首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In Alzheimer's disease (AD) brains increased NO synthase (NOS) expression is found in reactive astrocytes surrounding amyloid plaques. We have recently shown that treatment with beta-amyloid peptides or IL-1beta down-regulates NO-sensitive soluble guanylyl cyclase (sGC) in cultured astrocytes and in adult rat brain. In this work, we have examined sGC activity and expression in postmortem brain tissue of AD patients and matched controls. No significant alteration was observed in basal or NO-stimulated sGC activity, nor in sGC beta1 and alpha1 subunit levels in cortical extracts of AD brains. Immunohistochemistry showed intense and widespread labeling of sGC beta1 in cortical and hippocampal neurons and white matter fibrillar astrocytes, while grey matter astrocytes were faintly stained. In AD, expression of sGC in neurons and fibrillar astrocytes is not altered but is markedly reduced in reactive astrocytes surrounding amyloid plaques. Immunostaining for sGC beta1 was also lacking in reactive astrocytes in cortex and subcortical white matter in Creutzfeldt-Jakob disease brains and in subacute and chronic plaques in multiple sclerosis (MS) brains. Thus, induction of astrocyte reactivity is associated with decreased capacity to generate cGMP in response to NO both in vitro and in vivo. This effect may be related to the development of the astroglial inflammatory response.  相似文献   

2.
Neuropil threads (NTs) are abnornal processes that are associated with tangle-bearing neurons in gray matter areas of Alzheimer disease (AD) brains. Although NTs contain paired helical filaments (PHFs) and share multiple tau epitopes with neurobrillary tangles (NFTs), the relationship between NTs and tangle-bearing neurons is unclear. For this reason, we assessed the continuity of NTs with tangle-bearing and tangle-free neurons. Since astrocytes express low levels of tau and rarely have been shown to contain PHFs, we also examined the relationship of NTs to cortical astrocytes. This was done using histochemical and immunochemical methods in conjunction with confocal laser scanning microscopy to examine NTs in amygdala and entorhinal cortex of seven AD brains. Only a small fraction of NTs (<1%) in 3.5×106 μm3 of amygdala and entorhinal cortex could betraced to local neurons with NFTs or to neurons that did not contain NFTs, and no NTs were continuous with cortical astrocytes. These results indicate that only a very small percentage of NTs in entorhinal cortex and amygdala occur in the most proximal segments of processes that emanate from tangle-bearing or tangle-free neurons. This implies that the majority of NTs reside in the distal parts of dendrites and/or the terminal arborizations of axons or that NTs are discontinuous abnormalities. Taken together, these data suggest that NTs could disrupt local and long distance neuronal circuitry and thereby contribute to the cognitive impairments seen in AD patients.  相似文献   

3.
Assimilated evidence indicates that the neurotoxic potential of amyloid beta (Abeta) peptide and an alteration in the level of growth factor(s) may possibly be involved in the loss of neurons observed in the brain of patients suffering from Alzheimer disease (AD), the prevalent cause of dementia in the elderly. In the present study, using receptor binding assays and immunocytochemistry, we evaluated the pharmacological profile of insulin-like growth factor-I (IGF-I) receptors and the distribution of IGF-I immunoreactivity in the frontal cortex, hippocampus, and cerebellum of AD and age-matched control brains. In control brains, [(125)I]IGF-I binding was inhibited more potently by IGF-I than by Des(1-3)IGF-I, IGF-II or insulin. The IC(50) values for IGF-I in the frontal cortex, hippocampus, and cerebellum of the normal brain did not differ significantly from the corresponding regions of the AD brain. Additionally, neither K(D) nor B(max) values were found to differ in the hippocampus of AD brains from the controls. At the regional levels, [(125)I]IGF-I binding sites in the AD brain also remained unaltered compared to the controls. As for the peptide itself, IGF-I immunoreactivity, in normal control brains, was evident primarily in a subpopulation of astrocytes in the frontal cortex and hippocampus, and in certain Purkinje cells of the cerebellum. In AD brains, a subset of Abeta-containing neuritic plaques, apart from astrocytes, exhibit IGF-I immunoreactivity. These results, taken together, suggest a role for IGF-I in compensatory plasticity and/or survival of the susceptible neurons in AD brains.  相似文献   

4.
Activation of protease-activated receptors (PARs) is known to exert neuroprotection when low concentrations of the agonist protease thrombin are applied. However, the mechanism of protection is still unclear. Here, we showed that activation of multiple PARs, including PAR-1, PAR-2 and PAR-4, was able to elevate the release of the chemokine cytokine-induced neutrophil chemoattractant (CINC)-3 from rat astrocytes, in addition to evoking CINC-1 secretion. Different molecular mechanisms were identified as being involved in the secretion of CINC-1 and CINC-3, upon activation of different PARs. Importantly, we found that both CINC-1 and CINC-3 could signal to rat cortical neurons. Both chemokines acted via CXCR2 to prevent C2-ceramide-induced cytochrome c release from mitochondria. Consequently CINC-1 and CINC-3 protected neurons from apoptosis. We further revealed that conditioned media obtained from PAR-activated astrocytes similarly protected cortical neurons against C2-ceramide-induced cell death. The neuroprotection was considerably suppressed by a CXCR2 antagonist. CXCR2 is the cognate receptor for CINC. Therefore, our findings demonstrate that PAR-activated astrocytes are able to protect neurons against neurodegeneration and cell death via regulation of the secretion of chemokines CINC-1 and CINC-3. These data indicate a previously unknown mechanism for astrocyte-mediated neuroprotection achieved by PAR activation.  相似文献   

5.
The pathological hallmarks of secondary progressive (SP) multiple sclerosis (MS) include slowly expanding demyelination and axonal damage with less inflammation. To elucidate the pathomechanisms of secondary progressive (SP) multiple sclerosis (MS), we have investigated the expression of chemokines, chemokine receptors, matrix metalloproteinase-9 (MMP-9) and immunoglobulins in the demyelinating plaques. Immunohistochemical analysis revealed that numerous hypertrophic astrocytes were observed at the rim, but not in the center, of the chronic active lesions. Microglia/macrophages phagocytosing myelin debris were also found at the lesion border. In contrast, T cell infiltration was minimal in these plaques. Characteristically, at the rim of the lesions, there were abundant immunoreactivities for monocyte chemoattractant protein-1 (MCP-1)/CCL2 and interferon-γ inducible protein-10 (IP-10)/CXCL10 and their receptors, CCR2 and CXCR3, while these immunoreactivities were weak in the center, thus forming a chemokine gradient. Double immunofluorescense staining demonstrated that cellular sources of MCP-1/CCL2 and IP-10/CXCL10 were hypertrophic astrocytes and that both astrocytes and microglia/macrophages expressed CCR2 and CXCR3. MMP-9 was also present at the rim of the lesions. These results suggest that MCP-1/CCL2 and IP-10/CXCL10 produced by astrocytes may activate astrocytes in an autocrine or paracrine manner and direct reactive gliosis followed by migration and activation of microglia/macrophages as effector cells in demyelinating lesions. Targeting chemokines in SPMS may therefore be a powerful therapeutic approach to inhibit lesional expansion.  相似文献   

6.
Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to be involved in the pathophysiological processes of Alzheimer’s disease (AD). AGEs induce the expression of various pro-inflammatory cytokines and the inducible nitric oxide synthase (iNOS) leading to a state of oxidative stress. AGE modification and resulting crosslinking of protein deposits such as amyloid plaques may contribute to the oxidative stress occurring in AD. The aim of this study was to immunohistochemically compare the localization of AGEs and β-amyloid (Aβ) with iNOS in the temporal cortex (Area 22) of normal and AD brains. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localization of AGE and iNOS in the upper neuronal layers, compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localized with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localized with AGE and iNOS as well as AGE and were found surrounding mature but not diffuse amyloid plaques in the AD brain. Our results show that AGE-positive astrocytes and microglia in the AD brain express iNOS and support the evidence of an AGE-induced oxidative stress occurring in the vicinity of the characteristic lesions of AD. Hence activation of microglia and astrocytes by AGEs with subsequent oxidative stress and cytokine release may be an important progression factor in AD.  相似文献   

7.
In order to clarify the distribution and pathological changes of the amyloid beta protein precursor (betaAPP), 10 Alzheimer's disease (AD) brains and seven normal control brains were examined by immunocytochemistry and in situ hybridization histochemistry. All betaAPP isoforms were distributed evenly in neuronal cell bodies and their axons and dendrites. The betaAPP-positive neuronal processes showed mesh-like networks. In AD brains, betaAPP-positive neurons and mesh-like networks were generally decreased in spite of some intensely labeled neurons. All betaAPP isoforms accumulated in neuronal processes, dystrophic neurites and senile plaques. In situ hybridization histochemistry confirmed that all isoforms of betaAPP were expressed in neurons in control brains. In AD brains, the betaAPP mRNA signal was generally decreased besides some intense signal neurons corresponding to immunostaining findings. Few astrocytes expressed betaAPP. Thus, uniform expression and distribution of betaAPP were disturbed in AD brains showing uneven decreases or increases of neuronal betaAPP expression in individual neurons and betaAPP accumulation in neurons, neuronal processes and abnormal structures including dystrophic neurites, senile plaques and neurofibrillary tangles.  相似文献   

8.
Inflammation has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative diseases. We have examined the potential role of some chemokine/chemokine receptors in this process. It is known that CXCR2 is a strongly expressed chemokine receptor on neurons and is strongly upregulated in AD in a subpopulation of neuritic plaques. Here, we show that one of the CXCR2 ligand GROalpha/KC can be a potent trigger for the ERK1/2 and PI-3 kinase pathways, as well as tau hyperphosphorylation in the mouse primary cortical neurons. GROalpha immunoreactivity can be detected in a subpopulation of neurons in normal and AD. Therefore, the CXCR2-ligand pair may have a potent pathophysiological role in neurodegenerative diseases.  相似文献   

9.
The relationships between astrocytic apoptosis and both senile plaques and neurofibrillary tangles (NFT) in gray matter lesions were examined quantitatively in Alzheimer's disease (AD) brains. Seven cortical regions were examined in seven AD brains by terminal dUTP nick end-labeling and immunolabeling with antibodies to glial fibrillary acidic protein, phosphorylated tau protein (AT180), apoptosis-related proteins (caspase-3, bcl-2, and CD95), and beta amyloid protein. Senile plaques showed the lowest density in the cornu ammonis. The density of apoptotic astrocytes was significantly correlated with the density of uncored and cored senile plaques. Neuronal caspase-3 and CD95 expression levels were too low to allow statistical assessment, but Bcl-2 was expressed strongly in the astrocytes and neurons with and without NFT. The correlation of the density of apoptotic astrocytes with apoptotic neurons and NFT was not statistically significant. The density of Bcl2-positive neurons correlated significantly with those of NFT and cored senile plaques, but Bcl2-positive astrocyte density showed no correlation with density of senile plaques or apoptotic astrocytes. These observations suggest that senile plaques may be a cause of astrocytic apoptosis in the gray matter, and that Bcl-2 protein is associated with NFT formation.  相似文献   

10.
The recruitment of leucocytes to sites of inflammation is an important feature of multiple sclerosis (MS) pathology. Chemokines are involved in the activation and specific directional migration of monocytes and T-lymphocytes to sites of inflammation. Using immunocytochemistry, the expression of the alpha-chemokines, interferon (IFN)-gamma-inducible protein-10 (IP-10) and monokine induced by IFN-gamma (Mig), and their receptor CXCR3 have been examined in post-mortem central nervous system (CNS) tissue from MS cases at different stages of lesion development. In actively demyelinating lesions both IP-10 and Mig protein were predominantly expressed by macrophages within the plaque and by reactive astrocytes in the surrounding parenchyma. CXCR3 was expressed by T cells and by astrocytes within the plaque. Interferon-gamma may stimulate glial cells to express IP-10 and Mig, which continue the local inflammatory response by selectively recruiting activated T-lymphocytes into the CNS.  相似文献   

11.
beta-Amyloid(1-42) (A beta 42), a major component of amyloid plaques, accumulates within pyramidal neurons in the brains of individuals with Alzheimer's disease (AD) and Down syndrome. In brain areas exhibiting AD pathology, A beta 42-immunopositive material is observed in astrocytes. In the present study, single- and double-label immunohistochemistry were used to reveal the origin and fate of this material in astrocytes. Our findings suggest that astrocytes throughout the entorhinal cortex of AD patients gradually accumulate A beta 42-positive material and that the amount of this material correlates positively with the extent of local AD pathology. A beta 42-positive material within astrocytes appears to be of neuronal origin, most likely accumulated via phagocytosis of local degenerated dendrites and synapses, especially in the cortical molecular layer. The co-localization of neuron-specific proteins, alpha 7 nicotinic acetylcholine receptor and choline acetyltransferase, in A beta 42-burdened, activated astrocytes supports this possibility. Our results also suggest that some astrocytes containing A beta 42-positive deposits undergo lysis, resulting in the formation of astrocyte-derived amyloid plaques in the cortical molecular layer in brain regions showing moderate to advanced AD pathology. These astrocytic plaques can be distinguished from those arising from neuronal lysis by virtue of their smaller size, their nearly exclusive localization in the subpial portion of the molecular layer of the cerebrocortex, and by their intense glial fibrillary acidic protein immunoreactivity. Overall, A beta 42 accumulation and the selective lysis of A beta 42-burdened neurons and astrocytes appear to make a major contribution to the observed amyloid plaques in AD brains.  相似文献   

12.
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and the fourth leading cause of death in the United States. Its pathological changes include amyloid beta deposits, neurofibrillary tangles and a variety of 'inflammatory' phenomenon such as activation of microglia and astrocytes. The pathological significance of inflammatory responses elicited by resident central nervous system (CNS) cells has drawn considerable attention in recent years. Chemokines belongs to a rapidly expanding family of cytokines, the primary function of which is control of the correct positioning of cells in tissues and recruitment of leukocytes to the site of inflammation. Study of this very important class of inflammatory cytokines may greatly help our understanding of inflammation in the progress of AD, as well as other neurodegenerative diseases. So far, immunoreactivity for a number of chemokines (including IL-8, IP-10, MIP-1beta, MIPalpha and MCP-1) and chemokine receptors (including CXCR2, CXCR3, CXCR4, CCR3, CCR5 and Duffy antigen) have been demonstrated in resident cells of the CNS, and upregulation of some of the chemokines and receptors are found associated with AD pathological changes. In this review, we summarize findings regarding the expression of chemokines and their receptors by CNS cells under physiological and pathological conditions. Although little is known about the potential pathophysiological roles of chemokines in CNS, we have put forward hypotheses on how chemokines may be involved in AD.  相似文献   

13.
The enzyme argininosuccinate synthetase (ASS) is the rate limiting enzyme in the metabolic pathway leading from L-citrulline to L-arginine, the physiological substrate of all isoforms of nitric oxide synthases (NOS). ASS and inducible NOS (iNOS) expression in neurons and glia was investigated by immunohistochemistry in brains of Alzheimer disease (AD) patients and nondemented, age-matched controls. In 3 areas examined (hippocampus, frontal, and entorhinal cortex), a marked increase in neuronal ASS and iNOS expression was observed in AD brains. GFAP-positive astrocytes expressing ASS were not increased in AD brains versus controls, whereas the number of iNOS expressing GFAP-positive astrocytes was significantly higher in AD brains. Density measurements revealed that ASS expression levels were significantly higher in glial cells of AD brains. Colocalization of ASS and iNOS immunoreactivity was detectable in neurons and glia. Occasionally, both ASS-and iNOS expression was detectable in CD 68-positive activated microglia cells in close proximity to senile plaques. These results suggest that neurons and astrocytes express ASS in human brain constitutively, whereas neuronal and glial ASS expression increases parallel to iNOS expression in AD. Because an adequate supply of L-arginine is indispensable for prolonged NO generation, coinduction of ASS enables cells to sustain NO generation during AD by replenishing necessary supply of L-arginine.  相似文献   

14.
He XY  Wegiel J  Yang SY 《Brain research》2005,1040(1-2):29-35
Allopregnanolone is a positive allosteric modulator of GABAA receptors, generated by the reduction of 5alpha-dihydroprogesterone (5alpha-DHP) in astrocytes. This neuroactive steroid can be inactivated by its 3alpha-oxidation to yield 5alpha-DHP. It was found that 5alpha-DHP levels in HEK293 cells expressing type 10 17beta-hydroxysteroid dehydrogenase (17beta-HSD10), but not its catalytic inactive mutant, increased significantly as allopregnanolone was added to culture media. The results demonstrate that mitochondrial 17beta-HSD10 effectively catalyzes the intracellular oxidation of allopregnanolone. Moreover, brain astrocytes contain a moderate level of 17beta-HSD10, which is elevated in activated astrocytes of brains with Alzheimer type pathology, including sporadic Alzheimer's disease (AD) and Down's syndrome with AD. The distribution of 17beta-HSD10 was found not to parallel that of 3alpha-HSD3. Cerebral cortex has the lowest level of 17beta-HSD10; whereas the hippocampus, hypothalamus, and amygdala possess relatively higher levels of this enzyme. The catalysis of 17beta-HSD10 appears to be essential for maintaining normal functions of GABAergic neurons. The elevated level of 17beta-HSD10 in activated astrocytes is a new feature found in brains of people with AD, and it may have important impact on AD pathogenesis.  相似文献   

15.
Heme oxygenase-1 is a cellular stress protein expressed in brain and other tissue in response to oxidative challenge and other noxious stimuli. Using immunohistochemistry and immunofluorescent labeling in conjunction with laser scanning confocal microscopy, we observed intense immunoreactivity of heme oxygenase-1 in neurons of the hippocampus and temporal cortex of Alzheimer-diseased (AD) brain relative to age-matched control specimens. Furthermore, we demonstrated consistent colocalization of heme oxygenase-1 to glial fibrillary acidic protein–positive astrocytes, neurofibrillary tangles, and senile plaques in the AD specimens. In AD hippocampus, approximately 86% of glial fibrillary acidic protein–positive astrocytes expressed heme oxygenase-1, whereas only 6.8% of hippocampal astrocytes in normal senescent control specimens were immunopositive for heme oxygenase-1 (p < 0.0001). In regions other than the hippocampus and neocortex, such as the substantia nigra, the proportion of astrocytes expressing heme oxygenase-1 in the experimental group (12.8%) was not significantly different from that in the controls (6.4%, p > 0.05). Robust 32-kd bands corresponding to heme oxygenase-1 were observed by Western blotting of protein extracts derived from AD temporal cortex and hippocampus after sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Heme oxygenase-1 bands were very faint or absent in protein extracts prepared from control specimens. These results indicate that heme oxygenase-1 is significantly overexpressed in neurons and astrocytes of AD hippocampus and cerebral cortex relative to control brains. Upregulation of heme oxygenase-1 in AD brain supports the contention that the affected tissues are experiencing chronic oxidative stress. In addition, the excessive generation of carbon monoxide, a metabolite of heme degradation, may participate in the pathogenesis of AD.  相似文献   

16.
We found that mRNA of MET, the receptor of hepatocyte growth factor (HGF), is significantly decreased in the hippocampus of Alzheimer's disease (AD) patients. Therefore, we tried to determine the cellular component‐dependent changes of MET expressions. In this study, we examined cellular distribution of MET in the cerebral neocortices and hippocampi of 12 AD and 11 normal controls without brain diseases. In normal brains, MET immunoreactivity was observed in the neuronal perikarya and a subpopulation of astrocytes mainly in the subpial layer and white matter. In AD brains, we found marked decline of MET in hippocampal pyramidal neurons and granule cells of dentate gyrus. The decline was more obvious in the pyramidal neurons of the hippocampi than that in the neocortical neurons. In addition, we found strong MET immunostaining in reactive astrocytes, including those near senile plaques. Given the neurotrophic effects of the HGF/MET pathway, this decline may adversely affect neuronal survival in AD cases. Because it has been reported that HGF is also up‐regulated around senile plaques, β‐amyloid deposition might be associated with astrocytosis through the HGF signaling pathway.  相似文献   

17.
BackgroundThe proinflammatory prostaglandin E2 (PGE2) fluctuates over time in the cerebrospinal fluid of patients with Alzheimer’s disease (AD), but the cerebral distribution and expression patterns of microsomal prostaglandin-E synthase (mPGES)–1 have not been compared with those of normal human brains.MethodsMiddle frontal gyrus tissue from AD and age-matched control brains was analyzed by Western blot, immunofluorescence, and immunohistochemistry with mPGES-1–specific antibodies.ResultsWestern blotting revealed that mPGES-1 expression was significantly elevated in AD tissue. Furthermore, immunofluorescence of mPGES-1 was observed in neurons, microglia, and endothelial cells of control and AD tissue. Although mPGES-1 was consistently present in astrocytes of control tissue, it was present in only some astrocytes of AD tissue. Immunohistochemical staining suggested that mPGES-1 was elevated in pyramidal neurons of AD tissue when compared with controls.ConclusionsThe results suggest that mPGES-1 is normally expressed constitutively in human neurons, microglia, astrocytes, and endothelial cells but is up-regulated in AD.  相似文献   

18.
The cellular distribution of malondialdehyde (MDA) was assessed immunohistochemically in brain specimens from young and normal elderly subjects as well as patients with Alzheimer's disease (AD). MDA was increased in the cytoplasm of neurons and astrocytes in both normal aging and AD, but was rarely detected in normal young subjects. By electron microscopic immunohistochemistry, neuronal MDA formed cap-like linear deposits associated with lipofuscin, while glial MDA deposits surrounded the vacuoles in a linear distribution. In the hippocampus, neuronal and glial MDA deposition was marked in the CA4 region but mild in CA1. By examination of serial sections stained with anti-MDA and antibodies against an advanced glycation end product, N(epsilon)-(carboxymethyl)lysine (CML), neuronal and glial MDA deposition was colocalized with CML in AD, but only neuronal MDA was colocalized with CML in normal aged brains. Glial MDA, although abundant in the aged brain, typically was not colocalized with CML. In AD cases, MDA was colocalized with tau protein in CA2 hippocampal neurons; such colocalization was rare in CA1. MDA also was stained in cores of senile plaques. Thus, while both MDA and CML accumulate under oxidative stress, CML accumulation is largely limited to neurons, in normal aging, while MDA also accumulates in glia. In AD, both MDA and CML are deposited in both astrocytes and neurons.  相似文献   

19.
14-3-3 proteins have been reported to be detected specifically in the cerebrospinal fluid (CSF) from patients with Creutzfeldt-Jakob disease (CJD). To elucidate the role of 14-3-3 proteins in patients with CJD, we performed immunohistochemical studies on 14-3-3 proteins in autopsied brains from five patients with sporadic CJD (sCJD), three patients with Alzheimers disease (AD), and seven normal control subjects. Formalin-fixed, paraffin-embedded sections from all cases were immunostained with several types of specific anti-14-3-3 antibodies. In the normal control brains, 14-3-3 immunoreactivity was localized mainly in the neuronal somata and processes; in contrast, glial cells showed no or faint immunoreactivity. In the brains from the patients with AD, 14-3-3 immunoreactivity was observed in the surviving neurons as well as some neurofibrillary tangles. In the brains from the patients with sCJD, 14-3-3 immunoreactivity was well preserved in the remaining neurons. Furthermore, the glial cells, especially the reactive astrocytes, were intensely immunostained in the brains affected by sCJD. Our findings suggest that 14-3-3 proteins may be up-regulated in the glial cells, particularly in reactive astrocytes, and that the enhanced expression of 14-3-3 proteins in these glial elements may be associated with the pathogenesis of sCJD.  相似文献   

20.
The intracellular localization of glutamine synthetase (GS) in the inferior temporal cortices of non-demented elderly individuals was compared with that in brains affected by Alzheimer's disease (AD). The present study confirmed previous reports of a general decrease in GS expression in astrocytes and the expression of GS in some neurons. Several new observations were made: the morphology of astrocytes is generally unaffected by the presence of plaques, GS labeling is present in some diffuse plaques and occasional neuritic plaques, whereas the overall density of astrocytes increases 1.4-fold in AD. In addition, the present study found that the reduction in GS expression is almost entirely due to a loss of GS from perisynaptic regions of the neuropil and from the astrocytic endfeet that normally abut cortical blood vessels. These changes implicate astrocytes in glutamate excitotoxicity and ammonia neurotoxicity. It is suggested that it may be more fruitful to regard AD not as a neuronal disease, but as a disorder of astrocyte-neuron interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号