首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic Ca2+ level ([Ca2+]i), and Ca2+ sensitivity in guinea pig ileum. Forskolin (0.1 nM~10 µM) inhibited high K+ (25 mM and 40 mM)- or histamine (3 µM)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high K+-evoked contractions. Spontaneous changes in [Ca2+]i and contractions were inhibited by forskolin (1 µM) without changing the resting [Ca2+]i. Forskoln (10 µM) inhibited muscle tension more strongly than [Ca2+]i stimulated by high K+, and thus shifted the [Ca2+]i-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 µM) inhibited both [Ca2+]i and muscle tension without changing the [Ca2+]i-tension relationship. In α-toxin-permeabilized tissues, forskolin (10 µM) inhibited the 0.3 µM Ca2+-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the Ca2+-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in Ca2+ sensitivity of contractile elements in high K+-stimulated muscle and a decrease in [Ca2+]i in histamine-stimulated muscle.  相似文献   

2.
2-Benzyloxybenzaldehyde (CCY1a) inhibited the formyl-Met-Leu-Phe (fMLP)-induced elevation of cytosolic [Ca2+] ([Ca2+]i) in rat neutrophils. The late plateau phase, but not the initial Ca2+ spike, of the fMLP-induced [Ca2+]i change was inhibited by CCY1a. In the absence of external Ca2+, CCY1a had no appreciable effect on either the fMLP- or cyclopiazonic acid (CPA)-induced [Ca2+]i elevation. CCY1a failed to inhibit [Ca2+]i changes induced by N-ethylmaleimide, GEA3162, ionomycin or sphingosine, but slightly inhibited the Ca2+ signals elicited by ATP or interleukin-8 (IL-8). In a classical Ca2+ readdition protocol, addition of CCY1a after cell activation strongly inhibited the [Ca2+]i response to fMLP, whilst that to CPA was only slightly reduced. CCY1a nearly abrogated the fMLP-stimulated Mn2+ influx but was less effective on the CPA-induced response. CCY1a attenuated the levels of tyrosine-phosphorylated bands in the 70–85 kDa molecular mass range. CCY1a had no effect on the basal [Ca2+]i level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity or on the mitochondrial membrane potential. Thus, CCY1a blocks fMLP-induced Ca2+ entry into neutrophils probably by blocking the relevant Ca2+ channel directly or, alternatively, indirectly through the attenuation of tyrosine phosphorylation of some cellular proteins.  相似文献   

3.
Kazinol B, a natural isoprenylated flavan, stimulated the [Ca2+]i elevation in the presence or absence of Ca2+ in the medium. Treatment with chymotrypsin or phorbol 12-myristate 13-acetate to shedding of l-selectin had no effect on subsequent kazinol B-induced Ca2+ response. Upon initial cyclopiazonic acid (CPA) treatment in the absence of external Ca2+, the subsequent [Ca2+]i rise followed by challenge with kazinol B was greatly diminished. The ryanodine receptor blockers, 8-bromo-cyclic ADP-ribose and ruthenium red did not affect kazinol B-evoked Ca2+ release from internal stores. However, the inhibitors of sphingosine kinase, dimethylsphingosine, but not dihydrosphingosine, inhibited kazinol B-induced Ca2+ release. Kazinol B-induced [Ca2+]i rise was not affected by two nitric oxidase inhibitors, N-(3-aminomethyl)benzylacetamidine (1400W) and 7-nitroindazole, cytochalasin B and Na+-deprivation. This response was slightly attenuated by 2-aminoethyldiphenyl borate (2-APB), a d-myo-inositol 1,4,5-trisphosphate (IP3) receptor blocker, and by genistein, a general tyrosine kinase inhibitor. However, the Ca2+ response was greatly diminished by two actin filament reorganizers, calyculin A and jasplakinolide, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), an inhibitor of phosphoinositide 3-kinase, N-(3-aminomethyl)benzylacetamidine (SB 203580), the p38 mitogen-activated protein kinase inhibitor, 1-[6-[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, and by 0.3 mM La3+ or Ni2+. Kazinol B did not evoke any appreciable Ba2+ and Sr2+ entry into cells. The Ca2+ entry blockers, 1-[-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), but not cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A), inhibited a kazinol B-induced [Ca2+]i rise. Kazinol B had no effect on the pharmacologically isolated plasma membrane Ca2+-ATPase activity. In a Ca2+-free medium, kazinol B inhibited the subsequent Ca2+ addition, resulting in robust entry in CPA- and formyl peptide-activated cells. Kazinol B produced a concentration-dependent reduction in the mitochondrial membrane potential. These results indicate that kazinol B stimulates Ca2+ release from internal Ca2+ store, probably through the sphingosine 1-phosphate and IP3 signaling, and activates external Ca2+ influx mainly through a non-store-operated Ca2+ entry (non-SOCE) pathway. Inhibition of SOCE by kazinol B is probably attributable to a break in the Ca2+ driven force of mitochondria.  相似文献   

4.
The effects of oxidized low-density lipoprotein (OxLDL) and its major lipid constituent lysophosphatidylcholine (LPC) on Ca2+ entry were investigated in cultured human umbilical endothelial cells (HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular Ca2+ concentration ([Ca2+]i), and the increase of [Ca2+]i by OxLDL or by LPC was inhibited by La3+ or heparin. LPC failed to increase [Ca2+]i in the presence of an antioxidant tempol. In addition, store-operated Ca2+ entry (SOC), which was evoked by intracellular Ca2+ store depletion in Ca2+-free solution using the sarcoplasmic reticulum Ca2+ pump blocker, 2, 5-di-t-butyl-1, 4-benzohydroquinone (BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased [Ca2+]i and simultaneously activated non-selective cation (NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, La3+ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular Ca2+ to 1 µM activated large-conductance Ca2+-activated K+ (BKCa) current spontaneously, and this activated BKCa current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates Ca2+-permeable Ca2+-activated NSC current and BKCa current simultaneously, thereby increasing SOC.  相似文献   

5.
Timolol is a medication used widely to treat glaucoma. Regarding Ca2+ signaling, timolol was shown to modulate Ca2+-related physiology in various cell types, however, the effect of timolol on Ca2+ homeostasis and cell viability has not been explored in human prostate cancer cells. The aim of this study was to explore the effect of timolol on intracellular Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells. Timolol at concentrations of 100–1000?μM induced [Ca2+]i rises. The Ca2+ signal in Ca2+-containing medium was reduced by removal of extracellular Ca2+ by approximately 75%. Timolol (1000?μM) induced Mn2+ influx suggesting of Ca2+ entry. Timolol-induced Ca2+ entry was partially inhibited by three inhibitors of store-operated Ca2+ channels: nifedipine, econoazole and SKF96365, and by a protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate [PMA]) or an inhibitor (GF109203X). In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished timolol-evoked [Ca2+]i rises. Conversely, treatment with timolol abolished thapsigargin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished timolol-induced [Ca2+]i rises. Timolol at concentrations between 200 and 600?μM killed cells in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not reverse cytotoxicity of timolol. Together, in PC3 cells, timolol induced [Ca2+]i rises by evoking Ca2+release from the endoplasmic reticulum in a PLC-dependent manner, and Ca2+ influx via PKC-regulated store-operated Ca2+ entry. Timolol also caused cell death that was not linked to preceding [Ca2+]i rises.  相似文献   

6.
The effect of the environmental contaminant, bisphenol A, on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether bisphenol A changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Bisphenol A, at concentrations between 50 and 300 µM, increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced, partly, by removing extracellular Ca2+. Bisphenol A induced Mn2+ influx, leading to quenching of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid, store-operated Ca2+ channel blockers nifedipine and SK&F96365, and protein kinase C inhibitor GF109203X. In Ca2+-free medium, pretreatment with the mitochondrial uncoupler, carbonylcyanide m-chlorophenylhydrazone (CCCP), and the endoplasmic reticulum Ca2+ pump inhibitors, thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ), inhibited bisphenol A–induced Ca2+ release. Conversely, pretreatment with bisphenol A abolished thapsigargin (or BHQ)- and CCCP-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished bisphenol-induced [Ca2+]i rise. Bisphenol A caused a concentration-dependent decrease in cell viability via apoptosis in a Ca2+-independent manner. Collectively, in MDCK cells, bisphenol A induced [Ca2+]i rises by causing phospholipase C–dependent Ca2+ release from the endoplasmic reticulum and mitochondria and Ca2+ influx via phospholipase A2–, protein kinase C–sensitive, store-operated Ca2+ channels.  相似文献   

7.

BACKGROUND AND PURPOSE

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca2+ concentration ([Ca2+]i). Although it is well-appreciated that the myocyte Ca2+ signalling system is composed of microdomains, little is known about the structure of the [Ca2+]i responses induced by P2X receptor stimulation in vascular myocytes.

EXPERIMENTAL APPROACHES

Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca2+ signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP).

KEY RESULTS

RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP3R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca2+]i transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L−1αβ-meATP triggered an abrupt Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum enriched with IP3Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca2+ channels (VGCCs) or IP3Rs suppressed the sub-plasmalemmal [Ca2+]i upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP3R inhibition on the sub-plasmalemmal [Ca2+]i upstroke was attenuated following block of VGCCs.

CONCLUSIONS AND IMPLICATIONS

Depolarization of RVSMCs following P2X receptor activation induces IP3R-mediated Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum, which is activated mainly by Ca2+ influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.  相似文献   

8.
Celecoxib has been shown to have an antitumor effect in previous studies, but the mechanisms are unclear. Ca2+ is a key second messenger in most cells. The effect of celecoxib on cytosolic free Ca2+ concentrations ([Ca2+]i) in human suspended PC3 prostate cancer cells was explored by using fura-2 as a fluorescent dye. Celecoxib at concentrations between 5 and 30 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Celecoxib-induced Ca2+ influx was not blocked by L-type Ca2+ entry inhibitors or protein kinase C/A modulators [phorbol 12-myristate 13-acetate (PMA), GF109203X, H-89], but was inhibited by the phospholipase A2 inhibitor, aristolochic acid. In Ca2+-free medium, 30 μM of celecoxib failed to induce a [Ca2+]i rise after pretreatment with thapsigargin (an endoplasmic reticulum [ER] Ca2+ pump inhibitor). Conversely, pretreatment with celecoxib inhibited thapsigargin-induced Ca2+ release. Inhibition of phospholipase C with U73122 did not change celecoxib-induced [Ca2+]i rises. Celecoxib induced slight cell death in a concentration-dependent manner, which was enhanced by chelating cytosolic Ca2+ with BAPTA. Collectively, in PC3 cells, celecoxib induced [Ca2+]i rises by causing phospholipase C–independent Ca2+ release from the ER and Ca2+ influx via non-L-type, phospholipase A2-regulated Ca2+ channels. These data may contribute to the understanding of the effect of celecoxib on prostate cancer cells.  相似文献   

9.

Aim:

Hydrogen peroxide (H2O2) is produced during liver transplantation. Ischemia/reperfusion induces oxidation and causes intracellular Ca2+ overload, which harms liver cells. Our goal was to determine the precise mechanisms of these processes.

Methods:

Hepatocytes were extracted from rats. Intracellular Ca2+ concentrations ([Ca2+]i), inner mitochondrial membrane potentials and NAD(P)H levels were measured using fluorescence imaging. Phospholipase C (PLC) activity was detected using exogenous PIP2. ATP concentrations were measured using the luciferin-luciferase method. Patch-clamp recordings were performed to evaluate membrane currents.

Results:

H2O2 increased intracellular Ca2+ concentrations ([Ca2+]i) across two kinetic phases. A low concentration (400 μmol/L) of H2O2 induced a sustained elevation of [Ca2+]i that was reversed by removing extracellular Ca2+. H2O2 increased membrane currents consistent with intracellular ATP concentrations. The non-selective ATP-sensitive cation channel blocker amiloride inhibited H2O2-induced membrane current increases and [Ca2+]i elevation. A high concentration (1 mmol/L) of H2O2 induced an additional transient elevation of [Ca2+]i, which was abolished by the specific PLC blocker U73122 but was not eliminated by removal of extracellular Ca2+. PLC activity was increased by 1 mmol/L H2O2 but not by 400 μmol/L H2O2.

Conclusion:

H2O2 mobilizes Ca2+ through two distinct mechanisms. In one, 400 μmol/L H2O2-induced sustained [Ca2+]i elevation is mediated via a Ca2+ influx mechanism, under which H2O2 impairs mitochondrial function via oxidative stress, reduces intracellular ATP production, and in turn opens ATP-sensitive, non-specific cation channels, leading to Ca2+ influx. In contrast, 1 mmol/L H2O2-induced transient elevation of [Ca2+]i is mediated via activation of the PLC signaling pathway and subsequently, by mobilization of Ca2+ from intracellular Ca2+ stores.  相似文献   

10.
The effect of calmidazolium on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether calmidazolium altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Calmidazolium at concentrations ≥1 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1.5 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Calmidazolium induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to L-type Ca2+ entry blockers, but was inhibited partly by enhancing or inhibiting protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), calmidazolium-induced [Ca2+]i rises were largely inhibited; and conversely, calmidazolium pretreatment totally suppressed thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change calmidazolium-induced [Ca2+]i rises. At concentrations between 1 and 15 μM, calmidazolium induced apoptosis-mediated cell death. Collectively, in HA59T hepatoma cells, calmidazolium induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via protein kinase C-regulated Ca2+ entry pathway. Calmidazolium caused cytotoxicity via apoptosis.  相似文献   

11.

Aim:

To investigate the reverse mode function of Na+/Ca2+ exchangers NCX1.1 and NCX1.5 expressed in CHO cells as well as their modulations by PKC and PKA.

Methods:

CHO-K1 cells were transfected with pcDNA3.1 (+) plasmid carrying cDNA of rat cardiac NCX1.1 and brain NCX1.5. The expression of NCX1.1 and NCX1.5 was examined using Western blot analysis. The intracellular Ca2+ level ([Ca2+]i) was measured using Ca2+ imaging. Whole-cell NCX currents were recorded using patch-clamp technique. Reverse mode NCX activity was elicited by perfusion with Na+-free medium. Ca2+ paradox was induced by Ca2+-free EBSS medium, followed by Ca2+-containing solution (1.8 or 3.8 mmol/L CaCl2).

Results:

The protein levels of NCX1.1 and NCX1.5 expressed in CHO cells had no significant difference. The reverse modes of NCX1.1 and NCX1.5 in CHO cells exhibited a transient increase of [Ca2+]i, which was followed by a Ca2+ level plateau at higher external Ca2+ concentrations. In contrast, the wild type CHO cells showed a steady increase of [Ca2+]i at higher external Ca2+ concentrations. The PKC activator PMA (0.3-10 μmol/L) and PKA activator 8-Br-cAMP (10-100 μmol/L) significantly enhanced the reverse mode activity of NCX1.1 and NCX1.5 in CHO cells. NCX1.1 was 2.4-fold more sensitive to PKC activation than NCX1.5, whereas the sensitivity of the two NCX isoforms to PKA activation had no difference. Both PKC- and PKA-enhanced NCX reverse mode activities in CHO cells were suppressed by NCX inhibitor KB-R7943 (30 μmol/L).

Conclusion:

Both NCX1.1 and NCX1.5 are functional in regulating and maintaining stable [Ca2+]i in CHO cells and differentially regulated by PKA and PKC. The two NCX isoforms might be useful drug targets for heart and brain protection.  相似文献   

12.
Biochemical studies have shown that wortmannin is an inhibitor of myosin light chain (MLC) kinase (Nakanishi et al. (1992) J. Biol. Chem. 267: 2157–2163). To investigate the role of MLC kinase in smooth muscle contractions, we examined the effects of wortmannin on isolated smooth muscles of the rat aorta. Wortmannin (1 M) decreased MLC phosphorylation and the amplitude of contractions induced by high K+ (72.7 mM) to a level seen at rest. This occurred without a change in cytosolic Ca2+ levels ([Ca2+]i). In contrast, wortmannin only partially inhibited the sustained contractions induced by phenylephrine (1 M) and prostaglandin F2 (PGF2, 10 M) without a change in the [Ca2+]i. On the other hand, wortmannin (1 or 10 M) reduced the increase in MLC phosphorylation induced by phenylephrine and PGF2 to a level seen at rest. In the absence of external Ca2+, caffeine (20 mM) induced a transient increase in [Ca2+]i and force with an increase in MLC phosphorylation. Wortmanmn completely inhibited the increase in MLC phosphorylation and contraction induced by caffeine without affecting the increase in [Ca2+]i. In the absence of external Ca2+, phenylephrine induced a small transient increase in [Ca2+]i, MLC phosphorylation and generation of force. This was followed by a small sustained contraction without an increase in [Ca2+]i and MLC phosphorylation. Wortmannin (1 M) inhibited the transient phase of the contraction and the increase in MLC phosphorylation without affecting the transient increase in [Ca2+]i nor the sustained contraction. Wortmannin inhibited the Ca2+-induced contraction in permeabilized rat mesenteric artery, although it did not inhibit the Ca2+-independent, ATP-induced contraction in the thiophosphorylated muscle. These results suggest that wortmannin inhibits MLC phosphorylation due to an increase in the entry of Ca2+ or through the release of Ca2+ from the sarcoplasmic reticulum. The results also suggest that the activation of receptors by norepinephrine and PGF2. induces a contraction via a MLC phosphorylation-independent pathway or through a pathway which is dependent on the resting level of MLC phosphorylation. We conclude that wortmannin is a useful tool in studies of the physiological role of MLC kinase.  相似文献   

13.
1-[6-[[17a-3-Methoxyestra-1,3,5(10)-trien17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) has been proven to be a useful tool in investigation of phospholipase C (PLC)-coupled signal transduction during cell activation. In the present studies, the inhibition by U-73122 of cytosolic free Ca2+ concentration ([Ca 2+]i) of neutrophils was investigated. U-73122 suppressed the [Ca2+]i elevation of neutrophils suspended in Ca2+-containing medium challenged by N-formyl-Met-Leu-Phe (fMLP), cyclopiazonic acid (CPA) and ionomycin. The concentrations of U-73122 required for inhibition of CPA- and ionomycin-induced changes with IC50 values 4.06 ± 0.27 µM and 4.04 ± 0.44 µM, respectively, is almost 10-times that required for inhibition of the fMLP-induced response (IC50 value 0.62 ± 0.04 µM) U-73122 also reduced the intracellular Ca2+ mobilization of neutrophils suspended in Ca 2+-free medium stimulated by fMLP and CPA, but not by ionomycin, with IC50 values 0.52 ± 0.02 µM and 6.82 ± 0.74 µM, respectively. 1-[6-[[17f3-Methoxyestra-1,3,5(10)-trien-l7-yl]amino]hexyl]2,5-pyrrolidinedione (U-73343), a close analog of U-73122 that does not inhibit PLC activity, suppressed the [Ca2+]i elevation of neutrophils challenged by fMLP in Ca2+-containing medium, but not in Ca2+-free medium, with IC50 value 22.30 ± 1.61 µM. In Mn2+-quench studies, U-73122 suppressed the Mn2+ influx in CPA-activated neutrophils (IC50 value was 7.16 ± 0.28 µM) as well as in resting neutrophils (IC50 value was 6.72 ± 0.30 M). U-73343 also suppressed the Mn2+ influx in resting neutrophils in a concentration-dependent manner. These results suggest that the inhibitory effect of U-73122 on [Ca2+]i of activated neutrophils is attributed partly to the suppression of Ca2+ release from the intracellular Ca2+ stores through PLC inhibition, and partly to the blockade, especially at higher concentrations, of Ca2+ entry from the extracellular space through PLC-independent processes.  相似文献   

14.
Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Gö6976, a specific inhibitor of PKCα had no effect on the tolerance, both the PKCε translocation inhibitor and the PKCζ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCε and PKCξ, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.  相似文献   

15.
Summary The effects of K+ channel openers, cromakalim and an acetoxyl derivative of KRN 2391 (Ki 4032), were studied on force of contraction, increases in intracellular calcium concentration ([Ca2+]i) measured by fura-2 and inositol 1,4,5-trisphosphate (IP3) production induced by the thromboxane A2 analogue, U46619, in canine coronary arteries. Upon single dose applications of U46619 at 300 nmol/l, phasic and tonic increases in [Ca2+]i and force were seen, which were almost abolished by cromakalim (10 mol/l) and Ki4032 (100 mol/l).In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction. Cromakalim (0.01–10 mol/l) and Ki4032 (0.1–100 mol/l) concentration-dependently inhibited the increases in [Ca2+]i and contraction. The inhibitory effects of cromakalim and Ki4032 were blocked by the K+ channel blocker tetrabutylammonium (TBA) and counteracted by 20 mmol/l KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production significantly and TBA blocked this inhibitory effect. These results suggest that the hyperpolarization of the plasma membrane by K+ channel openers inhibits the production of IP3 and Ca 2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.Correspondence to T. Yanagisawa at the above address  相似文献   

16.
Diallyl sulfide (DAS), one of the major organosulfur compounds (OSCs) of garlic, is recognized as a group of potential chemoproventive compounds. In this study, we examines the early signaling effects of DAS on renal cells loaded with Ca2+-sensitive dye fura-2. It was found that DAS caused an immediate and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50 = 2.32 mM). DAS also induced a [Ca2+]i elevation when extracellular Ca2+ was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca2+ stores with CCCP, a mitochondrial uncoupler, did not affect DAS’s effect. In Ca2+-free medium, the DAS-induced [Ca2+]i rise was abolished by depleting stored Ca2+ with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). DAS-caused [Ca2+]i rise in Ca2+-containing medium was not affected by modulation of protein kinase C activity. The DAS-induced Ca2+ influx was blocked by nicardipine. U73122, an inhibitor of phospholipase C, abolished ATP (but not DAS)-induced [Ca2+]i rise. Additionally, pretreatment with DAS for 24 h decreased cell viability in a concentration-dependent manner. Furthermore, DAS-induced cell death involved apoptotic events. These findings suggest that diallyl sulfide induced a significant rise in [Ca2+]i in MDCK renal tubular cells by stimulating both extracellular Ca2+ influx and thapsigargin-sensitive intracellular Ca2+ release via as yet unidentified mechanisms.  相似文献   

17.
Summary The effects of 1-adrenoceptor stimulation by phenylephrine (PE) and -adrenoceptor stimulation by isoprenaline (ISO) on Ca2+ current (ICa) and free intracellular Ca2+ concentration ([Ca2+]i) were studied in isolated atrial myocytes from rat hearts. PE did not significantly affect the magnitude of ICa, whereas large increases of peak ICa were observed in response to ISO. In electrically driven cells, PE evoked a concentration-dependent, gradual increase in diastolic [Ca2+]i and, initially, an increase in the height of peak [Ca2+]i transients. When the diastolic [Ca2+]i was increased to a greater extent, the amplitude of [Ca2+]i transients was decreased. Simultaneous measurements of [Ca2+]i and membrane potential showed that the increase in diastolic [Ca2+]i was associated with a depolarization of the membrane, and the greater amplitude of [Ca2+]i transients with a prolongation of the action potential (AP). The PE-induced increase in diastolic [Ca2+]i was eliminated when the cells were voltage-clamped at the original resting membrane potential (RP); under these conditions, an increase in [Ca2+]i transients was observed in response to PE. ISO usually caused larger increases in the amplitude of [Ca2+]i transients with only minor changes in diastolic [Ca2+]i. These results suggest that PE and ISO increase the amplitude of [Ca2+]i transients in rat atrium in different ways. The increase in [Ca2+]i transients in response to -adrenoceptor stimulation is commonly thought to be mediated by a greater conductance of voltage-dependent Ca2+ channels causing a greater Ca2+ influx and a release of more Ca2+ from the sarcoplasmic reticulum during the AP. The increase in diastolic [Ca2+]i in response to PE is probably a consequence of the depolarization of the membrane, possibly involving the voltage-dependent Na+-Ca2+ exchange mechanism. The increase in the amplitude of the [Ca2+]i transients in response to PE may be ascribed both to the initial increase in diastolic [Ca2+]i and the prolongation of the AP. Send offprint requests to H. Nawrath at the above address  相似文献   

18.
The effect of diallyl disulfide (DADS) on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca2+]i in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca2+]i in a concentration-dependent manner. The signal was reduced by removing Ca2+. DADS-induced Ca2+ influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca2+]i rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca2+]i rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca2+-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca2+]i rise probably by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive channels. DADS induced Ca2+-dependent cell death, ROS production, and Ca2+-independent apoptosis.  相似文献   

19.
Summary Potassium (K+) channel openers decrease intracellular free Ca2+ concentrations ([Ca2+]i) by hyperpolarizing the membrane and deactivating the Ca2+-channels. To examine whether the hyperpolarization produced by K+-channel openers has other effects on the mechanical activity of vascular smooth muscle, we investigated the effects of levcromakalim (BRL 38227) on membrane potential, [Ca2+]i, as measured with fura-2, and force of contraction induced by 30 mmol/l KCl-physiological salt solution (PSS), in canine coronary arteries. BRL 38227 hyperpolarized the membrane and reduced increases in [Ca2+]i and in contractile force induced by 30 mmol/l KCl-PSS. The [Ca2+]i-contractile force curve, determined in the presence of BRL 38227, was located to the right of the control curve determined by decreasing extracellular Ca2+ concentrations ([Ca2+]o) in 30 mmol/l KCl-PSS. The [Ca2+ i-contractile force curve, determined by decreasing extracellular K+ concentrations ([K+]o), was also located to the right of that determined by decreasing [Ca2+]o in 30 mmol/l KCl-PSS. The effect of BRL 38227, a reduction in the Ca 2+-sensitivity of contractile elements, was antagonized by the ATP-sensitive K+-channel blocker, glibenclamide (10–6 or 10–5 mol/1). These results suggest that the membrane hyperpolarization induced by BRL 38227, or the repolarization caused by reducing ([K+]o), decreases the Ca2+-sensitivity of contractile elements of vascular smooth muscle.Correspondence to T. Yanagisawa at the above address  相似文献   

20.

Background and purpose:

Thrombus formation is commonly associated with pulmonary arterial hypertension (PAH). Thrombin may thus play an important role in the pathogenesis and pathophysiology of PAH. Hence, we investigated the contractile effects of thrombin and its mechanism in pulmonary artery.

Experimental approach:

The cytosolic Ca2+ concentrations ([Ca2+]i), 20 kDa myosin light chain (MLC20) phosphorylation and tension development were evaluated using the isolated porcine pulmonary artery.

Key results:

Thrombin induced a sustained contraction in endothelium-denuded strips obtained from different sites of a pulmonary artery, ranging from the main pulmonary artery to the intrapulmonary artery. In the presence of endothelium, thrombin induced a transient relaxation. The contractile effect of thrombin was abolished by either a protease inhibitor or a proteinase-activated receptor 1 (PAR1) antagonist, while it was mimicked by PAR1-activating peptide (PAR1AP), but not PAR4AP. The thrombin-induced contraction was associated with a small elevation of [Ca2+]i and an increase in MLC20 phosphorylation. Thrombin and PAR1AP induced a greater increase in tension for a given [Ca2+]i elevation than that obtained with high K+-depolarization. They also induced a contraction at a fixed Ca2+ concentration in α-toxin-permeabilized preparations.

Conclusions and implications:

The present study revealed a unique property of the pulmonary artery. In contrast to normal arteries of the systemic circulation, thrombin induces a sustained contraction in the normal pulmonary artery, by activating PAR1 and thereby increasing the sensitivity of the myofilament to Ca2+. This responsiveness of the pulmonary artery to thrombin may therefore contribute to the pathogenesis and pathophysiology of PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号