首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自杀基因疗法是肿瘤治疗的方法之一.腺相关病毒(AAV)载体介导的自杀基因疗法尤其备受关注.通过对AAV栽体的选择改建,调控外源基因的有效表达,提高基因转染的效率,充分发挥自杀基因的杀伤作用及旁观者效应来达到治疗肿瘤的目的.本文就AAV栽体及其介导的自杀基因疗法方面的进展作一综述.  相似文献   

2.
Adenovirus as a gene therapy vector for hematopoietic cells   总被引:6,自引:0,他引:6  
Adenovirus (Adv)-mediated gene transfer has recently gained new attention as a means to deliver genes for hematopoietic stem cell (HSC) or progenitor cell gene therapy. In the past, HSCs have been regarded as poor Adv targets, mainly because they lack the specific Adv receptors required for efficient and productive Adv infection. In addition, the nonintegrating nature of Adv has prevented its application to HSC and bone marrow transduction protocols where long-term expression is required. There is even controversy as to whether Adv can infect hematopoietic cells at all. In fact, the ability of Adv to infect epithelium-based targets and its inability to effectively transfect HSCs have been used in the development of eradication schemes that use Adv to preferentially infect and "purge" tumor cell-contaminating HSC grafts. However, there are data supporting the existence of productive Adv infections into HSCs. Such protocols involve the application of cytokine mixtures, high multiplicities of infection, long incubation periods, and more recently, immunological and genetic modifications to Adv itself to enable it to efficiently transfer genes into HSCs. This is a rapidly growing field, both in terms of techniques and applications. This review examines the two sides of the Adv/CD34 controversy as well as the current developments in this field.  相似文献   

3.
BACKGROUND: As antitumoral immunity requires the generation of local immunity directed against tissue proteins, we attempted to recreate within tumors the same environment found within tissues affected by autoimmune diseases (i.e., prolonged cytokine expression). Vaccinia virus (VV) has not been widely used as a cytokine gene therapy vector because of presumed high immunogenicity that would likely make repeated injections impossible; therefore, we modified it by inserting the cytokine gene into the thymidine kinase region, rendering it replication-restricted. The cytokine chosen was human interleukin-2 (IL-2); a molecule with powerful antitumoral effects. METHODS: Six patients with the treatment-resistant tumor malignant mesothelioma received intratumoral (i.t.) VV-IL-2 therapy for 12 weeks by injection of 10(7) plaque-forming units of VV-IL-2 per dose. Serial tumor biopsies, sputum, urine, and blood samples were tested for VV-IL-2 mRNA expression; VV culture and T-cell infiltrates were evaluated by immunohistochemistry. Patients and contacts of patients were monitored for changes in VV immunoglobulin G (IgG) levels and clinical evidence of VV infection. RESULTS: VV-IL-2 was not excreted and was only cultured in one patient from tumor biopsies. A T-cell infiltrate was detected in 50% of tumor biopsies. VV-IL-2 mRNA expression was highest on days 1-3 postinjection and was detected for up to 3 weeks after each injection even though VV IgG levels rose in all patients. No significant toxicities, infection of patient contacts, or tumor regressions were observed. CONCLUSIONS: I.t. VV-IL-2 administration is safe, is associated with minimal toxicity, and results in i.t. expression of VV-IL-2 for up to 3 weeks postinjection regardless of the level of anti-VV IgG titers generated. This suggests that VV may be a good vector for repeated cytokine gene therapy of solid human cancer.  相似文献   

4.
Saporin as a novel suicide gene in anticancer gene therapy   总被引:1,自引:0,他引:1  
We used a non-viral gene delivery approach to explore the potential of the plant saporin (SAP) gene as an alternative to the currently employed suicide genes in cancer therapy. Plasmids expressing cytosolic SAP were generated by placing the region encoding the mature plant ribosome-inactivating protein under the control of cytomegalovirus (CMV) or simian virus 40 (SV40) promoters. Their ability to inhibit protein synthesis was first tested in cultured tumor cells co-transfected with a luciferase reporter gene. In particular, SAP expression driven by CMV promoter (pCI-SAP) demonstrated that only 10 ng of plasmid per 1.6 x 10(4) B16 cells drastically reduced luciferase activity to 18% of that in control cells. Direct intratumoral injection of pCI-SAP complexed with either lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) in B16 melanoma-bearing mice resulted in a noteworthy attenuation of tumor growth. This antitumor effect was increased in mice that received repeated intratumoral injections. A SAP catalytic inactive mutant (SAP-KQ) failed to exert any antitumor effect demonstrating that this was specifically owing to the SAP N-glycosidase activity. Our overall data strongly suggest that the gene encoding SAP, owing to its rapid and effective action and its independence from the proliferative state of target cells might become a suitable candidate suicide gene for oncologic applications.  相似文献   

5.
6.
To evaluate human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase (HSV-TK) -mediated gene therapy, we tested the utility of different viral vectors on three human cell lines DU-145, LNCaP, and PC-3. Our viral vectors were carrying a fusion gene of HSV-TK and green fluorescent protein for accurate determination of the gene transfer rate and its contribution to the treatment outcome in each case. We observed that adenoviral and lentiviral vectors were efficient vehicles for all the cell lines, whereas Semliki Forest virus and Sindbis virus vectors yielded only a few percent of transgene-positive cells. Despite sufficient gene transfer rates (25-45%) in the ganciclovir (GCV) sensitivity experiment, only DU-145 cells were efficiently destroyed under clinically relevant GCV concentrations. This was shown to be due to low level of "bystander effect" in PC-3 and LNCaP cells. Our data demonstrate that human prostate tumors can be good targets for adenovirus- or lentivirus-mediated HSV-TK/GCV gene therapy, but each tumor should be investigated for gene transfer rate and bystander effect to warrant a sufficient treatment result.  相似文献   

7.
8.
9.
Heat-directed suicide gene therapy for breast cancer   总被引:10,自引:0,他引:10  
Adjuvant hyperthermia can improve treatment outcome for locally recurrent breast cancer (LRBC). Previously, we demonstrated that infection of human breast cancer cells with a recombinant adenovirus expressing beta-galactosidase from the human hsp70b gene promoter (Ad.70b.betagal) results in 50- to 800-fold increases in reporter gene expression following heat treatment (30 minutes at 43 degrees C). Here, we describe a heat-directed suicide gene therapy strategy based on an adenoviral vector (Ad.70b.CDTK) in which expression of the dual prodrug-activating E. coli cytosine deaminase/herpes simplex virus thymidine kinase (CDTK) fusion gene is under the control of the hsp70b promoter. Treatment of T47D and MCF-7 breast cancer cells with mild hyperthermia (43 degrees C/30 minutes) and prodrugs (100 microg/ml 5-fluorocytosine and 10 microg/ml ganciclovir) following infection with Ad.70b.CDTK (10-100 PFU/cell) resulted in 30- to 60-fold decreases in clonogenic survival relative to control cultures treated with heat or prodrugs alone. Clonogenic survival declined even further (up to 240-fold) following heat treatment at 41.5 degrees C for 120 minutes. A decreased clonogenic survival was accompanied by tumor cell apoptosis. These results demonstrate that this combined treatment strategy can be highly effective against heat- and radiation-resistant breast tumor cells and supports the continued development of heat-directed CDTK suicide gene therapy strategies for LRBC.  相似文献   

10.

Objective

The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells.

Methods

To obtain HBVE, the supernatant fluid of HepG 2.2.15 cells was mixed with a PEG8000 solution for concentration and was inactivated by β-propiolactone. The acquired HBVE was used to pack pIRES2-EGFP to test its package ability. Then, we examined its quantity and quality with ELISA, PCR, SDS-PAGE and electron microscopy. The pIRES2-EGFP was packed with HBVE and obtained the product HBVE-GFP. The pIRES2-EGFP was packed with liposome and obtained the product liposome-GFP. HBVE-GFP and liposome-GFP were used to transfer HepG 2 cells to study the transfection efficiency. HBVE-GFP was used to transfer HepG 2, A549, HeLa and FB cells to study the targeting ability. The green fluorescent protein (GFP) expression was observed under a fluorescent microscope. The rate of GFP positive cells was determined by flow cytometry.

Results

1. The acquired HBVE could retain the surface protein HBsAg + pre S1 + pre S2 and had no virus DNA. It had good package ability for pIRES2-EGFP. 2. Transfection efficiency: The GFP could be observed in both the liposome group and HBVE group under the fluorescent microscope. But the HBVE group had a higher fluorescent intensity than liposome group. The transfection rate of liposome group was 49.97% ± 2.37% while the HBVE group was 70.65% ± 3.15% and the fluorescent intensity of the HBVE group was 3–4 times (P = 0.000) for liposome group with the determination of flow cytometry. 3. Targeting ability: The GFP could be observed in the four groups under the fluorescent microscope. The HepG 2 group had the highest fluorescent intensity among the four groups. The transfection rate of HepG 2 group was 71.35% ± 0.03% which was highly expressed than other groups (P = 0.000) and the fluorescent intensity of the HepG 2 group was 2–3 times (P = 0.000) for the other 3 groups with the determination of flow cytometry.

Conclusion

HBVE can be constructed successfully with the methods of PEG8000 and β-propiolactone from the supernatant fluid of HepG 2.2.15 cells. The HBVE can be a candidate gene transfer vector for liver cancer cells.  相似文献   

11.
Tumor-directed gene therapy, such as "suicide gene" therapy, requires high levels of gene expression in a high percentage of tumor cells in vivo to be effective. Current vector strategies have been ineffective in achieving these goals. This report introduces the attenuated (thymidine kinase (TK)-negative) replication-competent vaccinia virus (VV) as a potential vector for tumor-directed gene therapy by studying the biodistribution of VV in animal tumor models. A TK-deleted recombinant VV (Western Reserve strain) expressing luciferase on a synthetic promoter was constructed. Luciferase activity was measured in vitro after transduction of a variety of human and murine tumor cell lines and in vivo after intraperitoneal (i.p.) delivery in C57BL/6 mice with 7-day i.p. tumors (10(6) MC-38 cells). Three other in vivo tumor models were examined for tumor-specific gene expression after intravenous delivery of VV (human melanoma in nude mice, adenocarcinoma liver metastasis in immunocompetent mice, and subcutaneous sarcoma in the rat). In addition, a replication-incompetent vaccinia (1 microg of psoralen and ultraviolet light, 365 nm, 4 minutes) was tested in vitro and in vivo and compared with active virus. Luciferase activity in i.p. tumors at 4 days after i.p. injection of VV was >7000-fold higher than lung, >3000-fold higher than liver, and >250-fold higher than ovary. In addition, intravenous injection of VV resulted in markedly higher tumor luciferase activity compared with any other organ in every model tested (up to 188,000-fold higher than liver and 77,000-fold higher than lung). Inactivation of the virus resulted in negligible gene expression in vivo. In summary, VV has a high transduction efficiency in tumor cells with high levels of gene expression. The results suggest a selective in vivo replication of TK-deleted VV in tumor cells. Replication competent, TK-deleted VV appears to be an ideal vector for testing the in vivo delivery of toxic genes to tumor cells.  相似文献   

12.
BACKGROUND AND OBJECTIVES: Although surgical therapy for pancreatic cancer has not been successful, new gene therapies, such as adeno-associated virus (AAV) vectors hold promise for treating cancer. However, expression of AAV vectors alone is insufficient for adequate effects in vivo for cancer therapy. We describe a novel therapy using the combined herpes simplex virus-ICP6 deletion mutant (ICP6delta) and AAV vector. METHODS: We investigated ICP6delta and AAV regarding kinetics and dose-response relationships of LacZ expression in vitro. We studied the expression of LacZ in vivo using subcutaneous pancreatic cancer tumors (SW1990) in nude mice. RESULTS: In vitro, ICP6delta enhanced the expression of AAV; 24 hr following inoculation there was more expression with AAV plus ICP6delta than with AAV plus KOS, and a multiplicity of infection (MOI) of 0.5 was the optimal titer of ICP6delta to support maximal expression of AAV. In vivo, there was much higher expression of LacZ in mice injected with AAV-LacZ plus ICP6A than with AAV-LacZ alone. CONCLUSIONS: ICP6delta enhances expression of AAV-vector in vitro and in vivo. These results suggested that combined therapy have potential for human cancer.  相似文献   

13.
In this study, we report a novel approach to gene-directed enzyme prodrug therapy for cancer. This gene therapy strategy exploits the toxic pro-oxidant property of methylselenol, which is released from selenomethionine (SeMET) by cancer cells with the adenoviral-delivered methionine alpha,gamma-lyase (MET) gene cloned from Pseudomonas putida. In MET-transduced tumor cells, the cytotoxicity of SeMET is increased up to 1000-fold compared with nontransduced cells. A strong bystander effect occurred because of methylselenol release from MET gene-transduced cells and uptake by surrounding tumor cells. Methylselenol damaged the mitochondria via oxidative stress and caused cytochrome c release into the cytosol, thereby activating the caspase cascade and apoptosis. Adenoviral MET-gene/SeMET treatment also inhibited tumor growth in rodents and significantly prolonged their survival. Recombinant adenovirus-encoding MET gene-SeMET treatment thereby offers a new paradigm for cancer gene therapy.  相似文献   

14.
Amongvariouskindsofbiologicalresponsemodifiers(BRM)forthetreatmentofcancer,cytokinesshowveryencouragingtherapeuticeffects.InjectionofrecombinantcytokinesdirectlytohumanorexperimentalanimalsareabletomarkedlyreduceoreradicatethetllmorgroWth.Buthighdoseofcytokinesfortumortherapyoftenresultsinserioussideeffects.Peoplehavelongbeenworkingtofindmuchefficientwaytodelivercytokinescontinuouslyandeffectively.Cytokinegenetherapyforcancerhasbeenstudiedintensively.Differentkindsofvectorshavebeenusedforcyt…  相似文献   

15.
Tumor cells that express a fusion gene of Escherichia coli cytosine deaminase (CD) and herpes simplex virus type 1 thymidine kinase (TK) sequences activate and are subsequently killed by the nontoxic prodrugs 5-fluorocytosine and ganciclovir. We have previously developed a recombinant adenovirus containing the CD-TK fusion gene controlled by the human inducible heat shock protein 70 promoter so that heat at 41 degrees C for 1 hour induces therapeutic gene expression. This adenovirus effectively transduces heat-inducible expression of the CD-TK gene into human prostate carcinoma cells. However, because a limited number of cells in a tumor can actually be infected, we created a replicating adenoviral vector to increase CD-TK gene expression. This vector is a replication-competent, E1B-attenuated adenoviral vector containing the hsp70 promoter-driven CD-TK gene (Ad.E1A(+)HS-CDTK). When human prostate adenocarcinoma DU-145 cells (mutant p53) were infected with the virus at a multiplicity of infection (MOI) of 1 or 10, the viral replication was detected within 2 days at both MOIs. Similar results were observed in human colorectal carcinoma CX-1 cells. When DU-145 cells were infected with the virus at an MOI of 10, incubated for 24 hours, heated at 41 degrees C for 4 hours, and then harvested 20 hours later, Western blot analysis demonstrated that this virus successfully produced viral E1A proteins and heat shock stimulated the CD-TK gene expression by 12.3-fold. In addition, Ad.E1A(+)HS-CDTK effectively suppressed cell proliferation by viral cytopathic effect). Unlike with a replication-incompetent virus (Ad.HS-CDTK), the cytopathic effect of the virus and cytotoxicity in the presence of the prodrugs were still observed even at low MOI (MOI=1.0).  相似文献   

16.
Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia na?ve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.  相似文献   

17.
Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis   总被引:12,自引:0,他引:12  
Gene therapy is a novel therapeutic approach that might soon improve the prognosis of some cancers. We investigated the feasibility of cytosine deaminase (CD) suicide gene therapy in a model of peritoneal carcinomatosis. DHD/K12 colorectal adenocarcinoma cells transfected in vitro with the CD gene were highly sensitive to 5-fluorocytosine (5-FC), and a bystander effect could also be observed. Treating CD+ cells with 5-FC resulted in apoptosis as detected by terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling. In vitro, several human cell lines derived from ovarian or colorectal carcinomas, as well as the rat glioblastoma 9 L cell line, responded to CD/5-FC and showed a very strong bystander effect. 5-FC treatment of peritoneal carcinomatosis generated in syngeneic BDIX rats by CD-expressing DHD/K12 cells led to a complete and prolonged response and to prolonged survival. Our study thus demonstrated the efficacy of CD suicide gene therapy for the treatment of peritoneal carcinomatosis.  相似文献   

18.
Modified adenoviruses for cancer gene therapy   总被引:8,自引:0,他引:8  
Adenoviral gene therapy is an exciting novel approach for treating cancers resistant to currently available therapies. However, currently there is little evidence supporting significant clinical benefits with replication-incompetent adenoviruses. Recent data suggest that expression of the primary receptor, the coxsackie-adenovirus receptor (CAR), may be highly variable on tumor cells, resulting in resistance to infection. Consequently, various strategies have been evaluated to modify adenovirus tropism in order to circumvent CAR deficiency, including retargeting complexes or genetic capsid modifications. To improve tumor penetration and local amplification on the antitumor effect, selectively oncolytic agents, i.e., conditionally replicating adenoviruses, have been constructed. Infection of tumor cells results in replication, oncolysis and subsequent release of the virus progeny. Normal tissue is spared due to lack of replication. This review focuses on the various modifications that have been investigated for improving the antitumor effect of adenoviral gene therapy.  相似文献   

19.
Due to the ineffective conventional treatment for hepatocellular carcinoma (HCC), the nonviral gene delivery system has been proved to be an attractive alternative to HCC therapy. In this work, we have developed a kind of new self-assembled nanoparticles, which were named as amino-modified silica nanoparticles (AMSNs). Scanning electron microscopy and zeta potential results demonstrated that AMSNs had a diameter of 20–30 nm and positive surface charges of +11.3 mV, respectively. The AMSNs could bind DNA strongly and protect DNA from degradation, which was confirmed by DNA-binding assay and serum protection assay. Furthermore, AMSNs could transfer foreign DNA into targeted cells with high transfection efficiency and little cytotoxicity. Combined with the p53 gene, AMSNs could transfect pp53-EGFP in HepG2 cells and result in a high-level of p53 mRNA and protein expressions. The nude mice treated with AMSNs/pp53-EGFP complexes showed significant tumor growth inhibition. Our results showed the AMSNs, an efficient gene vector, had the potential of gene therapy for HCC.  相似文献   

20.
Although great efforts have been made to improve conventional therapy for diffuse malignant pleural mesothelioma, the median survival time of the patients after appearance of clinical symptoms remains poor. Due to confinement of the primary tumor to the pleural space, locoregional approaches are attractive strategies to improve the clinical outcome. In this context locoregional gene therapy using the recombinant adeno-associated virus 2 (rAAV-2) may be a new approach. Vectors were constructed containing a fusion gene, consisting of the Herpes simplex virus thymidine kinase (HSV-TK) and the green fluorescent protein (GFP) genes; the former serving as suicide gene by converting the prodrug ganciclovir (GCV) into a toxic agent, thereby killing infected cells. Among a number of different tumor cell lines, rAAV-2 achieved high GFP expression levels in three mesothelioma cell lines (H-Meso-1, MSTO-211H, NCI-H28). A variety of rAAV-2-constructs containing different promoters were tested. The vector with the elongation factor-1alpha (EF-1alpha) promoter showed the highest expression rates. Expression could be further increased by addition of the tyrosine kinase inhibitor genistein. Using the rAAV-2-based suicide system, a nearly complete eradication of transduced and GCV-treated mesothelioma cells was observed. rAAV-2-based suicide gene therapy may be a new approach for locoregional treatment of mesothelioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号