首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cut dorsal root axons regenerate into intraspinal transplants of fetal spinal cord and establish synaptic connections there. The aims of the present study were to describe the progression of dorsal root growth within the transplants and the maturation of transplant morphology and to determine whether the regenerated dorsal root axons persist within the transplants or eventually withdraw. Embryonic (E) day 14 spinal cord was grafted into the lumbar enlargement of adult Sprague-Dawley rats, and the L4 or L5 dorsal root was cut and juxtaposed to the transplants. The morphology of the transplants was examined from 1 day to over 1 year after surgery, and the regenerated dorsal roots were labeled with immunohistochemical methods to study the subset that contains calcitonin gene-related peptide (CGRP). Embryonic spinal cord transplants survived and grew within the host spinal cord in over 90% of the animals. Transplant volume increased and the morphology of the transplants matured over the first 12 weeks and then did not change for 48-60 weeks. During the first week the transplants were composed of dissociated neurons, glia, and hematogenous cells with considerable extracellular space between them. Subsequently, the grafted neurons became densely aggregated, and non-neuronal elements such as inflammatory cells and myelin debris disappeared. CGRP-immunoreactive dorsal roots began to regenerate into the transplants within 24 hours, formed dense bundles by 4 days, and were still present at 60 weeks, the longest survival period examined. Myelination of axons within transplants began at 2 weeks. Quantitative analysis showed that the area of the transplants occupied by CGRP-labeled axons and the distribution area of the labeled axons within the transplants increased until 12 weeks and persisted unchanged for over 48 weeks. These results indicate that regenerated dorsal root axons are permanently maintained within transplants of embryonic spinal cord and suggest that the transplants can contribute to the permanent restoration of damaged intraspinal neural circuits.  相似文献   

2.
Cut dorsal root axons regenerate into transplants of embryonic spinal cord and form synapses that resemble those found in the dorsal horn of normal spinal cord. One aim of the present study was to determine whether these axons also regenerate into and establish synapses within transplants of embryonic brain. A second aim was to compare the patterns of growth in embryonic brain and spinal cord transplants. Embryonic spinal cord or brain was transplanted into the lumbar enlargement of adult Sprague-Dawley rats, the L4 or L5 dorsal root was cut, and the cut root was juxtaposed to the transplant. The transplants included whole pieces or dissociated cell suspensions of embryonic day 14 (E14) spinal cord, or whole pieces of E14 neocortex, E18 occipital cortex, E15 cerebellum, or E18 hippocampus. One month later the regenerated dorsal root axons were labeled by immunocytochemical methods to demonstrate calcitonin gene-related peptide (CGRP). CGRP-immunoreactive axons regenerated into all the transplants examined and formed synapses in the neocortex and cerebellum transplants in which they were sought. Synapses were far rarer in neocortex and cerebellum than we had observed previously in transplanted spinal cord, and the patterns of growth differed in transplants of spinal cord and brain. In solid transplants of spinal cord, regenerated axons remained relatively close to the interface with the dorsal root, branched, and formed bundles. Areas of dense ingrowth were separated by regions with few labeled axons. In transplants of brain regions, the regenerated axons were few, unbranched, and appeared as individual fibers rather than in bundles, but they were distributed widely in neocortex transplants. The results of quantitative studies confirmed these observations. The area fraction occupied by regenerated axons in solid spinal cord transplants was significantly larger than in occipital cortex or cerebellum transplants. Distribution histograms of the area occupied in transplants demonstrated that regenerated axons were distributed sparsely but homogeneously in transplants of brain, whereas spinal cord transplants were heterogeneous for regenerated axons and contained areas in which growth was dense or sparse. In contrast, several measurements of axon distribution, including area, longest axis, and length of lateral extension, indicated that CGRP-labeled axons spread more widely in occipital cortex transplants than in solid transplants of spinal cord or cerebellum. The results indicate that embryonic CNS tissues that are not normal targets support or enhance the growth of severed dorsal roots and suggest that the conditions that constitute a permissive environment for regenerating axons are relatively nonspecific.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Three neuroanatomical tracers have been employed to map the axonal projections formed between transplants of fetal spinal cord tissue and the surrounding host spinal cord in adult rats. Solid pieces of embryonic day 14 (E14) rat spinal cord were placed into hemisection aspiration cavities in the lumbar spinal cord. Injections of either (1) a mixture of horseradish peroxidase and wheat germ agglutinin- conjugated horseradish peroxidase, (2) Fluoro-Gold, or (3) Phaseolus vulgaris leucoagglutinin (PHA-L) were made into the transplants or the neighboring segments of the host spinal cord at 6 weeks to 14 months post-transplantation. Injections of anterograde and retrograde tracers into the transplants revealed extensive intrinsic projections that often spanned the length of the grafts. Axons arising from the transplants extended into the host spinal cord as far as 5 mm from the host-graft interface, as best revealed by retrograde labeling with Fluoro-Gold. Consistent with these observations, iontophoretic injections of PHA-L into the transplants also produced labeled axonal profiles at comparable distances in the host spinal cord, and in some instances elaborate terminals fields were observed surrounding host neurons. The majority of these efferent fibers labeled with PHA-L, however, were confined to the immediate vicinity of the host-graft boundary, and no fibers were seen traversing cellular partitions between host and transplant tissues. Host afferents to the transplants were also revealed by these tracing methods. For example, the injection of Fluoro-Gold into the grafts resulted in labeling of host neurons within the spinal cord and nearby dorsal root ganglia. In most cases, retrogradely labeled neurons in spinal gray matter were located within 0.5 mm of the graft site, although some were seen as far as 4-6 mm away. The distance and relative density of ingrowth exhibited by host axons into the grafts, however, appeared modest based upon the results of HRP and Fluoro-Gold retrograde labeling. This was further confirmed with the PHA-L anterograde method. Whereas some host fibers were seen extending into the transplants, the majority of PHA-L containing axons formed terminal-like profiles at or within 0.5 mm of the host-graft interface. The comprehensive view of intrinsic connectivity and host-graft projections obtained in these studies indicates that intraspinal grafts of fetal spinal cord tissue can establish a short-range intersegmental circuitry in the injured, adult spinal cord. These observations are consistent with the view that such grafts may contribute to the formation of a functional relay between separated segments of the spinal cord after injury.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The extent of regeneration of the central axonal processes of dorsal root ganglion cells was determined using anterograde horseradish peroxidase histochemistry at 1–12 weeks after dorsal root transection in adult frogs. At 4, 8 and 12 weeks axons were found to have regenerated across the dorsal root entry zone and into the spinal cord.  相似文献   

5.
A prominent role for phagocytic cells in the regenerative response to CNS or PNS injury has been suggested by numerous studies. In the present work we tested whether increasing the presence of phagocytic cells at a spinal cord injury site could enhance the regeneration of sensory axons from cut dorsal roots. Nitrocellulose membranes treated with TGF-β or coated with microglial cells were cotransplanted with fetal spinal cord tissue into an injured adult rat spinal cord. Cut dorsal roots were apposed to both sides of the nitrocellulose. Four weeks later, animals were sacrificed and spinal cord tissue sections were processed for immunocytochemical detection of calcitonin gene-related peptide (CGRP-ir) to identify regenerated sensory axons. Adjacent sections were processed with the antibody ED-1 or the lectin GSA-B4 for detection of macrophage/microglial cells in association with the regrowing axons. Qualitative and quantitative data indicate a correlation between the pattern and extent of axonal regeneration and the presence of phagocytic cells along the nitrocellulose implant. Axonal regeneration could be experimentally limited by implanting a nitrocellulose strip treated with macrophage inhibitory factor. These results indicate that increasing the presence of activated macrophage/microglial cells at a spinal cord injury site can provide an environment beneficial to the promotion of regeneration of sensory axons, possibly by the release of cytokines and interaction with other nonneuronal cells in the immediate vicinity.  相似文献   

6.
Fetal rat spinal cord tissue was obtained on gestational day 14 (E14) and transplanted into 2-4-mm-long intraspinal cavities produced by partial spinal cord lesions in adult and neonatal rats. At regular post-transplantation intervals, light and electron microscopy, autoradiographic demonstration of tritiated thymidine labelling, and immunocytochemical localization of glial fibrillary acidic protein (GFAP) were used to identify surviving donor tissues and to study their differentiation and extent of fusion with recipient spinal cords. In some experiments, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was also employed to examine whether neurons within the grafts projected axons into the host spinal cord and vice versa. Lastly, immunocytochemistry was used to determine whether any supraspinal serotoninergic (5-HT) axons from the host extended into the transplants. Over 80% of the grafts survived in lesions of both the neonatal and adult rat spinal cord for periods of 1-16 months (duration of experiment), and considerable maturation of donor tissue was evidenced, which even included the appearance of some topographical features of the normal spinal cord. Many of the transplants extended the entire length of the lesion, and were often closely apposed to the injured surfaces of the recipient spinal cords without an intervening dense glial scar. At post-transplantation intervals of 2-4 months, injection of WGA-HRP into the host spinal cord (5 mm from the transplant in adult animals or as much as 20 mm in neonatal recipients) demonstrated retrogradely labelled neurons and anterogradely labelled axons in the grafts. Likewise, injecting WGA-HRP into transplants in adult recipients resulted in labelling of neurons in adjacent segments of the host spinal cord; some labelled axons, derived from donor neurons, were also present in neighboring spinal gray matter. Finally, immunocytochemistry revealed 5-HT-like immunoreactive fibers in transplants that had been prelabelled with tritiated thymidine. These observations demonstrate the potential of embryonic spinal cord transplants to replace damaged intraspinal neuronal populations and to restore some degree of anatomical continuity between the isolated rostral and caudal stumps of the injured mammalian spinal cord.  相似文献   

7.
It has previously been demonstrated that the severed central branches of adult mammalian dorsal root ganglion cells regenerate into transplants of fetal spinal cord. The aim of this study was to determine whether these regenerating axons form synapses, and, if they do, to characterize them morphologically. Embryonic day 14 or 15 spinal cord was transplanted into the lumbar enlargement of adult Sprague-Dawley rats, and the L4 or L5 dorsal root was cut and then juxtaposed to the transplant. One to 3 months later the regenerated dorsal roots were labeled by anterograde filling with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) or by immunocytochemistry for calcitonin gene-related peptide (CGRP). Dorsal root labeling with WGA-HRP demonstrated that regenerated axon terminals made synaptic contacts within transplants, and stereological electron microscopic analysis demonstrated that CGRP-immunoreactive axon terminals occupied an average of 9% of the neuropil within 2 mm of the dorsal root-transplant interface. The majority of synapses were axodendritic, but a significant percentage were axosomatic or axoaxonic. Since axoaxonic synapses were observed in transplants in which both pre- and postsynaptic profiles of axoaxonic synapses were labeled for CGRP, some regenerated axons apparently form synapses with each other. Approximately 90% of synaptic contacts were simple, 9% were complex, and 25% of the complex terminals were immunopositive for CGRP. Glia occupied 25% of the neuropil within 1 mm of the dorsal root-transplant interface, but only 6% of the neuropil 1-2 mm from the interface. We also performed a stereological analysis of the neuropil in lamina I. The area fractions of neuropil occupied by myelinated axons, perikarya, and dendrites were similar in transplants and in lamina I. However, the area fraction occupied by unmyelinated axons was significantly smaller in transplants, and the area fraction occupied by axon terminals was significantly larger in transplants compared with lamina I. Regenerated CGRP-immunoreactive synaptic terminals in transplants were significantly larger than in normal lamina I, and their synaptic contact length was also increased, suggesting that a compensatory mechanism for increasing synaptic efficiency might occur within the transplants. Synaptic density, however, was significantly reduced in transplants, indicating a smaller number of synaptic terminals per unit area. In lamina I, as in the transplant, most synapses were axodendritic, but the percentage of axosomatic and axoaxonic terminals was lower in lamina I than in the transplants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Embryonic neural tissues of various types were transplanted into the intact, completely transected, and partially transected spinal cords of adult rats. The host animals were killed 4-6 months after the surgery, and the spinal cords and transplants examined. The best results were obtained when embryonic neocortical tissues obtained from 16-day rat embryos were used for transplantation into host animals that had been subjected to partial sectioning of the spinal cord. Use of other types of neural tissue, or transplantation of tissues into the intact or completely severed spinal cords was not successful. The successful neocortical transplants had survived, grown, differentiated, and established anatomical integration with the host spinal cords. The anatomical integration was established through an interface with the host spinal cord along the basal aspect. Along the lateral aspect glial scar tissue was present separating the transplants from the spinal cord parenchyma. The transplants contained well-differentiated and normal-looking neurons. They received afferents from the spinal cord only through the interface and not through the glial scar formations. The findings indicated that it is possible to transplant embryonic neocortical tissues into the spinal cords of the adult animals that become integrated with the spinal cord parenchyma. The axonal fibers in the adult spinal cord appear capable of regeneration and growing into the transplants only when an appropriate neural milieu, in the form of a healthy and viable interface, is available. In its absence the severed axons of the adult spinal cord do not grow into the neural transplants.  相似文献   

9.
In the study reported here we have examined the nerve regeneration that occurs over a 25-mm gap using a novel biodegradable nerve guide tube. The tube was a composite of polyglycolic acid (PGA) mesh coated with collagen which was filled with neurotrophic factors. The left sciatic nerve of ten adult cats was dissected. The stumps were connected by the tube, and fixed gap. Histological examinations carried out 4–16 months after implantation of the tube revealed regeneration of well vascularized nerve tissue. Regeneration of both myelinated, unmyelinated axons and Schwann cells was confirmed by electron microscopy 5 months after surgery. Following injection of horseradish peroxidase (HRP) into a site peripheral to the regenerated segment of the sciatic nerves, motoneurons in the ventral horn of the spinal cord, afferent terminals in the medial portion of the dorsal column of the medulla oblongata, and sensory afferent nerve terminals in the dorsal horn of the spinal cord were labelled. Electrophysiological examinations revealed restoration of evoked electromyograms and sensory evoked potentials (SEPs) recorded from the cerebral cortex as well as the spinal cord. We also found that some of the regenerated motor axons exhibited branching in the regenerated segments. In two cases, a single motoneuronal axon from the regenerated side projected to both flexors and extensors, simultaneously. Our results indicate that the PGA-collagen composite tube is a promising tool for use as a nerve guide tube in peripheral nerve regeneration.  相似文献   

10.
We have imposed a steady, rostrally negative, weak (ca 0.4 mV/mm) voltage gradient across transections of ascending white matter tracts in the adult guinea pig using an implanted stimulator and electrodes for about 1 month. We have evaluated the projections of these axons relative to the transection approximately 2 months postinjury by anterograde transport of injected tetramethylrhodamine-conjugated dextran and the use of an indwelling marker device which locates the plane of the original transection. Tract tracing was accomplished with conventional epifluorescence microscopy and confocal laser microscopy. Sham-treated control spinal cords contained well-filled lateral and dorsal column ascending tracts terminating caudal to the lesion which formed at the level of the hemisection. Electric field-treated spinal cords contained similarly labeled columns of axons that penetrated the lesion within the caudal segment of the spinal cord, branched within it, and in some cases such branches projected across the plane of transection. Ascending axons also passed around the lesion through undamaged parenchyma, branched repeatedly at the plane of the hemisection, and passed into the rostral segment of the spinal cord. Spear-shaped endings typical of growth cones were found at the terminals of these processes which often branched again within the rostral segment. Centrally projecting fibers, their processes, and the overall level of branching in these projections was not observed in our previous studies using high molecular weight horseradish peroxidase tracers.  相似文献   

11.
Spinal nerve root avulsion has been considered as a central nervous type of injury and therefore not repaired surgically in man. The possibility for axonal regeneration after root avulsion or root lesion has been investigated in laboratory animals by means of up to date neurophysiological, morphological and tracing techniques. It is shown that, after ventral root avulsion and implantation into the spinal cord, alpha and probably also gamma motoneurons are able to regenerate within the spinal cord for a considerable distance before entering the implanted root and reinnervate previously denervated skeletal muscles. The regenerated neurons were found to respond to afferent activity with excitatory or inhibitory responses, and the regenerated axons could conduct action potentials that elicited muscle twitch responses. After dorsal root injury in the adult animal, regeneration into the spinal cord does not occur. However, regeneration of primary sensory neurons into appropriate locations of the spinal cord can be demonstrated in immature animals.  相似文献   

12.
Regeneration of crushed axons in rat dorsal spinal roots was measured to investigate the transganglionic influence of an additional peripheral axonal injury. The right sciatic nerve was cut at the hip and the left sciatic nerve was left intact. One week later, both fifth lumbar dorsal roots were crushed and subsequently, regeneration in the two roots was assessed with one of two anatomical techniques. By anterograde tracing with horseradish peroxidase, the maximal rate of axonal regrowth towards the spinal cord was estimated to be 1.0 mm/day on the left and 3.1 mm/day on the right. Eighteen days after crush injury, new, thinly myelinated fibers in the root between crush site and spinal cord were 5-10 times more abundant ipsilateral to the sciatic nerve transection. The central axons of primary sensory neurons regenerate more quickly if the corresponding peripheral axons are also injured.  相似文献   

13.
Lumbar dorsal roots of adult frogs were crushed or cut and reanastomosed. Following survival times of up to 75 days, the regenerating dorsal roots were recut and anterogradely injury-filled with horseradish peroxidase. This revealed that in the adult frog, regenerating axons re-enter the spinal cord. Comparison of the distribution of these axons with that of normal dorsal root axons showed that there is a partial restoration of the segmental distribution in the gray matter. However, the long ascending sensory tract of the dorsal funiculus was not restored. The dorsal funiculus was markedly gliotic and had relatively few labelled, regenerated axons. The labelled axons that were seen in the dorsal funiculus either extended longitudinally for a distance just beneath the pia, apparently in association with the glia limitans, or traversed the region to enter the dorsal gray matter. Most of the large and small diameter axons that entered the gray matter did so by passing through the region of the dorsolateral fasciculus. Within the gray matter, small diameter, regenerated axons arborized in the region of the dorsal terminal field, a region that has been shown in the normal frog to receive cutaneous afferents only. Many large diameter axons, presumably muscle afferents, arborized in the ventral terminal field, a region shown in the normal frog to receive muscle afferents exclusively. However, many of these large diameter axons had arborizations that extended to both terminal fields, thus suggesting that some abberant connections are made during dorsal root regeneration in the adult frog.  相似文献   

14.
Root-spinal cord regeneration was investigated in immature and adult rats. The elongation in the dorsal root of regrowing dorsal root axons, rerouted ventral root nerve fibres (cholinergic neurons) or hypogastric nerve fibres (catecholaminergic neurons) is impeded as they meet the astrocyte dominated CNS tissue of the root. The establishment of synaptoid nerve terminals as the regrowing axons encounter astrocytes indicates a mechanism for growth inhibition other than a physical impediment in the CNS environment. The glial cells of the CNS segment in the root are influenced by the type of regenerating nerve fibres in terms of maintenance, multiplication and phenotypic expression. After a dorsal root lesion in the neonatal rat several root axons may reinnervate the spinal cord. In these rats, the normal establishment of a CNS root segment has been disrupted and the PNS-CNS border is situated central to the root-spinal cord junction. Implantation of cut dorsal roots into the spinal cord of adult rats results in the extension of processes from intrinsic spinal cord neurons out into the root. After implantation of avulsed ventral roots into the ventro-lateral aspect of the cord, axonal regrowth and functional restitution of alpha-motoneurons could be demonstrated by intracellular recordings and injections with horseradish peroxidase. These results show that regeneration can occur across a PNS-CNS interface that has been established secondary to a trauma in the mature animal and in the immature animal before the astrocyte-rich CNS root segment has been developed.  相似文献   

15.
Using an implanted battery and electrodes, we have imposed a weak, steady electrical field across partially severed guinea pig spinal cords. We have analyzed regeneration of dorsal column axons in experimental animals and sham-treated controls at 50-60 days postinjury by anterograde filling of these axons with the intracellular marker horseradish peroxidase and by employing a marking device to identify precisely the original plane of transection (J. Comp. Neurol. 250: 157-167, '86). In response to electric field applications, axons grew into the glial scar, as far as the plane of transection in most experimental animals. In a few animals axons could be traced around the margins of the lesion (but never through it). Moreover, these fibers returned to their approximate positions within the rostral spinal cord before turning toward the brain. In sham-treated controls, ascending axons were found to terminate caudal to the glial scar, and rarely were any fibers found within the scar itself. Axons were never observed to cross into the rostral cord segment. These findings suggest that an imposed electrical field promotes growth of axons within the partially severed mammalian spinal cord, that a steady voltage gradient may be an environmental component necessary for axonal development and regeneration, and that some component(s) of the scar impede or deflect axonal growth and projection.  相似文献   

16.
The law of Magendie states that ventral roots channel efferent axons from the spinal cord to the periphery, while dorsal roots channel afferent axons from the periphery into the spinal cord. As primary afferent C-fibres occur in mammalian ventral roots, this law has been questioned. However, other observations suggest that ganglionic axons do not enter the spinal cord via ventral roots. The present paper examined, by double labelling immunohistochemistry, the relation between putative peripheral afferents and the PNS/CNS transition in the trigeminal motor root and in selected spinal ventral roots of the rat. The afferents were labelled with antibodies against vasoactive intestinal polypeptide, substance P or calcitonin gene-related peptide. The glia limitans at the PNS/CNS transition was defined with antibodies against glial fibrillary acidic protein. The results showed that no immunoreactive axons occurred in the trigeminal motor root. However, in all ventral roots examined, labelled axons were frequently observed. While some of these ended blindly, looped or branched in the rootlets, others shifted to the pia mater. Immunoreactive axons crossing the glia limitans at the PNS/CNS transition were not observed. Thus, the results obtained support the law of Magendie.  相似文献   

17.
The central projections of muscle and cutaneous sensory neurons in the bullfrog were labeled by filling their peripheral axons in the forelimb with horseradish peroxidase (HRP). Muscle afferent fibers were found to project exclusively to the ventral neuropil of the brachial spinal cord in the intermediate gray zone. Cutaneous afferent axons had their arbors limited to the dorsal neuropil. There is therefore a topography in the central representation of two classes of sensory modalities.  相似文献   

18.
In order to compensate the loss of motoneurons resulting from severe spinal cord injury and to reestablish peripheral motor connectivity, solid pieces of fetal spinal cord, taken from embryonic day 14 rat embryos, were transplanted into unilateral aspiration lesions of the cervical spinal cord of adult rats. Concomitantly, one end of a 3.5-cm autologous peripheral nerve graft was put in close contact with the embryonic graft; the other end was sutured to the distal stump of the musculocutaneous nerve which innervate the biceps brachii muscle. The animals were examined 3 and 6 months after surgery. Following intramuscular injection of horseradish peroxidase, retrograde axonal labeling studies indicated that both transplanted and host spinal neurons were able to extend axons all the way through the peripheral nerve graft and nerve stump, up to the reconnected muscles. The labeled cells in the transplant were generally observed close to the intraspinal tip of the peripheral nerve graft. Retrograde axonal tracing, as well as electrophysiological and histological data, demonstrated the sensory and motor reinnervation of the reconnected muscles. This muscular reinnervation was able to reverse the atrophic changes observed in the denervated muscle. In control experiments, the extraspinal end of the peripheral nerve graft was ligatured in order to compare the differentiation of the transplanted neurons and the survival of their growing axons with or without their muscular targets. Six months after both types of surgery, large-size grafted neurons, identified as motoneurons by immunocytochemistry for peripherine and calcitonin gene-related peptide, were only observed in fetal spinal cord transplants which were connected to denervated muscles, thus demonstrating the trophic influence of the muscle target on the survival and differentiation of the transplanted neurons and on the maintenance of the axons they had grown into the peripheral nerve graft.  相似文献   

19.
A variety of biological as well as synthetic implants have been used to attempt to promote regeneration into the damaged spinal cord. We have implanted mats made from fibronectin (FN) into the damaged spinal cord to determine their effectiveness as a substrate for regeneration of axons. These mats contain oriented pores and can take up and release growth factors. Lesion cavities 1 mm in width and depth and 2 mm in length were created on one side of the spinal cord of adult rats. FN mats containing neurotrophins or saline were placed into the lesion. Mats were well integrated into surrounding tissue and showed robust well-oriented growth of calcitonin gene-related peptide, substance P, GABAergic, cholinergic, glutamatergic, and noradrenergic axons into FN mats. Transganglionic tracing using cholera toxin B indicated large-diameter primary afferents had grown into FN implants. Schwann cells had also infiltrated FN mats. Electron microscopy confirmed the presence of axons within implants sites, with most axons either ensheathed or myelinated by Schwann cells. Mats incubated in brain-derived neurotrophic factor and neurotrophin-3 showed significantly more neurofilament-positive and glutamatergic fibers compared to saline- and nerve growth factor-incubated mats, while mats incubated with nerve growth factor showed more calcitonin gene-related peptide-positive axons. In contrast, neurotrophin treatment had no effect on PGP 9.5-positive axons. In addition, in some animals with neurotrophin-3-incubated mats, cholera toxin B-labelled fibers had grown from the mat into adjoining intact areas of spinal cord. The results indicate that FN mats provide a substrate that is permissive for robust oriented axonal growth in the damaged spinal cord, and that this growth is supported by Schwann cells.  相似文献   

20.
Functional recovery after large excision of dorsal roots is absent because of both the limited regeneration capacity of the transected root, and the inability of regenerating sensory fibers to traverse the dorsal root entry zone. In this study, bioresorbable guidance conduits were used to repair 6-mm dorsal root lesion gaps in rats, while neurotrophin-encoding adenoviruses were used to elicit regeneration into the spinal cord. Polyester conduits with or without microfilament bundles were implanted between the transected ends of lumbar dorsal roots. Four weeks later, adenoviruses encoding NGF or GFP were injected into the spinal cord along the entry zone of the damaged dorsal roots. Eight weeks after injury, nerve regeneration was observed through both types of implants, but those containing microfilaments supported more robust regeneration of calcitonin gene-related peptide (CGRP)-positive nociceptive axons. NGF overexpression induced extensive regeneration of CGRP(+) fibers into the spinal cord from implants showing nerve repair. Animals that received conduits containing microfilaments combined with spinal NGF virus injections showed the greatest recovery in nociceptive function, approaching a normal level by 7-8 weeks. This recovery was reversed by recutting the dorsal root through the centre of the conduit, demonstrating that regeneration through the implant, and not sprouting of intact spinal fibers, restored sensory function. This study demonstrates that a combination of PNS guidance conduits and CNS neurotrophin therapy can promote regeneration and restoration of sensory function after severe dorsal root injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号