunohistochemistry. Systemic NT-3 treatment increased the expression of brain-derived neurotrophic factor, nestin, trkA, trkB and trkC mRNA in ipsilateral ganglia compared with vehicle-treated animals. Some satellite cells surrounding neurons expressed trkA and trkC mRNA and trkC immunoreactivity. NT-3 administration did not affect neurotrophin mRNA levels in the contralateral ganglia, but decreased the expression of trkA mRNA and increased the expression of trkB mRNA and p75NTR mRNA and protein. These data suggest that systemically administered NT-3 may counteract the decrease, or even increase, neurotrophin responsiveness in both ipsi- and contralateral ganglia after nerve injury.  相似文献   

8.
用免疫组化方法对6例人脑干神经营养因子高亲和受体trkB和trkC的分布进行了研究.证明trkB和trkC阳性胞体和突起广泛分布于脑干不同区域.除trkC含膨体的轴突较多、分布较trkB为广外,两者分布模式基本一致.脑桥及下橄榄核含trkB和trkC强阳性神经元;脑神经运动核及部分感觉核含两者的中等或较强神经元。上、下丘,大脑脚背盖,中缝核,网状核也含有两者的阳性神经元.黑质及蓝斑区色素细胞内仅见很淡的两者阳性产物.但黑质网状部的非黑色素神经元则为中等或强阳性.黑质、脚间核、脑桥和下橄榄核合有两者的强阳性纤维,其他区域神经毯呈中等度阳性。在分布模式及染色强度上未见年龄差别.以上结果表明两者在人脑干内广泛且有选。择性地分布,说明神经营养因子3在成年及老年脑干神经通路中具有调节作用.  相似文献   

9.
A local elevation of H+-ion concentrations often occurs in inflammation and usually evokes pain by excitation of primary nociceptive neurons. Expression patterns and functional properties of the capsaicin receptor and acid-sensing ion channels suggest that they may be the main molecular substrates underlying this proton sensitivity. Here, we asked how the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) contribute to the proton response in subpopulations of nociceptive neurons from adult rats and mice (wildtype C57/Bl6, Balb/C and TRPV1-null). In cultured dorsal root ganglion neurons, whole cell patch clamp recordings showed that the majority of capsaicin-sensitive rat dorsal root ganglion neurons displayed large proton-evoked inward currents with transient ASIC-like properties. In contrast, the prevalence of ASIC-like currents was smaller in both mouse wildtype strains and more frequent in capsaicin-insensitive neurons. Transient ASIC-like currents were more frequent in both species among isolectin B4-negative neurons. A significantly reduced proton response was observed for dissociated dorsal root ganglion neurons in TRPV1 deficient mice. Unmyelinated, but not thin myelinated nociceptors recorded extracellularly from TRPV1-null mutants showed a profound reduction of proton sensitivity. Together these findings indicate that there are significant differences between rat and mouse in the contribution of TRPV1 and ASIC subunits to proton sensitivity of sensory neurons. In both species ASIC subunits are more prevalent in the isolectin B4-negative neurons, some of which may represent thin myelinated nociceptors. However, the main acid-sensor in isolectin B4-positive and isolectin B4-negative unmyelinated nociceptors in mice is TRPV1.  相似文献   

10.
The principal glucocorticoid in rats, corticosterone, interacts with neurons in the limbic system and leads to morphological and behavioral changes. Putative corticosterone-triggered mediators are neurotrophins. In the present study we investigated the effects of early postnatal corticosterone treatment in rats on neurotrophic factors of the nerve growth factor (NGF) family and their receptors. Newborn rats were treated with corticosterone-containing polymers until postnatal day 12. The mRNA and protein levels of the neurotrophins of the NGF family (NGF, BDNF, NT-3 and NT-4/5) and their receptors (trkA, trkB, trkC and p75) were quantified in septum and hippocampus using RT-PCR. In the septal region, we found an unchanged mRNA expression after corticosterone treatment, whereas in the hippocampus there was a general increase in mRNA. Particularly, the gene expression of NGF, NT-3, and the high affinity receptors trkA, trkB and trkC increased significantly. Quantification of the neurotrophin protein levels using an ELISA revealed significant treatment effects for NGF and NT-4/5 in the hippocampus. The present study of corticosterone treatment in young rats demonstrates interactions of steroid hormones with neurotrophic factors and their receptors in the septo-hippocampal system during the first two postnatal weeks.  相似文献   

11.
To investigate the nerve growth factor requirement of developing oro-facial somatosensory afferents, we have studied the survival of sensory fibers subserving nociception, mechanoreception or proprioception in receptor tyrosine kinase (trkA) knockout mice using immunohistochemistry. trkA receptor null mutant mice lack nerve fibers in tooth pulp, including sympathetic fibers, and showed only sparse innervation of the periodontal ligament. Ruffini endings were formed definitively in the periodontal ligament of the trkA knockout mice, although calcitonin gene-related peptide- and substance P-immunoreactive fibers were reduced in number or had disappeared completely. trkA gene deletion had also no obvious effect on the formation of Meissner corpuscles in the palate. In the vibrissal follicle, however, some mechanoreceptive afferents were sensitive for trkA gene deletion, confirming a previous report [Fundin et al. (1997) Dev. Biol. 190, 94-116]. Moreover, calretinin-positive fibers innervating longitudinal lanceolate endings were completely lost in trkA knockout mice, as were the calretinin-containing parent cells in the trigeminal ganglion.These results indicate that trkA is indispensable for developing nociceptive neurons innervating oral tissues, but not for developing mechanoreceptive neurons innervating oral tissues (Ruffini endings and Meissner corpuscles), and that calretinin-containing, trkA dependent neurons in the trigeminal ganglion normally participate in mechanoreception through longitudinal lanceolate endings of the vibrissal follicle.  相似文献   

12.
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.  相似文献   

13.
Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.  相似文献   

14.
15.
Tyrosine protein kinases trk, trkB and trkC are signal-transducing receptors for the neurotrophins nerve growth factor, brain-derived nerve growth factor, neurotrophin-3 and neurotrophin-4. Here we report on the isolation of cDNA fragments encoding a part of rat trk and trkB proteins, respectively, and characterization of a full-length cDNA clone encoding rat trkC. Cells expressing mRNAs for the different members of the trk family were identified in the rat central nervous system by in situ hybridization using oligonucleotide probes designed from the isolated cDNA sequences and complementary to mRNA sequences coding for the extracellular region of the receptors. The expression of trk mRNA was found to be restricted to neurons of the basal forebrain, caudate-putamen with features of cholinergic cells and to magnocellular neurons of several brainstem nuclei. In contrast, cells expressing trkB and trkC mRNAs were widely distributed in the brain. Areas expressing high levels of trkB or trkC mRNAs included olfactory formations, neocortex, hippocampus, thalamic and hypothalamic nuclei, brainstem nuclei, cerebellum and spinal cord motoneurons. A similar distribution for trkB and trkC mRNAs was shown in most areas but each probe specific for these mRNAs also provided distinct labeling patterns in different subregions, layers and cells. Comparison between our data and previous analyses of cells expressing mRNAs for neurotrophins and the low-affinity nerve growth factor receptor suggests that different modes of action and different combinations of receptors mediate biological responses to neurotrophins in the adult rat brain.  相似文献   

16.
Peripheral innervation patterns of proprioceptive afferents from dorsal root ganglia and the mesencephalic trigeminal nucleus were assessed in trkC-deficient mice using immunohistochemistry for protein gene product 9.5 and parvalbumin. In trkC knockout mice, spinal proprioceptive afferents were completely absent in the limb skeletal muscles, M. biceps femoris and M. gastrocnemius, as previously reported. In these same animals, however, proprioceptive afferents from mesencephalic trigeminal nucleus innervated masseter muscles and formed primary endings of muscle spindles. Three wild-type mice averaged 35.7 spindle profiles (range: 31-41), six heterozygotes averaged 32.3 spindles (range: 27-41), and four homozygotes averaged 32.8 spindles (range: 26-42). Parvalbumin and Nissl staining of the brain stem showed approximately 50% surviving mesencephalic trigeminal sensory neurons in trkC-deficient mice. TrkC-/- mice (n = 5) had 309.4 +/- 15.9 mesencephalic trigeminal sensory cells versus 616.5 +/- 26.3 the sensory cells in trkC+/+ mice (n = 4). These data indicate that while mesencephalic trigeminal sensory neurons are significantly reduced in number by trkC deletion, they are not completely absent. Furthermore, unlike their spinal counterparts, trigeminal proprioceptive afferents survive and give rise to stretch receptor complexes in masseter muscles of trkC knockout mice. This indicates that spinal and mesencephalic trigeminal proprioceptive afferents have different neurotrophin-supporting system during survival and differentiation. It is likely that one or more other neurotrophin receptors expressed in mesencephalic trigeminal proprioceptive neurons of trkC knockout mice compensate for the lack of normal neurotrophin-3 signaling through trkC.  相似文献   

17.
18.
The neurotrophin family mediates effects of growth, cell differentiation and cell death through low- and high-affinity transmembrane receptors. The Pacinian corpuscle (PC) is the largest peripheral mechanoreceptor in mammals and was studied by immuno-histochemistry and immuno-electron microscopy with regard to the distribution of neurotrophin receptors, p75; p140 trkA, p145 trkB and 145 trkC. TrkA- and trkC-like immunoreactivity (IR) was not expressed in rat and cat PCs. Developing and adult animals expressed p75 and trkB in lamellar cells of the PC. The inner core cells, thought to be specialised Schwann cells, demonstrated an injury-induced increased immuno-labelling for trk B. Perineurial-derived outer core cells were reactive to p75 after injury similar to the perineurium of distal nerve stumps. Inner core cells of PCs behaved as leptomeningeal cells with regard to trkB. Outer core lamellar cells of PCs behaved as perineurial cells with regard to p75. A role for brain-derived neurotrophic factor is proposed in the development and nerve regeneration of PCs via an anterograde messenger transfer through p75 and trkB.  相似文献   

19.
Galanin exerts its biological activities (inhibitory or excitatory) via three different G protein-coupled receptors. In the present study, double immunocytochemical labeling was used to localize GAL-R1, GAL-R2 and GAL-R3 on PGP 9.5-positive myenteric neurons from the dog and sheep stomach/forestomachs. In both species, the occurrence of galanin in neurons and nerve fibers of gastric ganglia was also studied. Myenteric ganglia of the dog stomach were supplied with numerous, mainly varicose, galanin-immunoreactive (IR) nerve terminals whereas the frequency of galanin-positive nerve fibers in myenteric ganglia of the ovine stomach and forestomachs was moderate. The number of PGP 9.5-IR/galanin-IR myenteric neurons was significantly lower in the dog stomach (12.3+/-1.3%) as compared to the sheep rumen (20.1+/-0.7%), omasum (19.5+/-2.9%), abomasum (23.8+/-1.2%) but not reticulum (8.1+/-0.8%). In the canine stomach the frequencies of GAL-R1, GAL-R2 and GAL-R3 expressing myenteric neurons were statistically equivalent (4.4+/-0.9%, 3.5+/-0.7% and 3.1+/-0.5%, respectively). Immunoreactivity to GAL-R1 was absent in myenteric ganglia from the ovine rumen, reticulum as well as omasum. GAL-R1 was localized on 0.5+/-0.3% of myenteric perikarya from the abomasum. GAL-R2 bearing myenteric neurons were localized in the ovine rumen (0.6+/-0.3%), reticulum (0.5+/-0.3%), omasum (1.0+/-0.2%) and abomasum (1.1+/-0.3%). The percentages of PGP 9.5-IR/GAL-R3-IR neurons were 0.8+/-0.2% in the rumen, 0.6+/-0.3% in the reticulum, 0.7+/-0.2% in the omasum and 0.9+/-0.3% in the abomasum. In all compartments of the sheep stomach, the proportions of GAL-R1, GAL-R2 and GAL-R3 expressing neurons were significantly lower when compared to analogous neuronal subpopulations present in the dog. It is suggested that, although endogenous galanin may potentially inhibit or stimulate the activity of sparse gastric enteric neurons, its general role in indirect mediation of gastric motility and/or secretion seems to be of minor importance.  相似文献   

20.
Ahmad AS  Zhuang H  Doré S 《Neuroscience》2006,141(4):1703-1708
Heme oxygenase is a rate-limiting enzyme that degrades heme, a pro-oxidant, into carbon monoxide, iron, and bilirubin. Heme oxygenase has two active isoforms: heme oxygenase-1 and heme oxygenase-2. Heme oxygenase-1 can be induced by various insults. Several investigators have postulated that it has cytoprotective activities, although its role in the nervous system is not fully understood, especially considering that normally heme oxygenase-2 accounts for the vast majority of heme oxygenase activity in the brain. Here, the basal effect of heme oxygenase-1 was investigated in acute glutamatergic excitotoxicity to test the hypothesis that N-methyl-D-aspartate-induced acute toxicity in brain is attenuated by heme oxygenase-1. N-methyl-D-aspartate was unilaterally injected into the striatum of wildtype and heme oxygenase-1 knockout mice. After 48 h, brains were harvested, sectioned, and stained with Cresyl Violet to measure the lesion size. Lesion volume was significantly (P<0.05) greater in brains of heme oxygenase-1 knockout mice (15.2+/-3.1 mm(3); n=10) than in those of wildtype mice (6.2+/-1.5 mm(3); n=11). In addition, Western blot analysis indicated no detectable differences between wildtype and heme oxygenase-1 knockout mouse brains in the levels of the glutamate or N-methyl-D-aspartate receptors studied. To test whether heme oxygenase-1 could specifically protect neurons, mouse primary neuronal cell cultures of wildtype and heme oxygenase-1 knockout mice were treated with or without N-methyl-D-aspartate. Cell viability of the heme oxygenase-1 knockout neurons was significantly less than that of wildtype neurons at each of the N-methyl-D-aspartate concentrations tested (12.8+/-1.3%, 16.0+/-1.4%, and 18.4+/-1.8% at 30, 100, and 300 microM N-methyl-D-aspartate, respectively). These results indicate that heme oxygenase-1 provides neuroprotection against acute excitotoxicity and suggest that potential intervention that can increase heme oxygenase-1 activity within the brain should be considered as a therapeutic target in acute and potentially chronic neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号