首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling is mediated by three classes of receptors, Frizzled, Ryk, and Ror. In Caenorhabditis elegans, Wnt signaling regulates the anterior/posterior polarity of the P7.p vulval lineage, and mutations in lin-17/Frizzled cause loss or reversal of P7.p lineage polarity. We found that pak-1/Pak (p21-activated kinase), along with putative activators of Pak, nck-1/Nck, and ced-10/Rac, regulates P7.p polarity. Mutations in these genes suppress the polarity defect of lin-17 mutants. Furthermore, mutations in pak-1, nck-1, and ced-10 cause constitutive dauer formation at 27 °C, a phenotype also observed in egl-20/Wnt and cam-1/Ror mutants. In HEK293T cells, Pak1 can antagonize canonical Wnt signaling. Moreover, overexpression of Ror2 leads to phosphorylation of Pak1. Together, these results indicate that Pak interacts with Wnt signaling to regulate tissue polarity and gene expression.  相似文献   

2.
Transgenic tobacco plants that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD) from pea have been developed. To investigate whether increased expression of chloroplast-targeted SOD could alter the resistance of photosynthesis to environmental stress, these plants were subjected to chilling temperatures and moderate (500 mumol of quanta per m2 per s) or high (1500 mumol of quanta per m2 per s) light intensity. During exposure to moderate stress, transgenic SOD plants retained rates of photosynthesis approximately 20% higher than untransformed tobacco plants, implicating active oxygen species in the reduction of photosynthesis during chilling. Unlike untransformed plants, transgenic SOD plants were capable of maintaining nearly 90% of their photosynthetic capacity (determined by their photosynthetic rates at 25 degrees C) following exposure to chilling at high light intensity for 4 hr. These plants also showed reduced levels of light-mediated cellular damage from the superoxide-generating herbicide methyl viologen. These results demonstrate that SOD is a critical component of the active-oxygen-scavenging system of plant chloroplasts and indicate that modification of SOD expression in transgenic plants can improve plant stress tolerance.  相似文献   

3.
The adverse effects of high salt on plants include Na(+) toxicity and hyperosmotic and oxidative stresses. The plasma membrane-localized Na(+)/H(+) antiporter SOS1 functions in the extrusion of toxic Na(+) from cells and is essential for plant salt tolerance. We report here that, under salt or oxidative stress, SOS1 interacts through its predicted cytoplasmic tail with RCD1, a regulator of oxidative-stress responses. Without stress treatment, RCD1 is localized in the nucleus. Under high salt or oxidative stress, RCD1 is found not only in the nucleus but also in the cytoplasm. Like rcd1 mutants, sos1 mutant plants show an altered sensitivity to oxidative stresses. The rcd1mutation causes a decrease in salt tolerance and enhances the salt-stress sensitivity of sos1 mutant plants. Several genes related to oxidative-stress tolerance were found to be regulated by both RCD1 and SOS1. These results reveal a previously uncharacterized function of a plasma membrane Na(+)/H(+) antiporter in oxidative-stress tolerance and shed light on the cross-talk between the ion-homeostasis and oxidative-stress detoxification pathways involved in plant salt tolerance.  相似文献   

4.
5.
The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes.  相似文献   

6.
2型糖尿病患者氧化应激状况及影响因素分析   总被引:3,自引:0,他引:3  
目的分析2型糖尿病(T2DM)患者氧化应激的状况及影响因素。方法测定92例T2DM患者和56名非糖尿病对照者的血清活性氧活力、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)、丙二醛(MDA)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、空腹血糖(FPG)、糖化血红蛋白(HbA1c),并测量血压、身高、体重,计算出体质指数(BMI)。比较T2DM组与对照组氧化应激的状况,并对其影响因素进行多元逐步回归分析。结果T2DM组与对照组相比血清活性氧活力增强(P〈0.05),MDA增高(P〈0.05),GSH、SOD降低(P均〈0.05);多元逐步回归分析显示:血脂水平,尤其是TG和HDL-C水平是影响氧化应激的重要因素。结论T2DM患者存在氧化应激的增强,且与高TG相关。  相似文献   

7.
OBJECTIVES--To estimate the extent of genomic DNA damage and killing of lymphocytes by reactive oxygen intermediates in autoimmune diseases. METHODS--8-Oxo-7-hydrodeoxyguanosine (8-oxodG), a promutagenic DNA lesion induced by reactive oxygen intermediates, was measured by high performance liquid chromatography, coupled with electrochemical detection, in hydrolysates of DNA which had been extracted from lymphocyte and polymorphonuclear leucocyte fractions of human blood. In addition, human primary blood lymphocytes stimulated by concanavalin A were assayed for cytotoxicity induced by hydrogen peroxide on day 0, by assessing cell proliferation during seven days of culture. RESULTS--Constitutive 8-oxodG was detectable (mean (2 SEM) moles 8-oxodG/10(6) moles deoxyguanosine) in DNA isolated from normal human blood lymphocytes (68 (8), n = 26) and polymorphonuclear leucocytes (118 (24), n = 24). Lymphocyte DNA from donors with the following inflammatory autoimmune diseases contained significantly higher levels of 8-oxodG than that from healthy donors: rheumatoid arthritis (98 (16)), systemic lupus erythematosus (137 (28)), vasculitis (100 (32)), and Behçet's disease (92 (19)). Lymphocyte 8-oxodG levels in non-autoimmune controls and patients with scleroderma were not significantly different from those of healthy controls. The levels of 8-oxodG were significantly higher in the DNA from normal polymorphonuclear leucocytes than in paired DNA samples from normal lymphocytes, but there were no differences between levels of 8-oxodG in polymorphonuclear leucocytes from normal subjects and the patients studied. Levels of 8-oxodG did not correlate with disease duration, disease severity, or age. Lymphocytes from patients with systemic lupus erythematosus and rheumatoid arthritis, but not those with scleroderma, also showed cellular hypersensitivity to the toxic effects of hydrogen peroxide. CONCLUSION--There was increased genomic DNA damage, and increased susceptibility to cytotoxic killing by hydrogen peroxide, in lymphocytes from patients with certain autoimmune diseases. These results might be explained by defective repair of DNA damage or by increased production of reactive oxygen intermediates in inflammation. Although more direct studies are needed, the evidence available favours the former explanation.  相似文献   

8.
9.
In all eukaryotic cells, a membrane-trafficking system connects the post-Golgi organelles, such as the trans-Golgi network (TGN), endosomes, vacuoles, and the plasma membrane. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. Unlike its roles in animal and yeast cells, the TGN has also been reported to function like early endosomal compartments in plant cells. However, the physiological roles of the TGN functions in plants are not understood. Here, we report a study of the SYP4 group (SYP41, SYP42, and SYP43), which represents the plant orthologs of the Tlg2/syntaxin16 Qa-SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) that localizes on the TGN in yeast and animal cells. The SYP4 group regulates the secretory and vacuolar transport pathways in the post-Golgi network and maintains the morphology of the Golgi apparatus and TGN. Consistent with a secretory role, SYP4 proteins are required for extracellular resistance responses to a fungal pathogen. We also reveal a plant cell-specific higher-order role of the SYP4 group in the protection of chloroplasts from salicylic acid-dependent biotic stress.  相似文献   

10.
Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species (ROS) derived from vascular NADPH oxidases in both vascular smooth muscle cells (VSMCs) and endothelial cells. Recent evidence suggests an important role for VSMC NADPH oxidases in vascular ROS production. However, it is unclear whether increased NADPH oxidase activity in endothelial cells alone is sufficient to alter overall vascular ROS production and hemodynamics. We sought to address these questions using transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NADPH oxidase, Nox2. Aortas of Nox2 transgenic (Nox2-Tg) mice had increased total Nox2 mRNA and protein levels compared with wild-type littermates. Both p22phox mRNA and protein levels were also significantly elevated in Nox2-Tg aortas. Aortic superoxide production was significantly increased in Nox2-Tg mice compared with wild-type, but this difference was abolished by endothelial removal. Superoxide dismutase inhibition increased superoxide release and levels of Mn superoxide dismutase protein were significantly elevated in aortas from Nox2-Tg mice compared with wild type. Increased ROS production from endothelial Nox2 overexpression led to increased endothelial nitric oxide synthase protein and extracellular signal-regulated kinase 1/2 phosphorylation in transgenic aortas. Basal blood pressure was similar, however the pressor responses to both acute and chronic angiotensin II administration were significantly increased in Nox2-Tg mice compared with wild type. These results demonstrate that endothelial-targeted Nox2 overexpression is sufficient to increase vascular NADPH oxidase activity, activate downstream signaling pathways, and potentiate the hemodynamic response to angiotensin II, despite compensatory increases in vascular antioxidant enzymes. Endothelial cell Nox2-containing NADPH oxidase plays an important functional role in vascular redox signaling.  相似文献   

11.
12.
Lee HC  Wei YH 《Biogerontology》2001,2(4):231-244
Respiratory function decline and increase ofoxidative stress in mitochondria have beenproposed as important contributors to humanaging. A wide spectrum of alterations in agedindividuals and senescent cells are similar andare correlated to cellular response tosublethal dose of oxidative stress. Thesealterations and responses include: (1) declinein mitochondrial respiratory function; (2)increase in the rate of production of reactiveoxygen species (ROS); (3) accumulation ofmitochondrial DNA (mtDNA) mutations; (4)increase in the levels of oxidative damage toDNA, protein, and lipids; and (5) decrease inthe capacities of degradation of oxidativelydamaged proteins and other macromolecules. Responses to oxidative stress and theirsubsequent interactions in tissues result inthe deleterious effect of ROS on the cellularfunction, which culminate in aging anddegenerative diseases. In this review, wefocus on the roles that ROS play in age-relatedoxidative damage to mtDNA and proteins andoxidative stress responses at the molecular andcellular levels. The alterations of geneexpression profiles elicited by oxidativestress in aging animals are discussed. Wesuggest that the increase in mitochondrialproduction of ROS and decline in the cellularcapacity to cope with oxidative stress andsubsequent accumulation of mtDNA mutations andoxidized proteins play an important role in theaging process.  相似文献   

13.
We tested the hypothesis that the combination of 2 oxidant stressors (hyperoxia and fatiguing exercise) might reduce or suppress the oxidative stress. We concomitantly measured the plasma concentration of heat shock proteins (Hsp) that protect the cells against the deleterious effects of reactive oxygen species. Healthy humans breathed pure oxygen under normobaric condition for 50-minute periods during which they stayed at rest or executed maximal static handgrip sustained until exhaustion. They also repeated handgrip bouts in normoxic condition. We performed venous blood measurements of 2 markers of the oxidative stress (thiobarbituric acid reactive substances and reduced ascorbic acid) and Hsp27. Under normoxic condition, the handgrip elicited an oxidative stress and a modest increase in plasma Hsp27 level (+7.1 ± 5.4 ng/mL). Under hyperoxic condition, (1) at rest, compared with the same time schedule in normoxic condition, we measured an oxidative stress (increased thiobarbituric acid reactive substances and decreased reduced ascorbic acid levels) and the plasma Hsp27 level increased (maximal variation, +12.5 ± 6.0 ng/mL); and (2) after the handgrip, the oxidative stress rapidly disappeared. The combination of both hyperoxia and handgrip bout doubled the Hsp27 response (maximal variation, +24.8 ± 9.2 ng/mL). Thus, the combination of 2 hits eliciting an oxidative stress seems to induce an adaptive Hsp27 response that might counterbalance an excessive production of reactive oxygen species.  相似文献   

14.
《Annals of hepatology》2016,15(2):160-173
Oxidative stress is importantly involved in the pathophysiology of various liver diseases. The redox state participates on the course of the inflammatory, metabolic and proliferative liver diseases. The main sources of the reactive oxygen species (ROS) are represented by the mitochondria and cytochrome P450 enzymes in the hepatocyte, Kupffer cells and neutrophils. Cells are provided with efficient molecular strategies to strictly control the intracellular ROS level and to maintain the balance between oxidant and antioxidant molecules. Hepatocyte’s proteins, lipids and DNA are among the cellular structures to be affected primarily by ROS and reactive nitrogen species (RNS). This process disrupts at cellular and molecular level the structure-function relationship on liver cells at different sites. Therefore, further studies on the molecular mechanisms of the oxidative stress pathways on liver diseases are urgently required, because they could explain the pathogenesis of various liver disorders. Moreover, new methods to evaluate oxidative stress like the oxidative markers among hepatocytes offers the potential to diagnose the degree of liver injury and ultimately to assess the response to pharmacological therapies. In this review, we discuss the molecular, metabolic and aging aspects of the oxidative stress, and the methods to evaluate oxidative stress on liver damage.  相似文献   

15.
Induction of specific immunological unresponsiveness by feeding protein antigens is termed oral tolerance and may be a potential therapy for autoimmune diseases. Whereas oral tolerance therapy may be both simple and effective, the requirement for large amounts of protein will limit clinical testing of autoantigens, which are difficult to produce. We have previously demonstrated transgenic plant production and direct oral delivery of a beta cell autoantigen murine GAD67 to prevent autoimmune diabetes in nonobese diabetic mice. Mucosal adjuvants such as cholera toxin B subunit may lower the level of autoantigen required, but the development of neutralizing mucosal antibody responses may limit usefulness in enhancing long-term oral tolerance. IL-4, being an endogenous protein, would avoid this result and possibly enhance oral tolerance but has not been tested as a mucosal adjuvant. In this study, human GAD65 (hGAD65), as well as murine IL-4, was expressed in transgenic plants for feeding trials. Both IL-4 and hGAD65 plant tissue were required to protect nonobese diabetic mice from diabetes, and no benefit was found if either was used alone. Combined therapy enhanced levels of IgG1 anti-GAD antibodies, increased splenocyte IL-4/IFN-gamma cytokine responses, and produced protective regulatory T cells. These results demonstrate that orally administered plant IL-4 remains biologically active and is synergistic when given with hGAD65 in inducing robust oral immune tolerance. Using transgenic plants expressing IL-4 and GAD65 may be a novel clinical approach to the prevention of human type 1 diabetes by oral tolerance.  相似文献   

16.
Emerging evidence indicates that pancreatic tissue expresses all components of the renin-angiotensin system. However, the functional role is not well understood. This investigation examined renin inhibition on pancreas structure/function in the transgenic Ren2 rat harboring the mouse renin gene, a model of tissue renin overexpression. Renin is the rate-limiting step in the generation of angiotensin II (Ang II), which stimulates the generation of reactive oxygen species in a variety of tissues. Overexpression of renin in Ren2 rats results in hypertension, insulin resistance, and cardiovascular and renal damage. Young (6-7 wk old) insulin-resistant male Ren2 and age-matched insulin sensitive Sprague Dawley rats were treated with the renin inhibitor, aliskiren (50 mg/kg.d by ip injection), or placebo for 21 d. At 21 d, the Ren2 demonstrated insulin resistance with increased islet insulin, Ang II, and reduced total insulin receptor substrate (IRS)-1, IRS-2, and Akt immunostaining. There was increased islet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunits (p47(phox) and Rac1) as well as increased nitrotyrosine immunostaining (each P < 0.05). These functional abnormalities were associated with a disordered islet architecture; increased islet-exocrine interface, pericapillary fibrosis, and structurally abnormal mitochondria and content in endocrine and exocrine pancreas. In vivo treatment with aliskiren normalized systemic insulin resistance and islet insulin, Ang II, NADPH oxidase activity/subunits, and nitrotyrosine and improved total IRS-1 and Akt phosphorylation (each P < 0.05) as well as islet/exocrine structural abnormalities. Collectively, these data suggest that pancreatic functional/structural changes are driven, in part, by tissue renin-angiotensin system-mediated increases in NADPH oxidase and reactive oxygen species generation, abnormalities attenuated with direct renin inhibition.  相似文献   

17.
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.  相似文献   

18.
Sun Y  Carretero OA  Xu J  Rhaleb NE  Wang F  Lin C  Yang JJ  Pagano PJ  Yang XP 《Hypertension》2005,46(6):1355-1361
Although NO derived from endothelial NO synthase (eNOS) is thought to be cardioprotective, the role of inducible NO synthase (iNOS) remains controversial. Using mice lacking iNOS (iNOS-/-), we studied (1) whether development of hypertension, cardiac hypertrophy, and dysfunction after deoxycorticosterone acetate (DOCA)-salt would be less severe compared with wild-type controls (WT; C57BL/6J), and (2) whether the cardioprotection attributable to lack of iNOS is mediated by reduced oxidative stress. Mice were uninephrectomized and received either DOCA-salt (30 mg/mouse SC and 1% NaCl+0.2% KCl in drinking water) or vehicle (tap water) for 12 weeks. Systolic blood pressure (SBP) was measured weekly. Left ventricular (LV) ejection fraction (EF) by echocardiography and cardiac response to isoproterenol (50 ng/mouse IV) were studied at the end of the experiment. Expression of eNOS and iNOS as well as the oxidative stress markers 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) were determined by Western blot and immunohistochemical staining, respectively. DOCA-salt increased SBP and LV weight similarly in both strains and decreased EF in WT but not in iNOS-/-. Cardiac contractile and relaxation responses to isoproterenol were greater, 4-HNE and nitrotyrosine levels were lower, and eNOS expression tended to be higher in iNOS-/-. We conclude that lack of iNOS leads to better preservation of cardiac function, which may be mediated by reduced oxidative stress and increased eNOS; however, it does not seem to play a significant role in preventing DOCA-salt-induced hypertension and hypertrophy.  相似文献   

19.
OBJECTIVE: We have previously shown that cholesterol diet-induced hyperlipidemia (marked hypertriglyceridemia and moderate hypercholesterolemia) increases cardiac formation of peroxynitrite and results in a moderate cardiac dysfunction in rats. Here our aim was to further clarify the mechanism of hyperlipidemia-induced nitrosative stress in a transgenic mouse model and to test if high cholesterol or high triglyceride is responsible for the hyperlipidemia-induced cardiac dysfunction. METHODS AND RESULTS: To determine the effect of cholesterol-enriched diet on cardiac performance and oxidative/nitrosative stress, wildtype and human apoB100 transgenic mice were fed a 2% cholesterol-enriched or a normal diet for 18 weeks. Serum cholesterol and LDL-cholesterol levels were significantly elevated only in the cholesterol-fed apoB100 transgenic mice, while serum triglycerides were increased in the transgenic mice fed a normal diet. Cholesterol-enriched diet significantly increased cardiac superoxide generation and NADPH oxidase expression and activity in apoB100 mice but not in wildtypes. Cardiac NO content and NO synthase activity did not change in either group. As assessed in isolated working hearts, aortic flow was significantly decreased only in apoB100 transgenic mice fed a cholesterol-enriched diet. The peroxynitrite decomposition catalyst FeTPPS attenuated the decrease in aortic flow in cholesterol-fed apoB100 mice. Immunohistochemistry showed elevated nitrotyrosine in the hearts of apoB100 mice fed the cholesterol-enriched diet. CONCLUSIONS: We conclude that hypercholesterolemia but not hypertriglyceridemia leads to increased formation of superoxide and peroxynitrite, and thereby results in cardiac dysfunction in hearts of human apoB100 transgenic mice.  相似文献   

20.
D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. High expression of bcl-xL or ced-9 affected plant growth and seed development. Inoculation of seedlings with CMV/D satRNA at T(1) and T(2) generations resulted in delayed cell-death symptoms or absence of symptoms. The degree of symptom suppression was correlated with increasing expression levels of the transgenes. Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. More than 80% of the bcl-xL and ced-9 T(1) transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. Total RNA extracted from surviving plants contained D satRNA, indicating systemic accumulation of D satRNA. Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. Hence, expression of these animal antiapoptotic genes improved plant survival under abiotic or biotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号