首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), KB-R7943, on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels was examined in cultured human umbilical vein endothelial cells (HUVECs) and freshly isolated mouse aortic smooth muscle cells (MASMCs). In voltage-clamped cells, KB-R7943 reversibly activated BK(Ca) currents in HUVECs and MASMCs. The EC(50) of KB-R7943 for BK(Ca) current activation in HUVECs was determined to be 6.78+/-0.7 microM. In inside-out and outside-out patches, KB-R7943 markedly increased BK(Ca) channel activity and slightly decreased single channel current amplitudes. In inside-out patches, KB-R7943 shifted the relationship between [Ca(2+)](i) and open probability (P(o)) to the left; the [Ca(2+)](i) required to evoke half-maximal activation changed from 1220+/-68 nM (in the absence of KB-R7943) to 620+/-199 nM (in the presence of 10 microM KB-R7943). In addition, KB-R7943 shifted the relationship between membrane potential and P(o) to the left; the membrane potential to evoke half-maximal activation changed from 76.86+/-1.09 mV (in the absence of KB-R7943) to 49.62+/-2.55 mV (in the presence of 10 microM KB-R7943). In conclusion, KB-R7943 was found to act as a potent BK(Ca) channel activator, which increases the sensitivity of BK(Ca) channels to cytosolic free Ca(2+) and membrane potential, and thereby BK(Ca) channel activity. These results should be considered when KB-R7943 is used as NCX blocker.  相似文献   

2.
We studied the effects of the novel Na(+)/Ca(2+) exchange inhibitor KB-R7943, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate, on the native nicotinic receptors present at the bovine adrenal chromaffin cells, as well as on rat brain alpha(3)beta(4) and alpha(7) nicotinic acetylcholine receptors (AChRs) expressed in XENOPUS: oocytes. As expected, KB-R7943 blocked the Na(+)-gradient dependent (45)Ca(2+) uptake into chromaffin cells (IC(50) of 5.5 microM); but in addition, the compound also inhibited the (45)Ca(2+) entry and the increase of cytosolic Ca(2+) concentration, [Ca(2+)](c), stimulated by 5 s pulses of ACh (IC(50) of 6.5 and 1.7 microM, respectively). In oocytes expressing alpha(3)beta(4) and alpha(7) nicotinic AChRs, voltage-clamped at -60 mV, inward currents elicited by 1 s pulses of 100 microM ACh (I(ACh)) were blocked by KB-R7943 with an IC(50) of 0.4 microM and a Hill coefficient of 0.9. Blockade of alpha(3)beta(4) currents by KB-R7943 was noncompetitive; moreover, the blocker (0.3 microM) became more active as the ACh concentration increased (34 versus 66% blockade at 30 microM and 1 mM ACh, respectively). Inhibition of alpha(3)beta(4) currents by 0.3 microM KB-R7943 was more pronounced at hyperpolarized potentials. If given within the ACh pulse (10 microM), the inhibition amounted to 33, 64 and 80% in oocytes voltage-clamped at -40, -60 and -100 mV, respectively. The onset of blockade was faster and the recovery slower at -100 mV; the reverse was true at -40 mV. In conclusion, KB-R7943 is a potent blocker of nicotinic AChRs; moreover, it displays many features of an open-channel blocker at the rat brain alpha(3)beta(4) AChR. These results should be considered when KB-R7943 is to be used to study Ca(2+) homeostasis in cells expressing nicotinic AChRs and the Na(+)/Ca(2+) exchanger.  相似文献   

3.
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.  相似文献   

4.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate) has been used as a pharmacological tool to block the Ca(2+) influx-mode of the Na(+)/Ca(2+) exchanger, which is thought to contribute to ischemia/reperfusion and digitalis arrhythmias. We examined effects of KB-R7943 on ischemia/reperfusion arrhythmias in beagle dogs anesthetized with sodium pentobarbital. Lead II ECG and BP were measured. KB-R7943 or the solvent (10% DMSO) was injected i.v. as a bolus, and 5 min later, the left anterior descending coronary artery was occluded for 30 min followed by reperfusion. KB-R7943 at 5 or 10 mg/kg increased BP without changing ECG parameters including the heart rate. Although 5 mg/kg KB-R7943 deceased the number of arrhythmic beats during the ischemic period, mortality due to ischemia/reperfusion was not decreased by KB-R7943 (5 and 10 mg/kg). KB-R7943 at 5 mg/kg also did not suppress the ouabain-induced arrhythmias. These negative results suggest that Na(+)/Ca(2+) exchange inhibition may not be a useful strategy of suppressing arrhythmias.  相似文献   

5.
This study was designed to investigate the possible involvement of NADPH oxidase and the Na(+)/Ca(2+) exchanger in regulating membrane repolarisation and store-operated uptake of Ca(2+) by FMLP (1 microM)-activated human neutrophils. Diphenyleneiodonium chloride (DPI, 5-10 microM) and KB-R7943 (2.5-10 microM), inhibitors of NADPH oxidase and the reverse mode of the Na(+)/Ca(2+) exchanger respectively, were used as pharmacological probes. Transmembrane fluxes of Ca(2+), K(+) and Na(+) were determined radiometrically, while alterations in membrane potential and cytosolic Ca(2+) were evaluated using spectrofluorimetric procedures. DPI, added to the cells at the time of maximum FMLP-activated membrane depolarisation, accelerated the rates of both membrane repolarisation and influx of Ca(2+), while KB-R7943 effectively antagonised these processes. SKF 96365 (10 microM), an antagonist of store-operated Ca(2+) channels, abolished the influx of Ca(2+) into FMLP-activated neutrophils, but had no effects on membrane repolarisation, suggesting that the Na(+)/Ca(2+) exchanger is primarily involved in mediating membrane repolarisation, thereby facilitating uptake of Ca(2+) via store-operated channels. These observations are compatible with prominent negative and positive regulatory roles for NADPH oxidase and the Na(+)/Ca(2+) exchanger respectively in regulating the rates of membrane repolarisation and store-operated uptake of Ca(2+) by chemoattractant-activated neutrophils.  相似文献   

6.
BACKGROUND AND PURPOSE: The thiourea derivative KB-R7943, originally developed as inhibitor of the plasma membrane Na(+)/Ca(2+) exchanger, has been shown to protect against myocardial ischemia-reperfusion injury. We have studied here its effects on mitochondrial Ca(2+) fluxes. EXPERIMENTAL APPROACH: [Ca(2+)] in cytosol, mitochondria and endoplasmic reticulum (ER), and mitochondrial membrane potential were monitored using both luminescent (targeted aequorins) and fluorescent (fura-2, tetramethylrhodamine ethyl ester) probes in HeLa cells. KEY RESULTS: KB-R7943 was also a potent inhibitor of the mitochondrial Ca(2+) uniporter (MCU). In permeabilized HeLa cells, KB-R7943 inhibited mitochondrial Ca(2+) uptake with a Ki of 5.5+/-1.3 microM (mean+/-S.D.). In intact cells, 10 microM KB-R7943 reduced by 80% the mitochondrial [Ca(2+)] peak induced by histamine. KB-R7943 did not modify the mitochondrial membrane potential and had no effect on the mitochondrial Na(+)/Ca(2+) exchanger. KB-R7943 inhibited histamine-induced ER-Ca(2+) release in intact cells, but not in cells loaded with a Ca(2+)-chelator to damp cytosolic [Ca(2+)] changes. Therefore, inhibition of ER-Ca(2+)-release by KB-R7943 was probably due to the increased feedback Ca(2+)-inhibition of inositol 1,4,5-trisphosphate receptors after MCU block. This mechanism also explains why KB-R7943 reversibly blocked histamine-induced cytosolic [Ca(2+)] oscillations in the same range of concentrations required to inhibit MCU. CONCLUSIONS AND IMPLICATIONS: Inhibition of MCU by KB-R7943 may contribute to its cardioprotective activity by preventing mitochondrial Ca(2+)-overload during ischemia-reperfusion. In addition, the effects of KB-R7943 on Ca(2+) homeostasis provide new evidence for the role of mitochondria modulating Ca(2+)-release and regenerative Ca(2+)-oscillations. Search for permeable and selective MCU inhibitors may yield useful pharmacological tools in the future.  相似文献   

7.
Previously, we reported that mesaconitine, an aconite alkaloid, increased intracellular Ca(2+) concentration ([Ca(2+)](i)) level in endothelium and caused relaxation in rat aorta via nitric oxide production. In the present study, we investigated the mechanisms of increase in the [Ca(2+)](i) level induced by mesaconitine in rat aorta and in human umbilical vein endothelial cells (HUVECs). Treatment with the low Na(+) buffer delayed the 30 microM mesaconitine-, but not 10 microM acetylcholine-, induced relaxation in rat aorta. Treatments with an inhibitor of Na(+)/Ca(2+) exchangers (20 microM 3',4'-dichlorobenzamil) and a reversed mode (Ca(2+) influx) inhibitor of the exchangers (30 microM 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate, KBR7943) showed similar effects. In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine (an inhibitor of nicotinic acetylcholine receptors), but was not inhibited in the glucose-free buffer and by inhibitors of Na(+)/H(+) exchangers. These findings suggest that mesaconitine stimulated Ca(2+) influx via the Na(+)/Ca(2+) exchangers in endothelial cells and caused relaxation in the aorta. The possibility of D-tubocurarine-sensitive Na(+) channels as target(s) of mesaconitine is discussed.  相似文献   

8.
The mechanism for noradrenaline (NA)-induced increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and physiological significance of Na(+) influx through receptor-operated channels (ROCs) and store-operated channels (SOCs) were studied in Chinese hamster ovary (CHO) cells stably expressing human alpha(1A)-adrenoceptor (alpha(1A)-AR). [Ca(2+)](i) was measured using the Ca(2+) indicator fura-2. NA (1 microM) elicited transient and subsequent sustained [Ca(2+)](i) increases, which were inhibited by YM-254890 (G(alphaq/11) inhibitor), U-73122 (phospholipase C (PLC) inhibitor), and bisindolylmaleimide I (protein kinase C (PKC) inhibitor), suggesting their dependence on G(alphaq/11)/PLC/PKC. Both phases were suppressed by extracellular Ca(2+) removal, SK&F 96365 (inhibitor of SOC and nonselective cation channel type-2 (NSCC-2)), LOE 908 (inhibitor of NSCC-1 and NSCC-2), and La(3+) (inhibitor of transient receptor potential canonical (TRPC) channel). Reduction of extracellular Na(+) and pretreatment with KB-R7943, a Na(+)/Ca(2+) exchanger (NCX) inhibitor, inhibited both phases of [Ca(2+)](i) increases. These results suggest that 1) stimulation of alpha(1A)-AR with NA elicits the transient and sustained increases in [Ca(2+)](i) mediated through NSCC-2 that belongs to a TRPC family; 2) Na(+) influx through these channels drives NCX in the reverse mode, causing Ca(2+) influx in exchange for Na(+) efflux; and 3) the G(alphaq/11)/PLC/PKC-dependent pathway plays an important role in the increases in [Ca(2+)](i).  相似文献   

9.
1. We investigated the effect of KB-R7943, a Na(+)/Ca(2+) exchange inhibitor, on the aggregation response induced by adrenaline and 5-hydroxytryptamine (5-HT), alone or in combination in human and rabbit platelets in the presence or absence of ouabain. 2. KB-R7943 inhibited aggregation induced by the combination of adrenaline and 5-HT in a concentration-dependent manner. The IC(50) values of KB-R7943 were 4.2+/-2.0 or 3.0+/-0.7 microM with washed rabbit platelets with or without ouabain pretreatment, respectively. 3. In platelet-rich human plasma, the aggregation was biphasic. The IC(50) value of KB-R7943 was 17.2+/-4.4 microM for the first phase aggregation. 4. KB-R7943 did not inhibit the first phase of aggregation induced by adrenaline alone, or the monophasic aggregation induced by 5-HT alone. 5. The aggregation of rabbit platelets depended on the presence of K(+) in the medium, and K(+)-dependent and K(+)-independent Ca(2+) influx were observed in resting platelets. Ouabain treatment increased only the K(+)-dependent but not the K(+)-independent Ca(2+) influx. 6. KB-R7943 inhibited K(+)-dependent Ca(2+) influx with or without ouabain pretreatment, but not K(+)-independent Ca(2+) influx. 7. From these results, we conclude that KB-R7943 inhibits the adrenaline plus 5-HT induced aggregation of rabbit and human platelets by inhibiting K(+)-dependent Na(+)/Ca(2+) exchange (NCKX). Our results suggest that NCKX plays an important role in platelet aggregation.  相似文献   

10.
The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.  相似文献   

11.
The effects of SEA0400, a selective inhibitor of the Na(+)/Ca(2+) exchanger (NCX), on Na(+)-dependent Ca(2+) uptake and catecholamine (CA) release were examined in bovine adrenal chromaffin cells that were loaded with Na(+) by treatment with ouabain and veratridine. SEA0400 inhibited Na(+)-dependent (45)Ca(2+) uptake and CA release, with the IC(50) values of 40 and 100 nM, respectively. The IC(50) values of another NCX inhibitor KB-R7943 were 1.8 and 3.7 microM, respectively. These results indicate that SEA0400 is about 40 times more potent than KB-R7943 in inhibiting NCX working in the reverse mode. In intact cells, SEA0400 and KB-R7943 inhibited CA release induced by acetylcholine and DMPP. The IC(50) values of SEA0400 were 5.1 and 4.5 microM and the values of KB-R7943 were 2.6 and 2.1 microM against the release induced by acetylcholine and DMPP, respectively, indicating that the potency of SEA0400 is about a half of that of KB-R7943 in inhibiting the nicotinic receptor-mediated CA release. The binding of [(3)H]nicotine with nicotinic receptors was inhibited by SEA0400 (IC(50) = 90 microM) and KB-R7943 (IC(50) = 12 microM). From these results, it is concluded that unlike KB-R7943, SEA0400 has a potent and selective action on NCX in bovine adrenal chromaffin cells.  相似文献   

12.
In neonatal mouse right ventricles, endothelin-1 (ET-1, 1-300 nM) induced a dose-dependent increase in twitch contractions and the dose-response curve was shifted to the right by BQ-123 (10 microM), an endothelin ET(A) receptor antagonist. The ET-1 (100 nM)-induced positive inotropy was accompanied by an increase in [Ca(2+)](i) transients without any change in the [Ca(2+)](i)-force relationship. Ryanodine (1 microM) partially decreased the [Ca(2+)](i) transients and contractile force, but did not affect the ET-1 (100 nM)-induced positive inotropy. Reduction of [Na(+)](o) elicited an increase in contractile force, and this effect was significantly inhibited by KB-R7943 (30 microM), an inhibitor of the Na(+)-Ca(2+) exchanger. KB-R7943 (30 microM) almost completely suppressed the positive inotropic effect of ET-1. Activation of protein kinase C (PKC) by phorbol 12,13-dibutylate (100 nM) decreased the contractile force, an effect which was suppressed by bisindolylmaleimide I (3 microM). On the other hand, the ET-1-induced positive inotropic effect was unaffected by bisindolylmaleimide I (3 microM). These results suggest that the positive inotropic effect of ET-1 in neonatal mouse right ventricles is caused by the increase in [Ca(2+)](i) transients through activation of the endothelin ET(A) receptor and the increase in Ca(2+) influx via the Na(+)-Ca(2+) exchanger during an action potential. Furthermore, the ET-1-induced positive inotropy is independent of the effects of PKC, which makes it distinct from the ET-1-mediated pathways reported for cardiac tissues in other species.  相似文献   

13.
We have previously demonstrated that treatment with L-cis diltiazem reduced cardiac infarct size in vivo. To examine the effect of L-cis diltiazem on Ca(2+) overload induced by ischemia/reperfusion, we used a model for Ca(2+) overload produced by metabolic inhibition in isolated guinea pig myocytes. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was quantified by fura-2 fluorescence microscopy and Ca(2+) overload was induced by inclusion of 1 microM of carbonyl cyanide m-chrolophenylhydrazone (CCCP) for 40 min treatment followed by washout for 30 min. This treatment caused a large [Ca(2+)](i) elevation as well as a sustained contracture of the cardiomyocytes. The increase was suppressed by 10 microM of 2-[2-[4-(4-nitrobenzyloxy) phenyl] ethyl] isothiourea methanesulphonate (KB-R7943), a specific inhibitor of the Na(+)/Ca(2+) exchanger, but not by nitrendipine (10 microM). L-cis Diltiazem (10 microM) attenuated the [Ca(2+)](i) increase, suggesting that L-cis diltiazem elicits a cardioprotective effect via attenuation of the [Ca(2+)](i) increase induced by metabolic inhibition and energy repletion.  相似文献   

14.
The Na(+)/Ca(2+)exchanger (NCX) principal function is taking 1 Ca(2+) out of the cytoplasm and introducing 3 Na(+). The increase of cytoplasmic Na(+) concentration induces the NCX reverse mode (NCX(REV)), favoring Ca(2+) influx. NCX(REV) can be inhibited by: KB-R7943 a non-specific compound that blocks voltage-dependent and store-operated Ca(2+) channels; SEA0400 that appears to be selective for NCX(REV), but difficult to obtain and SN-6, which efficacy has been shown only in cardiomyocytes. We found that PPADS, a P2X receptor antagonist, acts as a NCX(REV) inhibitor in guinea pig tracheal myocytes. In these cells, we characterized the NCX(REV) by substituting NaCl and NaHCO(3) with LiCl, resulting in the increase of the intracellular Ca(2+) concentration ([Ca(2+)]i) using fura 2-AM. We analyzed 5 consecutive responses of the NCX(REV) every 10 min, finding no differences among them. To evaluate the effect of different NCX(REV) blockers, concentration response curves to KB-R7943 (1, 3.2 and 10 μM), and SN-6 (3.2, 10 and 30 μM) were constructed, whereas PPADS effect was characterized as time- and concentration-dependent (1, 3.2, 10 and 30 μM). PPADS had similar potency and efficacy as KB-R7943, whereas SN-6 was the least effective. Furthermore, KCl-induced contraction, sensitive to D600 and nifedipine, was blocked by KB-R7943, but not by PPADS. KCl-induced [Ca(2+)]i increment in myocytes was also significantly decreased by KBR-7943 (10 μM). Our results demonstrate that PPADS can be used as a reliable pharmacological tool to inhibit NCX(REV), with the advantage that it is more specific than KB-R7943 because it does not affect L-type Ca(2+) channels.  相似文献   

15.
Rat or human neocortical synaptosomes were used to study the role of voltage-gated Ca(2+) channels and the Na(+)/Ca(2+) exchanger in (45)Ca(2+) influx into nerve terminals. K(+) depolarization-induced (45)Ca(2+) influx through voltage-gated Ca(2+) channels into rat or human synaptosomes was completely blocked by mibefradil 30 microM or Cd(2+) 100 microM but was not affected by tetrodotoxin 1 microM. It was reduced by omega-agatoxin IVA 0.2 microM by 68% in synaptosomes of either species, whereas omega-conotoxin GVIA 0.1 microM and nifedipine 1 microM had no effect. Veratridine-induced (45)Ca(2+) entry into rat neocortical synaptosomes was completely blocked by mibefradil 30 microM, reduced by 80% by Cd(2+) 100 microM, by 90% by tetrodotoxin 1 microM and by 53% by omega-agatoxin IVA 0.2 microM but not by omega-conotoxin GVIA 0.1 microM or nifedipine 1 microM. Na(+)/Ca(2+) exchanger-mediated (45)Ca(2+) uptake into rat neocortical synaptosomes evoked by replacement of Na(+) by choline(+) in the incubation buffer was reduced by KB-R7943 (3-50 microM), an inhibitor of the Na(+)/Ca(2+) exchanger, in a concentration-dependent manner (maximal inhibition by 46% at 50 microM; IC(23%)=7.1 microM). Mibefradil also inhibited the Na(+)/Ca(2+) exchanger-mediated Ca(2+) uptake, although at 3.7 times lower potency (IC(23%)=26 microM). It is concluded that in rat and human neocortical nerve terminals Ca(2+) entry is mediated under physiological conditions by P/Q-type, but not by N- or L-type Ca(2+) channels or the Na(+)/Ca(2+) exchanger. If the cytosolic Na(+) concentration is increased, Ca(2+) is also taken up via the Na(+)/Ca(2+) exchanger. In addition to the ability of mibefradil to block all voltage-operated Ca(2+) channels, this drug is a low potency inhibitor of the Na(+)/Ca(2+) exchanger.  相似文献   

16.
We investigated the pharmacological properties and interaction domains of N-(3-aminobenzyl)-6-{4-[(3-fluorobenzyl)oxy]phenoxy} nicotinamide (YM-244769), a novel potent Na(+)/Ca(2+) exchange (NCX) inhibitor, using various NCX-transfectants and neuronal and renal cell lines. YM-244769 preferentially inhibited intracellular Na(+)-dependent (45)Ca(2+) uptake via NCX3 (IC(50) = 18 nM); the inhibition was 3.8- to 5.3-fold greater than for the uptake via NCX1 or NCX2, but it did not significantly affect extracellular Na(+)-dependent (45)Ca(2+) efflux via NCX isoforms. We searched for interaction domains with YM-244769 by NCX1/NCX3-chimeric analysis and determined that the alpha-2 region in NCX1 is mostly responsible for the differential drug response between NCX1 and NCX3. Further cysteine scanning mutagenesis in the alpha-2 region identified that the mutation at Gly833 markedly reduced sensitivity to YM-244769. Mutant exchangers that display either undetectable or accelerated Na(+)-dependent inactivation, had markedly reduced sensitivity or hypersensitivity to YM-244769, respectively. YM-244769, like 2-[2-[4-(4-nitrobenzyloxyl)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), protected against hypoxia/reoxygenation-induced cell damage in neuronal SH-SY5Y cells, which express NCX1 and NCX3, more efficiently than that in renal LLC-PK(1) cells, which exclusively express NCX1, whereas 2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester (SN-6) suppressed renal cell damage to a greater degree than neuronal cell damage. These protective potencies consistently correlated well with their inhibitory efficacies for the Ca(2+) uptake via NCX isoforms existing in the corresponding cell lines. Antisense knockdown of NCX1 and NCX3 in SH-SY5Y cells confirmed that NCX3 contributes to the neuronal cell damage more than NCX1. Thus, YM-244769 is not only experimentally useful as a NCX inhibitor that preferentially inhibits NCX3, but also has therapeutic potential as a new neuroprotective drug.  相似文献   

17.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate) is a potent and selective Na(+)/Ca(2+) exchange (NCX) inhibitor that is 3-fold more inhibitory to NCX3 than to NCX1 or NCX2. Here we searched for amino acid residues that may form the KB-R7943 receptor in the exchanger by analyzing the function of chimeras between NCX1 and NCX3 as well as of their site-directed mutants. We found that the highly conserved alpha-2 repeat of the exchanger is almost exclusively responsible for the difference in drug response of the isoforms. Such difference was mostly reproduced by single substitutions of residues in the alpha-2 repeat (V820G or Q826V in NCX1 and A809V or A809I in NCX3), suggesting their importance in drug sensitivity. Cysteine scanning mutagenesis of the alpha-2 repeat of NCX1 identified one residue (Gly833) that caused a large (> or = 30-fold) reduction in drug sensitivity. We found that the Gly-to-Thr substitution caused even larger reduction in drug sensitivity. Interestingly, extracellularly applied KB-R7943 at 0.8 microM markedly inhibited the whole-cell outward exchange current, whereas the drug applied intracellularly at 30 microM did not. These results suggest that KB-R7943 inhibits the exchanger from the external side in intact cells and that a region of the alpha-2 repeat of NCX1 containing Gly833 may participate in the formation of the drug receptor. Because we suggested previously that Gly833 is accessible from the inside of a cell, the results raised an interesting possibility that this residue may alter its position during Na(+)/Ca(2+) exchange in such a way that it becomes accessible to external drug.  相似文献   

18.
AIM: To establish the effects of Na(+)/Ca(2+) exchanger (NCX) blockers on 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG) and (11)C-choline accumulation in different cancer cells. METHODS: The tumor cells were incubated with NCX inhibitors, and the uptakes of (18)FDG and (11)C-choline were measured. Flow cytometric measurements of intracellular Ca(2+) and Na(+) concentrations were carried out. The presence of the NCX antigen in the cancer cells was proved by Western blotting, flow cytometry and confocal laser scanning microscopy. RESULTS: The NCX is expressed at a noteworthy level in the cytosol and on the cytoplasmic membrane of the examined cells. Incubation of the cells with three chemically unrelated NCX blockers (bepridil, KB-R7943 or 3',4'-dichlorobenzamil hydrochloride) resulted in an increase in the intracellular Ca(2+) concentration, with a simultaneous decrease in the intracellular Na(+) concentration. The treatment with the NCX inhibitors increased the energy consumption of the tumor cells by 50-100%. Thapsigargin abolished the NCX-induced (18)FDG accumulation in the cells. The NCX blockers applied decreased the (11)C-choline accumulation of all the investigated cancer cells by 60-80% relative to the control. CONCLUSION: A possible masking effect of NCX medication must be taken into consideration during the diagnostic interpretation of PET scans.  相似文献   

19.
Changes in [Ca(2+)](i) across the cell membrane and/or the sarcoplasmic reticulum regulate endothelial nitric oxide (NO) synthase activity. In the present study, we investigated the effect of ouabain, a specific inhibitor of Na(+)/K(+)-ATPase, on NO release and [Ca(2+)](i) movements in cultured rat aortic endothelial cells (RAEC) by monitoring NO production continuously using an NO-specific real-time sensor and by measuring the change in [Ca(2+)](i) using a fluorescence microscopic imaging technique with high-speed wavelength switching. The t((1/2)) (half-time of the decline of [Ca(2+)](i) to basal levels after stimulation with 10 micro mol/L bradykinin) was used as an index of [Ca(2+)](i) extrusion. A very low concentration of ouabain (10 nmol/L) did not increase the peak of NO production, but decreased the decay of NO release and, accordingly, increased integral NO production by the maximal dose-response concentration induced by bradykinin. The same dose of ouabain affected [Ca(2+)](i) movements across the cell membrane and/or sarcoplasmic reticulum induced by bradykinin with a time-course similar to that of NO release. Moreover, the t((1/2)) was significantly increased. Pretreatment of RAEC with Na(+)-free solution, an inhibitor of the Na(+)/Ca(2+) exchanger, and nickel chloride hexahydrate prevented the effects induced by bradykinin and ouabain. These observations using real-time recording indicate that a small amount of ouabain contributes to the bradykinin-stimulated increase of NO production through inhibition of plasma membrane Na(+)/K(+)-ATPase activity and an increase in intracellular Na(+) concentrations. The membrane was then depolarized, leading to a decline in the bradykinin-stimulated increase in [Ca(2+)](i) by forward mode Na(+)/Ca(2+) exchange to prolong the Ca(2+) signal time. From these results, we suggest that nanomolar levels of ouabain modulate [Ca(2+)](i) movements and NO production in RAEC.  相似文献   

20.
BACKGROUND AND PURPOSE The Na(+) /Ca(2+) exchanger is a bi-directional transporter that plays an important role in maintaining the concentration of cytosolic Ca(2+) ([Ca(2+) ](i) ) of quiescent platelets and increasing it during activation with some, but not all, agonists. There are two classes of Na(+) /Ca(2+) exchangers: K(+) -independent Na(+) /Ca(2+) exchanger (NCX) and K(+) -dependent Na(+) /Ca(2+) exchanger (NCKX). Platelets have previously been shown to express NCKX1. However, initial studies from our laboratory suggest that NCX may also play a role in platelet activation. The objective of this study was to determine if the human platelet expresses functional NCXs. EXPERIMENTAL APPROACH RT-PCR, DNA sequencing and Western blot analysis were utilized to characterize the human platelet Na(+) /Ca(2+) exchangers. Their function during quiescence and collagen-induced activation was determined by measuring [Ca(2+) ](i) with calcium-green/fura-red in response to: changes in the Na(+) and K(+) gradient, NCX pharmacological inhibitors (CBDMB, KB-R7943 and SEA0400) and antibodies specific to extracellular epitopes of the exchangers. KEY RESULTS Human platelets express NCX1.3, NCX3.2 and NCX3.4. The NCXs operate in the Ca(2+) efflux mode in resting platelets and also during their activation with thrombin but not collagen. Collagen-induced increase in [Ca(2+) ](i) was reduced with the pharmacological inhibitors of NCX (CBDMB, KB-R7943 or SEA0400), anti-NCX1 and anti-NCX3. In contrast, anti-NCKX1 enhanced the collagen-induced increase in [Ca(2+) ](i) . CONCLUSIONS AND IMPLICATIONS Human platelets express K(+) -independent Na(+) /Ca(2+) exchangers NCX1.3, NCX3.2 and NCX3.4. During collagen activation, NCX1 and NCX3 transiently reverse to promote Ca(2+) influx, whereas NCKX1 continues to operate in the Ca(2+) efflux mode to reduce [Ca(2+) ](i) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号