首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early during rat thymus ontogeny, an important proportion of thymocytes expresses IL-2R and contains IL-2 mRNA. To investigate the role of the IL-2-IL-2R complex in rat T cell maturation, we supplied either recombinant rat IL-2 or blocking anti-CD25 mAb to rat fetal thymus organ cultures (FTOC) under several experimental conditions. The IL-2 treatment initially stimulated the growth of thymocytes and, as a result, induced T cell differentiation, but the continuous addition of IL-2 to rat FTOC, as well as the anti-CD25 administration, resulted in cell number decrease and inhibition of thymocyte maturation. These results indicate that immature rat thymocytes bear functional high- affinity IL-2R and that IL-2 promotes T cell differentiation as a consequence of its capacity to stimulate cell proliferation. Modifications in TCR alpha beta repertoire and increased numbers of NKR- P1+ cells, largely NK cells, were also observed in IL-2-treated FTOC. Furthermore, IL-2-responsiveness of different thymocyte subsets changed throughout thymic ontogeny. Immature CD4-CD8-cells responded to IL-2 in two stages, early in thymus development and around birth, in correlation with the maturation of two distinct waves of thymic cell progenitors. Mature CD8+ thymocytes maximally responded to IL-2 around birth, supporting a role for IL-2 in the increased proliferation of mature thymocytes observed in vivo in the perinatal period. Taken together, these findings support a role for IL-2 in rat T cell development.   相似文献   

2.
The expression of T-cell antigen receptor (TCR) alpha beta was investigated in rat CD4- CD8- thymocytes during thymic reconstitution after the exposure of animals to irradiation or glucocorticoid. The effect of the immunosuppressant FK506 on the expression of TCR alpha beta in rat CD4- CD8- thymocytes was also examined. The percentage of CD4- CD8- thymocytes constituted 2.6% of total thymocytes and that of CD4- CD8- TCR alpha beta high cells constituted 12.6% of CD4- CD8- thymocytes in normal adult Lewis rats. The percentage of CD4- CD8- TCR alpha beta high cells increased during thymic reconstitution after irradiation, and maximally constituted 28.6% of CD4- CD8- thymocytes on day 7. Similar results were obtained during thymic reconstitution after glucocorticoid treatment. In contrast, continuous treatment with FK506 for 7 days markedly decreased not only the percentages of CD4+ CD8- TCR alpha beta high and CD4- CD8+ TCR alpha beta high thymocytes, but also that of CD4- CD8- TCR alpha beta high thymocytes. These results indicate that rat CD4- CD8- thymocytes contain a subpopulation of mature (TCR alpha beta high) cells. The possible implications of the existence of this subpopulation with regard to thymocyte differentiation and maturation are discussed.  相似文献   

3.
CD45RA antibodies split the CD3bright T cell subset.   总被引:1,自引:0,他引:1  
Thymocyte subsets have been well characterized on the basis of CD4 and CD8 antigen expression. Recently, the use of anti-CD3 antibodies has allowed more precise phenotyping of these subsets. The most immature T cell precursors are largely CD3-CD4-CD8-, while the most mature are CD3brightCD4+CD8- or CD3brightCD4-CD8+. Moreover, the expression of CD45RA on thymocytes appears to define a progenitor population and may define a continuous lineage of cells. Using a panel of CD45RA antibodies, we have further characterized the CD45RA+ thymocyte population in the murine system. The size of this subset is greatly enhanced in cortisone-treated mice and in sublethally irradiated mice. Moreover, the CD45RA+ population is present early in foetal life and is maintained thereafter. Using three-colour immunofluorescence, we show that (i) while most CD45RA+ cells are present amongst the CD4-CD8- thymocyte subset in the normal thymus, after cortisone treatment or irradiation, all four thymocyte subsets co-express significant amounts of CD45RA. This suggests that not only progenitor cells but also the mature population which can survive such manipulation are CD45RA+; and (ii) a large proportion of CD45RA+ cells are CD3bright and this subset is represented in the thymus at all stages of maturation tested. These data suggest that a proportion of TCR-gamma delta + CD3+ cells in the fetus as well as of TCR-alpha beta+ CD3+ cells in the adult co-express CD45RA.  相似文献   

4.
In this paper we describe a differentiation sequence amongst adult murine thymocytes which goes from CD4+8+3lo(low) to CD4+8+3int(intermediate) to CD4+8+3hi(high) and then to mature single positive CD3hi thymocytes. Phenotypic characterization of CD4+8+3int/hi cells for a number of other surface markers is consistent with them being in transition from CD4+8+3lo phenotype to mature phenotype. The same observation was made for sensitivity towards ionomycin-mediated apoptosis. In the thymus of Mls-1a mice, where autoreactive TCR-V beta 6+ cells are negatively selected, deletion of TCR-V beta 6+ cells was first detected in the CD4+8+3int subset, and was complete by the CD4+8+3hi stage, suggesting that up-regulation of the TCR/CD3 complex is required for deletion of Mls-1a autoreactive thymocytes. No sign of apoptosis was detected among any fresh thymocyte subsets suggesting that apoptotic cells are rapidly cleared from the thymus. The CD4+8+3int/CD4+8+3hi cells are therefore populations in transit from the typical cortical thymocytes to the mature T-cells.  相似文献   

5.
During their development, human CD7+ lymphoid stem cells migrate into the thymus where, following intimate contact with thymic tissue, they proliferate and differentiate into functionally mature T lymphocytes. In this study, we investigated the effect of thymic epithelial cell-derived supernatants (TEC-SN) on early CD7+CD2-CD3- thymocytes. Our results indicate that TEC-SN are able to promote CD2 and CD3/TcR alpha/beta expression by CD7+ precursors. This activity correlated with soluble CD23 and interleukin 1 levels in TEC-SN. Furthermore, monoclonal antibodies to these cytokines decreased in vitro maturation of prothymocytes. Thus, in addition to cell-cell interactions, human TEC produce cytokines able to support early steps of thymocyte differentiation.  相似文献   

6.
Several groups have described that a low percentage of in vitro cultured T cell receptor (TcR) gamma/delta cells express CD8. Contrary to TcR alpha/beta cells, however, CD8 on these TcR gamma/delta cells was shown to be a CD8 alpha homodimer. We describe here that addition of interleukin-7 (IL-7) to a short-term in vitro culture of fetal day 14 thymic lobes in an organ culture system or of fetal day 18 fetal thymocytes in cell suspension yields CD8 beta-positive TcR gamma/delta cells. This is not the result of IL-7-induced expression of CD8 beta on previously CD8 beta-negative cells. It is due to IL-7-induced expansion of CD8 alpha-CD8 beta-positive TcR gamma/delta cells which are shown to be present in the starting fetal thymocyte cell population.  相似文献   

7.
Using anti-murine interleukin-2 receptor beta chain (IL-2R beta) monoclonal antibody (mAb), we have examined the expression of IL-2R beta on murine thymocyte subpopulations. We found that it was constitutively expressed on 1%-4% of thymocytes in an almost mutually exclusive fashion with IL-2R alpha. The expression of IL-2R beta is developmentally regulated. While it is expressed mainly on T cell receptor gamma delta+ (TcR gamma delta+) cells during fetal age, the major subpopulation expressing IL-2R beta in adult mouse shifts to CD4-CD8-TcR alpha beta+ thymocytes. A considerable portion of CD4-CD8- TcR alpha beta+ cells in other organs, including spleen, bone marrow and liver, was also found to express IL-2R beta. In fetal thymus organ culture, the above thymocyte subset was induced to expand in response to exogeneous IL-2, and the expansion was inhibited by addition of anti-IL-2R beta mAb, suggesting that IL-2R beta is functional in this subpopulation. However, in vivo blockade of the IL-2/IL-2R pathway with the mAb did not exert any effects on the appearance of CD4-CD8- TcR alpha beta+ cells both in the thymus and the periphery. This indicates that the development of CD4-CD8- TcR alpha beta+ cells is not solely controlled by IL-2 but also by other complex elements.  相似文献   

8.
Maturation of T lymphocytes in the thymus is driven by signals provided by soluble factors and by the direct interaction between thymocytes and stromal cells. Although the interaction between T-cell receptor (TCR) and major histocompalibility complex (MHC) molecules on stromal cells is crucial for T-cell development, other accessory molecules seem to play a role in this process. In order to better understand the role of lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) molecules in thymocyte maturation, mice were treated from birth with saturating doses of non-cytolytic-specific monoclonal antibodies. The effect of this treatment on thymocyte subpopulations and the expression of CD3 and TCR-alpha beta by these cells was investigated by flow cytometry. Our data demonstrated that the effective saturation of LFA-1 alpha chain in the thymus, but not ICAM-I or LFA-I beta chain, selectively interfered with the maturation of CD8+ T cells, as manifested by a marked reduction in the frequency of CD4-8+ thymocytes expressing high levels of CD3 and TCR-alpha beta. This selective reduction was also observed in peripheral blood mononuclear cells and spleen cells. The analysis of the frequencies of various V beta TCR showed that CD4-8+ thymocytes were globally affected by the treatment. These results underline the importance of the interaction between LFA-1 and its ligands in the maturation of CD8+ T cells and document the existence of different molecular requirements for the differentiation of CD4+ and CD8+ T cells.  相似文献   

9.
The differentiation of human thymocyte precursors was studied by analysis of clonal progeny of CD4-CD8-CD3- (triple negative or TN) thymocytes. Using a culture system of phytohemagglutinin, IL-2, and irradiated allogeneic lymphoid feeder cells, we found that 48% of clones (104 total) derived from TN thymocyte suspensions were TCR gamma delta cells, 12% of clones were TCR alpha beta cells, and 34% were CD16+CD3- cells. Importantly, 6% of clones were novel subsets of CD4+CD8-CD3- or CD4-CD8+CD3- thymocytes. The majority of TCR alpha beta, TCR gamma delta, and CD16+CD3- clones expressed low levels of CD4. Molecular analysis of freshly isolated TN- thymocytes prior to in vitro culture demonstrated that up to 40% of cells had TCR gamma, delta, and beta gene rearrangements, but were negative in indirect immunofluorescence assays for cytoplasmic TCR delta and beta. These data provide evidence at the clonal level for the presence of precursors of the TCR alpha beta and TCR gamma delta lineages in the human TN thymocyte pool. Moreover, a substantial proportion of freshly isolated human TN thymocytes had already undergone TCR gene rearrangement prior to in vitro culture. Whether these precursors of the TCR alpha beta and TCR gamma delta lineages mature from cells already containing TCR gene rearrangements into sTCR+ cells or differentiate in vitro from cells with TCR genes in germline configuration remains to be determined. Nonetheless, these data demonstrate that the predominant clone types that grow out of human TN thymocytes in vitro are TCR gamma delta and NK cells.  相似文献   

10.
Intrathymic selection of murine TCR alpha beta+CD4-CD8- thymocytes   总被引:5,自引:0,他引:5  
The CD4-CD8- thymocyte population contains the precursors of all other thymocytes. However, it also contains a significant proportion of cells which express surface TCR alpha beta, and have little or no precursor activity. Like peripheral T cells, but unlike most other thymocytes, these TCR alpha beta+CD4-CD8- thymocytes do not express heat stable antigen. Both the origin and developmental status of these cells are unclear, and are the subject of this report. We have measured the proportion of V beta 8.1+ cells amongst TCR+HSA-CD4-CD8- thymocytes in MIs-1a versus MIs-1b mice, in order to determine whether they have undergone negative selection. The proportions were similar in both strains, in contrast to mature T cells, indicating that neither they nor their precursors had undergone clonal deletion. We also measured the accumulation of these cells over the early life of the animal and found that it was extremely slow. Our data also show that although TCR-V beta 8.1+ cells are reactive to MIs-1a in association with MHC class II, most mature TCR-V beta 8.1+ cells in MIs-1b mice are CD8+, suggesting an additional reactivity with MHC class I. We raise the possibility that TCR-V beta 8.1+CD4-CD8- thymocytes are derived from TCR-V beta 8.1+CD4+CD8+ thymocytes, and that the reactivity of TCR-V beta 8.1 with both MHC classes I and II has resulted in the down-regulation of both CD4 and CD8.  相似文献   

11.
B F Haynes 《Thymus》1990,16(3-4):143-157
The human thymus develops early in fetal gestation with morphologic maturity reached by the beginning of the second trimester. TE3+ cortical thymic epithelium is most likely derived from endodermal third pharyngeal pouch, while A2B5/TE4+ medullary and subcapsular cortical thymic epithelium is likely derived from third pharyngeal cleft ectoderm. Fetal liver and yolk sac CD7+, CD4-, CD8-, surface(s) CD3- T cell precursors begin to colonize the thymus between 7 and 8 weeks of fetal gestation, followed by rapid expression of other T lineage surface molecules on developing thymocytes. CD7+, CD4-, CD8-, sCD3- thymocytes give rise to T cells of both the TCR alpha beta and TCR gamma delta lineages. Human thymic epithelial cells produce numerous cytokines including IL1, IL6, TGF alpha, leukemia inhibitory factor (LIF), M-CSF, G-CSF and GM-CSF- molecules that likely play important roles in multiple stages of thymocyte selection, activation and differentiation. Important areas for future research on human thymic epithelium include study of lymphoid and non-lineage differentiation potentials of CD7+, CD4-, CD8-, sCD3- T cell precursors in response to TE-cell produced cytokines, study of the triggering signals of cytokine release within the thymic microenvironment, and study of TCR-MHC mediated TE-thymocyte interactions.  相似文献   

12.
Thymocyte development was monitored in an embryonic thymus organ culture system to establish a model in the chicken in which the functional nature of the thymic microenvironment could be assessed. Thymus lobes were removed from 10-day-old embryos and cultured for 2-10 days. Cell yield increased to a maximum in 4-8 days of culture with a corresponding decrease in average cell size. An initial thymocyte population of predominantly CD3-CD4-CD8- cells gave rise to all CD3/CD4/CD8-defined subpopulations in vitro, maintaining high levels of CD3-CD4-CD8+ and CD3+CD4-CD8+ cells and a low representation of CD3-CD4+CD8-, CD3+CD4+CD8-, CD3-CD4+CD8+ and CD3+CD4+CD8+ thymocytes. This is the first observation of a CD3-CD4+CD8- population in the chicken. Developmental kinetics of CD3+ cells were similar to that in the embryo, suggesting that the in vitro environment is sufficient to promote and maintain thymocyte maturation. Thymocytes of both the gamma delta and alpha beta T cell receptor (TcR) lineages developed in that order, confirming in ovo data and the lineage potential of the first wave of thymocyte precursors. One unusual finding was a relative accumulation of gamma delta TcR+ thymocytes in culture, incorporating all CD4/CD8 subsets, including a previously undetected population, CD4+CD8-. This may indicate a favorable developmental environment or simply a lack of normal cellular emigration. A detailed comparison with T cell development in the embryo demonstrated that the chicken thymus organ culture system reflects thymic events in ovo during a limited time period and thus should prove useful in the identification of functionally relevant thymic molecules.  相似文献   

13.
To further define the relationship between thymocyte subsets and their developmental sequence, multi-parameter flow cytometry was used to determine the distribution of the CD3-TCR complex and the accessory molecules CD4 and CD8 on chicken thymocytes. As in mammals, adult thymocytes could be subdivided into CD3-, CD3lo, and CD3hi staining populations. CD4 and CD8 distribution on such populations revealed the presence of CD3-CD4+CD8- and CD3-CD4-CD8+ thymocytes, putative precursors to CD4+CD8+ cells, detectable in the adult and at high frequency during ontogeny. Of particular interest was the existence of CD3lo expression on CD4+CD8- and CD4-CD8+, and in some instances, on CD4-CD8- thymocytes. Such phenotypes are not easily detectable in the mammalian thymus but were readily observed in both adult and embryonic chicken thymus from 16 days of embryogenesis. Further analysis of the TCR lineage of these CD3lo cells revealed that they were essentially all of the alpha beta TCR type. Mature CD3hi thymocytes were found within the CD4+CD8+ and CD4+CD8- and CD4-CD8+ subsets. Both alpha beta and gamma delta TCR lineage thymocytes were detected within all CD4- and CD8-defined subsets, thus identifying novel thymocyte subsets in the chicken thymus, namely alpha beta TCR+CD4-CD8- and gamma delta TCR+ CD4+CD8- cells. Hence, this analysis of chicken thymocytes, while confirming the phylogenically conserved nature of the thymus, has revealed novel T cell subsets, providing further insight into the complexity of mainstream thymocyte maturation pathways.  相似文献   

14.
Interleukin-4 (IL-4) is a multifunctional lymphokine which promotes the growth and/or maturation of multiple cell types. We have examined the ability of IL-4 to promote the phenotypic maturation of subsets of human thymocytes. When cultured in serum-free medium supplemented with recombinant IL-4, a subset of immature CD3-CD45RA- human thymocytes ceased to express the CD1 common thymocyte antigen and acquired phenotypic features characteristic of relatively mature thymocytes, such as high-density expression of the CD3 antigen and de novo expression of the CD45RA isoform of the common leukocyte antigen family. These changes, which were not seen in cells cultured in medium alone, occurred over an 8-9 day period and were accompanied by a significant increase in cell size. The CD45RA+ cells that derived from these immature CD3-CD45RA- precursors were mainly CD4-CD8- or CD8+ cells, and a significant proportion of these cells expressed the T cell receptor delta chain. IL-4 also increased expression of the CD45RA antigen on the more mature CD3+ thymocyte population. However, the CD45RA+ cells derived from IL-4 stimulated CD3+ thymocyte precursors expressed either the CD4 or the CD8 antigen, and virtually all expressed alpha/beta TCR chains. Studies of cell viability and cell growth indicated that these findings were due to direct changes in the phenotype of responsive cells rather than the growth or selective survival of a small number of mature thymocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Murine fetal thymus cells were cultured with various interleukins (IL-1, 2, 3, 4, 5, 6, and 7) in the absence or presence of phorbol 12-myristate 13-acetate (PMA), and it was found that only IL-4 and IL-7 induced a prominent proliferative response in the presence of PMA. A large proportion of cells grown in the cultures of fetal thymus cells (days 15 and 17 of gestation) stimulated with PMA plus IL-4 or with PMA plus IL-2 remained CD4-CD8-. In marked contrast, nearly 70% of the cells generated in the cultures of the same fetal thymocytes stimulated with PMA plus IL-7 expressed CD8 on their surface. Approximately 30% of these cells expressed TCR gamma, delta, whereas TCR alpha beta+ cells were virtually undetectable. The cells grown in cultures stimulated with PMA plus IL-7 comprised three populations: CD4-Lyt-2-3-, CD4-Lyt-2 + Lyt-3- and CD4-Lyt-2 + Lyt-3+, and that TCR gamma delta+ T cells were found in all three populations. It was also found that the addition of IL-7 in the culture of adult CD4-CD8- thymocytes on the monolayer of a thymic stromal cell line, which selectively promotes the generation of alpha beta T cells, resulted in the generation of gamma delta T cells. These results strongly suggest that IL-7 plays an important role in the development of gamma delta T cells.  相似文献   

16.
The specific signals inducing the growth and maturation of thymocytes remain undefined. We show here that recombinant IL-7 induces growth of fetal and adult mouse CD4-8- thymocytes. IL-7 also induces a lower but significant response in CD4+8- and CD4-8+ thymocytes. Day 14 fetal thymic lobes cultured in IL-7 for 6 days show a 2-fold increase in cell number when compared to control cultures. The thymocyte subsets that proliferate in response to IL-7 can be maintained in culture for extended periods of time. CD4-8- thymocytes maintained in IL-7 did not change their phenotype with respect to CD4 and CD8 expression. In addition, we show that the combination of IL-7 plus IL-6 provides a potent growth stimulus for CD4+8- and CD4-8+ thymocytes. A cloned thymic epithelial cell, that can be induced to express MHC class II molecules, transcribes both IL-7 and IL-6 mRNA. A cloned thymic macrophage cell line produces IL-6 but no detectable IL-7 mRNA. The pattern of biological activities present in the supernatants of these cell lines is also presented. These observations suggest that the thymic epithelial and macrophage cell types may be an in vivo source of signals which mediate thymocyte development.  相似文献   

17.
In order to investigate the role of T cell receptor (TcR) expression in thymocyte maturation, we have analyzed thymocytes from C.B-17/SCID mice, which are unable to productively rearrange their antigen receptor genes and fail to express TcR. Despite this defect, SCID thymocytes are functional as they produce lymphokines and proliferate in response to a variety of stimuli. Phenotypic analysis revealed that thymocyte populations from young adult SCID mice resemble thymocyte populations from normal embryonic mice in that they are large, Thy-1.2+, CD4-, CD8-, TcR- and enriched in CD5lo, IL2R+ and Pgp1+ cells. However, other TcR- populations normally present in adult mice (i.e., CD4-CD8+ cells and CD4+CD8+ cells) are absent from the thymus of TcR- adult SCID mice. To understand the basis of the developmental arrest of TcR- SCID thymocytes at the CD4-CD8- stage of differentiation, we analyzed thymi from the occasional "leaky" SCID mouse which possesses small numbers of TcR+ thymocytes. We found that the presence of TcR+ cells within a SCID thymus was invariably associated with the presence of CD4+ and/or CD8+ SCID thymocytes. Interestingly, however, the CD4+/CD8+ SCID thymocytes were not themselves necessarily TcR+. That is, emergence of SCID thymocytes expressing CD4/CD8 was tightly linked to the presence of TcR+ cells within that SCID thymus, but the SCID thymocytes that expressed CD4/CD8 were not necessarily the same cells that expressed TcR. Finally, we found that the introduction into TcR- SCID mice of normal bone marrow cells that give rise to TcR+ cells within the SCID thymus promoted the differentiation of SCID thymocytes into CD4-CD8+ and CD4+CD8+ TcR- cells. These data indicate that TcR+ cells within the thymic milieu provide critical signals which promote entry of CD4-CD8-TcR- precursor T cells into the CD4/CD8 differentiation pathway. When applied to differentiation of normal thymocytes, these findings may imply a critical role for early appearing CD4-CD8- TcR (gamma/delta)+ cells in initiating normal thymic ontogeny.  相似文献   

18.
J-J Tong  H Kishi  T Matsuda    A Muraguchi 《Immunology》1999,97(4):672-678
T-cell precursors differentiate into mature T cells predominantly in the thymus. However, it has also been reported that T-cell precursors mature in extrathymic organs such as the liver, bone marrow, or intestines. In order to investigate the nature of the extrathymic microenvironment that supports T-cell maturation, we examined the effect of a bone marrow-derived stroma cell line, ST2, on T-cell precursors by using a reaggregate thymic organ culture (RTOC) system. We found that ST2 cells supported the differentiation of fetal thymocytes at day 14.5 of gestation from a CD4- CD8- double negative (DN) to a CD4+ CD8+ double positive (DP) differentiation stage in a manner similar to that observed in thymus. Anti-interleukin-7 receptor (IL-7R) and anti-c-kit antibodies blocked the growth of thymocytes in RTOC with ST2 cells, but did not inhibit the generation of DP thymocytes. These data indicate that a bone marrow-derived stroma cell, ST2, which supports B-cell differentiation, is also able to support T-cell development and may constitute one of the microenvironmental components for extrathymic T-cell development.  相似文献   

19.
Immature CD8-CD4- double-negative (DN) thymocytes differentiate intrathymically into CD8+CD4- and CD8-CD4+ thymocytes and migrate to the periphery. This differentiation proceeds through several intermediate phenotypic changes in the expression of CD8 and CD4. We have recently established the existence of a CD8loCD4lo cell population in murine thymus that can repopulate the irradiated thymus in vivo and differentiate rapidly in vitro to CD8+CD4+ double-positive (DP) cells. The CD8loCD4lo cells score as DN upon direct cytofluorometric analysis, yet are distinct from true DN cells by various criteria. Experimental evidence strongly suggests that they are descendants of true DN in the maturation pathway. In the experiments presented here, we further characterize this CD8loCD4lo thymocyte population. Northern blot and RNA protection analysis reveal that these cells transcribe full length mRNA for the T cell receptor (TcR)alpha chain, unlike the less mature interleukin 2 receptor-positive DN thymocytes. Surface expression of the TcR-associated CD3 molecule occurs on approximately 15% of these cells at low levels characteristic of immature cells. In the course of in vitro differentiation a vast majority (approximately 80%) of these cells convert to CD8+CD4+ and significant numbers of the brightly staining DP convertants (11%-34% on day 1 and 48%-68% on day 2) express immature levels of CD3. Our results indicate that CD8lo, CD4lo cells might be the first thymic subset to rearrange TcR alpha chain genes and express TcR alpha/beta heterodimer on the surface at levels characteristic of immature cells. Furthermore, the surface expression of TcR persists on the in vitro progeny of these thymocytes.  相似文献   

20.
The environmental pollutant 3, 3', 4, 4'-tetrachlorobiphenyl (TCB) leads to thymic atrophy and immuno-suppression, the former possibly causing the latter. TCB binds lo the cytosolic aryl-hydrocarbon receptor (AhR) and transforms it into a DNA-binding state. The development of fetal thymocyles is severely affected by TCB and other AhR-binding xenobiotics, leading to a skewed pattern of thymocyte maturation stages. Murine thymocyte proliferation after exposure to TCB was studied in fetal thymus organ culture (FTOC). C57BL/6 fetus thymic lobes from day 15 of gestation were explanted and grown for 2, 4, 6. and 8 days in organ culture in the presence or absence of 3.3 μM TCB. Subsets of thymocytes were defined by CD4 and CD8 surface markers, and their cell cycle was analysed by DNA staining with 7-amino-actinomycin D (7-AAD). Exposure of fetal thymi in vitro to 3.3 μM TCB significantly reduced the total number of thymocytes. and fewer thymocytes were in S/G2M phase. The inhibition of cell proliferation induced by TCB treatment affected mainly the CD4 CD8 (double-negative, DN) and CD4 CD8+ (single-positive, SP) subsets, and these inhibition appeared mainly in more immature thymocytes, i. e. DNCD3 and CD8+CD3 subpopulations, whereas no effect of TCB on CD4+CD8+ (double-positive, DP) cell proliferative activity was observed. Analysis of the relation of cell proliferation and development of subsets in differentiating fetal ihymocytes suggests that TCB enhanced thymocyte differentiation into mature CD8+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号