首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene therapy aims to complement or, ideally, correct defective genes. The broad clinical application of this emerging technology requires the development of safe high-capacity gene delivery vehicles that combine efficient transduction of dividing as well as quiescent cells with sustained transgene expression. Here we present a new hybrid vector system that unites favorable attributes of adenoassociated virus (AAV) and adenovirus (Ad) vectors in a single particle. This was achieved by inclusion of Ad packaging elements in different sized recombinant AAV genomes. In the presence of AAV replicative functions and a recombinant helper Ad, AAV/Ad hybrid particles were generated via encapsidation of AAV-dependent replicative intermediates into Ad capsids. In stringent in vitro models based on transduction of proliferating cells we show that AAV/Ad hybrid vectors are superior to Ad vectors in establishing prolonged transgene expression and can be used to deliver DNA fragments of at least 27 kb.  相似文献   

2.
Adenovirus-based cancer gene therapy   总被引:11,自引:0,他引:11  
Over the past decade, adenovirus (Ad)-based vectors have been used extensively in the context of cancer gene therapy. Two basic strategies have been pursued for the use of Ad vectors in cancer gene therapy: 1) approaches aimed at direct tumor cell killing through delivery of replicating oncolytic viruses or non-replicating vectors encoding tumor suppressor genes, suicide genes or anti-angiogenic genes, and 2) immunotherapeutic approaches aimed at inducing host anti-tumor immune responses that can destroy tumor cells at both primary and metastatic locations. Both strategies offer the potential of selective tumor cell destruction without damage to normal tissues. Extensive pre-clinical and clinical studies have been conducted based on these strategies. Encouraging results have been obtained but robust clinical efficacy remains elusive. Several obstacles limiting the therapeutic activity of Ad vectors have been encountered, including efficiency of tumor cell transduction and inhibition of efficacy by anti-Ad host immune responses. However, expanding knowledge in the areas of Ad biology and tumor biology continues to lead to increasingly sophisticated approaches to address these issues. A review of various Ad-based cancer gene therapy approaches and recent progress in the area are presented herein.  相似文献   

3.
Viruses that kill the host cell during their replication cycle have attracted much interest for the specific killing of tumor cells and this oncolytic virotherapy is being evaluated in clinical trials. The rationale for using replicative oncolytic viruses is that viral replication in infected tumor cells will permit in situ viral multiplication and spread of viral infection throughout the tumor mass thus overcoming the delivery problems of gene therapy. Improved understanding of the life cycle of viruses has evidenced multiple interactions between viral and cellular gene products, which have evolved to maximize the ability of viruses to infect and multiply within cells. Differences in viral-cell interactions between normal and tumor cells have emerged that have led to the design of a number of genetically engineered viral vectors that selectively kill tumor cells while sparing normal cells. These viruses have undergone further modifications to carry adjunct therapy genes to increase their anti-cancer abilities. Since these viruses kill cells by oncolytic mechanisms differing from standard anticancer therapies, there is an opportunity that synergistic interactions with other therapies might be found with the use of combination therapy. In this review, we focus on the oncolytic Herpes Simplex Virus-1 (HSV-1) vectors that have been examined in preclinical and clinical cancer models and their use in combination with chemo-, radio-, and gene therapies.  相似文献   

4.
Lee CL  Dang J  Joo KI  Wang P 《Virus research》2011,160(1-2):340-350
Lentiviral vectors (LVs) derived from human immunodeficiency virus type 1 (HIV-1) are promising vehicles for gene delivery because they not only efficiently transduce both dividing and non-dividing cells, but also maintain long-term transgene expression. Development of an LV system capable of transducing cells in a cell type-specific manner can be beneficial for certain applications that rely on targeted gene delivery. Previously it was shown that an inverse fusion strategy that incorporated an HIV-1 receptor (CD4) and its co-receptor (CXCR4 or CCR5) onto vector surfaces could confer to LVs the ability to selectively deliver genes to HIV-1 envelope-expressing cells. To build upon this work, we aim to improve its relatively low transduction efficiency and circumvent its inability to target multiple tropisms of HIV-1 by a single vector. We investigated a method to create LVs co-enveloped with the HIV-1 cellular receptor CD4 and a fusogenic protein derived from the Sindbis virus glycoprotein and tested its efficiency to selectively deliver genes into cells expressing HIV-1 envelope proteins. The engineered LV system yields a higher level of transduction efficiency and a broader tropism towards cells displaying the HIV-1 envelope protein (Env) than the previously developed system. Furthermore, we demonstrated in vitro that this engineered LV can preferentially deliver suicide gene therapy to HIV-1 envelope-expressing cells. We conclude that it is potentially feasible to target LVs towards HIV-1-infected cells by functional co-incorporation of the CD4 and fusogenic proteins, and provide preliminary evidence for further investigation on a potential alternative treatment for eradicating HIV-1-infected cells that produce drug-resistant viruses after highly active antiretroviral therapy (HAART).  相似文献   

5.
6.
Inhibition of Viruses by RNA Interference   总被引:10,自引:0,他引:10  
Stram Y  Kuzntzova L 《Virus genes》2006,32(3):299-306
RNA-mediated interference (RNAi) is a recently discovered process by which dsRNA is able to silence specific gene functions. Although initially described in plants, nematodes and Drosophila, the process is currently considered to be an evolutionarily conserved process that is present in the entire eukaryotic kingdom in which its original function was as a defense mechanism against viruses and foreign nucleic acids. Similarly to the silencing of genes by RNAi, viral functions can be also silenced by the same mechanism, through the introduction of specific dsRNA molecules into cells, where they are targeted to essential genes or directly to the viral genome in case RNA viruses, thus arresting viral replication. Since the pioneering work of Elbashir and coworkers, who identified RNAi activity in mammalian cells, many publications have described the inhibition of viruses belonging to most if not all viral families, by targeting and silencing diverse viral genes as well as cell genes that are essential for virus replication. Moreover, virus expression vectors were developed and used as vehicles with which to deliver siRNAs into cells. This review will describe the use of RNAi to inhibit virus replication directly, as well as through the silencing of the appropriate cell functions.  相似文献   

7.
Virus-mediated oncolysis is a rapidly growing field with the potential to dramatically alter the future of cancer therapy. Replication-selective viruses are superior to non-replicating vectors in several aspects, such as the amplification of the initial low-dose viral inoculum up to 10(3)-10(3)-fold, lateralization into neighboring cells, introduction of novel cell killing mechanisms, and a potential for a safe profile. However, due to their capacity to replicate, the importance of tumor selectivity is further underscored. Of the replication-selective viruses, adenoviruses (Ad) possess several attributes that appear essential for targeting and eliminating tumor cells. These include susceptibility to genomic modifications, convergence with cellular pathways implicated in carcinogenesis, and a high oncolytic capacity. A primary tumor targeting strategy of oncolytic Ad is based on re-engineering the viral genome viruses to construct conditionally replicative adenoviruses (CRAds). In this regard, modification of CRAd genome is traditionally designated as type I or type II. Type I CRAds are based on mutation or deletion of early Ad genes. Type II CRAds are based on the placement of essential early Ad genes under tissue/tumor-specific regulatory elements in a heterologous context. Thus, both strategies confer varying degrees of tumor-specific replication. Recent data, however, indicate that type III CRAds, embodying the paradigms of both type I and II, offer better replication selectivity for tumor cells while maintaining efficient oncolysis. These characteristics of CRAds yield therapeutic indices unprecedented heretofore in cancer therapy. However, other biological aspects of CRAds should also be addressed before these agents prove as first-line antitumor agents. When these issues are resolved, novel tumor cell killing potential of CRAds may truly be realized and dramatically alter future cancer therapy.  相似文献   

8.
Kim E  Oh JS  Ahn IS  Park KI  Jang JH 《Biomaterials》2011,32(33):8654-8662
Gene therapy technology is a powerful tool to elucidate the molecular cues that precisely regulate stem cell fates, but developing safe vehicles or mechanisms that are capable of delivering genes to stem cells with high efficiency remains a challenge. In this study, we developed a magnetically guided adeno-associated virus (AAV) delivery system for gene delivery to human neural stem cells (hNSCs). Magnetically guided AAV delivery resulted in rapid accumulation of vectors on target cells followed by forced penetration of the vectors across the plasma membrane, ultimately leading to fast and efficient cellular transduction. To combine AAV vectors with the magnetically guided delivery, AAV was genetically modified to display hexa-histidine (6xHis) on the physically exposed loop of the AAV2 capsid (6xHis AAV), which interacted with nickel ions chelated on NTA-biotin conjugated to streptavidin-coated superparamagnetic iron oxide nanoparticles (NiStNPs). NiStNP-mediated 6xHis AAV delivery under magnetic fields led to significantly enhanced cellular transduction in a non-permissive cell type (i.e., hNSCs). In addition, this delivery method reduced the viral exposure times required to induce a high level of transduction by as much as to 2-10 min of hNSC infection, thus demonstrating the great potential of magnetically guided AAV delivery for numerous gene therapy and stem cell applications.  相似文献   

9.
The use of adenovirus type 35 (Ad35) as a vector in vaccine and gene therapy studies is promising due to its broad cell tropism and low seroprevalence in humans. However, to date, a simple and effective system for producing recombinant Ad35 (rAd35) has not been well developed. This report describes a two-plasmid Ad35-Easy system to facilitate the production of recombinant Ad35 (rAd35). The system employed the pAd35-shuttle vector for foreign gene transfer and the pAd35-backbone vector to provide the Ad35 genomic backbone. A 293-Ad35E1B cell line was used to trans-complement rAd35 replication. rAd35 plasmids were obtained through homologous recombination following co-transformation of E. coli BJ5183 cells with recombinant pAd35-shuttle vectors harboring foreign genes. rAd35 viruses were obtained directly by transfecting 293-Ad35E1B cells with foreign gene-containing rAd35 plasmids and the pAd35-backbone vector. The production of E1 deficient rAd35 was evaluated by transfecting the 293-Ad35E1B cells with the rAd35 plasmid containing the enhanced green fluorescent protein (EGFP) gene. The virus grew effectively at a yield comparable to that of wild type Ad35 in HEp2 cells, indicating that the Ad35-Easy system is an efficient method for rapid production of rAd35 in sufficient quantities for vaccine development or gene therapy.  相似文献   

10.
Emerging adenoviral vectors for stable correction of genetic disorders   总被引:1,自引:0,他引:1  
Recent drawbacks in treating patients with severe combined immunodeficiency disorders with retroviral vectors underline the importance of generating novel tools for stable transduction of mammalian cells. Substantial progress has been made over the recent years which may offer important steps towards stable and more importantly safer correction of genetic diseases. This article discusses recent advances for stable transduction of target cells based on adenoviral gene transfer. There is accumulating evidence that recombinant adenoviral vectors (AdVs) based on various human serotypes with a broad cellular tropism and adenoviruses (Ads) from different species will play an important role in future gene therapy applications. In combination with recombinant AdVs for somatic integration these gene transfer vectors offer high transduction efficiencies with potentially safer integration patterns. Other approaches for persistent transgene expression include excision of stable episomes from the adenoviral vector genome, but also long-term persistence of the complete adenoviral vector genome as an episomal DNA molecule was demonstrated and exemplified by the treatment of various genetic diseases in small and large animal models. This review displays advantages but also limitations of these Ad based vector systems. This is the perfect time to pursue such approaches because alternative strategies for stable transduction of mammalian cells undergoing many cell divisions are urgently needed. Looking into the future, we believe that a combination of different components from different viral vectors in concert with non-viral vector systems will be successful in designing significantly optimized transfer vehicles for a broad range of different genetic diseases.  相似文献   

11.
Adenovirus vectors composed of subgroup B adenoviruses   总被引:1,自引:0,他引:1  
Recombinant adenovirus (Ad) vectors have gained attention as gene delivery vehicles because they efficiently introduce foreign DNA into host cells, can be produced in high titers, and are able to transduce terminally differentiated cells. Conventional Ad vectors commonly used in the world, including clinical trials, are derived from subgroup C Ad serotype 5 (Ad5). Although Ad5 vector-mediated transduction provides encouraging results, preclinical and clinical applications have revealed several disadvantages of Ad5 vectors, such as high seroprevalence of anti-Ad5 antibodies in adults and low transduction efficiencies of Ad5 vectors in cells lacking the primary receptor for Ad5, the coxsackievirus and adenovirus receptor (CAR). To overcome these problems, novel recombinant Ad vectors, which are derived entirely from subgroup B Ads, including Ad serotypes 3, 7, 11, and 35, have been developed. These subgroup B Ad vectors can infect cells via human CD46 (membrane complement protein), which is ubiquitously expressed in almost all human cells, and/or via unidentified receptors other than CAR, leading to efficient transduction of subgroup B Ad vectors in most human cells, including CAR-negative cells. In addition, transduction efficiencies of subgroup B Ad vectors do not decrease in the presence of anti-Ad5 antibodies, and seroprevalences of most subgroup B Ads are lower than that of Ad5, indicating that transduction with subgroup B Ad vectors is unlikely to be hampered by preexisting anti-Ad antibodies. In this paper, we review the advances in subgroup B Ad vector research.  相似文献   

12.
Gene therapy is an interesting approach for the correction of defective genes, the treatment of cancer and the introduction of immunomodulatory genes. Various techniques for gene transfer into cells or tissues have been developed within the last decade; these can be divided generally into viral and nonviral gene transfer systems. Nonviral techniques include the liposome- or gene gun-mediated introduction of therapeutic genes; however, the efficiency of gene transfer by these applications is still very low. In contrast, viruses have optimised their strategies for efficient infection of virtually any cell type in a mammalian organism. The genetic modification of genomes from different virus families (Adenoviridae, Retroviridae, Herpesviridae) led to the development of gene therapy vectors with a similar capacity to infect cells or tissues as that of wild type viruses. In contrast to wild type viruses, gene therapy vectors are engineered to transfer therapeutic genes into the target cells or tissues. In addition, they have lost their capacity for replication in target cells, because of the removal of essential genes, which allows replication only in specialised packaging cell lines engineered for the production of recombinant viruses. Despite considerable progress over the past decade in the generation of gene transfer systems with reduced immunogenic properties, the remaining immunogenicity of many gene therapy vectors is still the major hurdle, preventing their frequent application in clinical trials. Recombinant adenoviruses have been shown to be promising vectors for gene therapy, since they are able to transduce both quiescent and proliferating cells very efficiently. However, a major disadvantage of adenoviral vectors lies in the activation of both the innate and adaptive parts of the recipient's immune system when applied in vivo. The inflammatory responses induced by adenovirus particles can be very strong and can be fatal in patients treated with these adenoviral constructs. Therefore, many experiments have been performed in the effort to prevent these inflammatory responses mediated by adenoviral particles. The depletion of cell populations responsible for these inflammatory responses as well as the application of immunosuppressive drugs have been investigated. Moreover, the generation of less immunogenic adenoviral vectors by further genetic modification within the adenoviral genome has led to vectors with reduced immunogenic properties. Both strategies to reduce inflammatory responses against adenoviral particles are discussed in this review.  相似文献   

13.
While 51 human adenoviral serotypes have been identified to date, the vast majority of adenoviral vectors designed for gene transfer have been generated in the adenovirus serotype 5 (Ad5) backbone. Viral infections caused by Ad5 are endemic in most human populations and the majority of humans carry preexisting humoral and/or cellular immunity to Ad5 which may severely limit the use of Ad5-based vectors for gene therapy applications. To circumvent this preexisting Ad5 immunity, we have identified Ad35 as an alternative adenoviral serotype to which the majority of humans do not have neutralizing antibodies. Importantly, Ad35 can be grown to high titers with a low particle-to-PFU ratio. As a prerequisite for the development of Ad35 for use as a gene transfer vector, a genome organization map was constructed using the available Ad35 sequence information, and E1a-deficient Ad35 vectors encoding marker genes were generated. Ad35 biodistribution in mice was assessed following intravenous administration and compared with that of Ad5. Extremely low levels of Ad35 were detected in all organs evaluated, including liver, lung, spleen, and bone marrow, while Ad5 displayed high transduction of these organs. Due to the lack of Ad35 liver tropism, minimal hepatotoxicity was observed in mice treated with Ad35. Furthermore, the half-life of Ad35 in mouse blood was found to be two to three times longer than that of Ad5. These data suggest that either mice do not express the Ad35 cell surface receptor or that Ad35 does not efficiently transduce mouse cells in vivo following systemic delivery. Therefore, to begin to elucidate the Ad35 cell entry mechanisms, in vitro competition studies were performed. These data demonstrated that Ad35 cell entry is CAR independent, and may involve protein(s) expressed on most human cells.  相似文献   

14.
The natural function of viruses is to deliver their genetic material to cells. Among the most effective of viruses in doing that is Simian Virus-40 (SV40). The properties that make SV40 a successful virus make it an attractive candidate for use as a gene delivery vehicle: high titer replication, infectivity for almost all nucleated cell types whether the cells are dividing or resting, potential for integration into cellular DNA, a peculiar pathway for entering cells that bypasses the cells' antigen processing apparatus, very high stability, and the apparent ability to activate expression of its own capsid genes in trans. Exploiting these and other characteristics of wild type (wt) SV40, increasing numbers of laboratories are studying recombinant (r) SV40-derived vectors. Among the uses to which these vectors have been applied are: delivering therapy to inhibit HIV, hepatitis C virus (HCV) and other viruses; correction of inherited hepatic and other protein deficiencies; immunizing against lentiviral and other antigens; treatment of inherited and acquired diseases of the central nervous system; protecting the lung and other organs from free radical-induced injury; and many others. The effectiveness of these vectors is a reflection of the adaptive evolution that produced their parent virus, wt SV40. This article explores how and why these vectors work, their strengths and their limitations, and provides a functional model for their exploitation for experimental and clinical applications.  相似文献   

15.
The luciferase reporter gene incorporated into adenoviral vectors is very useful for monitoring viral transduction of different cell types or for comparing the transduction efficiency of different viral constructs of one cell type. Luciferase protein expression can be detected and quantified with very high sensitivity from whole cells or organ extracts. However, its disadvantages become obvious when aiming at evaluation of transduction events at the single cell level. The results obtained from whole cell extracts cannot be directly correlated to single cell events. In this paper direct cellular luciferase imaging using cell permeable luciferin substrates is applied for comparative analysis of cellular transduction events by two adenoviral vectors with different cell binding properties. Using digital imaging microscopy we show a more than ten-fold increase in transduction efficiency by Ad5LucRGD vectors versus AdCMVLuc vectors on human A549 cells.  相似文献   

16.
17.
For purposes of gene therapy, the tropism of adenovirus (Ad) serotype 5 vectors can be altered with fibers derived from alternative serotypes. However, there is currently limited information available on the cellular receptors used by the approximately 51 known Ad serotypes. Recently, alpha(2-->3)-linked sialic acid (2,3-SA) has been implicated as the cellular receptor for wild-type Ad37. However, some studies have demonstrated that wild-type Ad37 uses a 50-kDa protein and not sialic acid as its primary receptor for binding of human conjunctival cells. The sialic acid receptor has also been shown not to play a major role in the infection of these cells by an Ad5 virion pseudotyped with Ad37 fiber (Ad5.GFP.DeltaF/37F). In this study, we demonstrate that a similar virus (Ad5F37) can indeed use alpha(2-->3)-linked sialic acid as a cellular receptor. We also find that the receptor used by Ad5F37 is sensitive to proteases and that Ad5F37 can use integrin more efficiently than sialic acid for cell entry. Unlike Ad5 vectors, Ad5F37 does not efficiently employ the coxsackie and adenovirus receptor (CAR) to infect cells. Similar to Ad5, Ad5F37 infection of cells that form tight junctions can be enhanced by ethylenediaminetetraacetic acid (EDTA). These results have implications in the design of pseudotyped adenovirus vectors for gene therapy and may have particular use in the treatment of diseases involving breakdown of the blood-retinal barrier.  相似文献   

18.
Adenoviral (AdV) gene vectors offer efficient nucleic acid transfer into both dividing and non-dividing cells. However issues such as vector immunogenicity, toxicity and restricted transduction to receptor-expressing cells have prevented broad clinical translation of these constructs. To address this issue, engineered AdV have been prepared by both genetic and chemical manipulation. In this work, a polymer-coated Ad5 formulation is optimized by evaluating a series of N-(2-hydroxypropyl) methacrylamide (HPMA)-co-oligolysine copolymers synthesized by living polymerization techniques. This synthesis approach was used to generate highly controlled and well-defined polymers with varying peptide length (K(5), K(10) and K(15)), polymer molecular weight, and degradability to coat the viral capsid. The optimal formulation was not affected by the presence of serum during transduction and significantly increased Ad5 transduction of several cell types that lack the Coxsackie and Adenovirus Receptor (CAR) by up to 6-fold compared to unmodified AdV. Polymer-coated Ad5 also retained high transduction capability in the presence of Ad5 neutralizing antibodies. The critical role of heparan sulfate proteoglycans (HSPGs) in mediating cell binding and internalization of polymer-coated AdV was also demonstrated by evaluating transduction in HSPG-defective recombinant CHO cells. The formulations developed here are attractive vectors for ex?vivo gene transfer in applications such as cell therapy. In addition, this platform for adenoviral modification allows for facile introduction of alternative targeting ligands.  相似文献   

19.
Viral gene therapy strategies: from basic science to clinical application   总被引:13,自引:0,他引:13  
A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies.  相似文献   

20.
Recombinant adenoviral vectors have served as one of the most efficient gene delivery vehicles in vivo thus far. Multiply attenuated or completely gutless adenoviral vectors have been developed to achieve long-term gene expression in animal models by overcoming cellular immunity against de novo synthesized adenoviral proteins. However, since adenovirus lacks native integration machinery, the goal of gene therapy obtaining permanent expression cannot be realized with current adenoviral vector systems. Recent studies have shown that replication-incompetent adenoviral vectors randomly integrate into host chromosomes at frequencies of 0.001-1% of infected cells. To improve the integration frequencies of adenoviral vectors, a variety of hybrid vectors combining the highly efficient DNA delivery of adenovirus with the integrating machinery of retroviruses, adeno-associated viruses, and transposons, have been emerging. These hybrid vectors have shown promise, at least in in vitro systems. Furthermore, adenoviral vectors have shown potential as gene targeting vectors. These developments should eventually lead to more effective gene therapy vectors that can transduce a myriad of cell types stably in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号