首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
2.
3.
AIMS: Disturbances in lipid metabolism have been suggested to play an important role in myocardial damage. Marked accumulation of free fatty acids (FFAs), including arachidonic acid (AA), palmitic acid, oleic acid, and linoleic acid, occurs during post-ischaemia and reperfusion (post-I/R). Possible cellular mechanisms of AA/FFAs-induced myocyte apoptosis were investigated. METHODS AND RESULTS: In neonatal rat ventricular myocytes, AA/FFAs activate a novel non-selective cation conductance (NSCC), resulting in both intracellular Ca(2+) and Na(+) overload. AA caused sustained cytosolic [Na(+)](cyt) and [Ca(2+)](cyt) overload, resulting in mitochondrial [Na(+)](m) and [Ca(2+)](m) overload, which induced caspase-3-mediated apoptosis. Similar apoptotic effects were seen using Na(+) ionophore cocktail/Ca(2+)-free medium, which induced [Na(+)](cyt) and [Na(+)](m), but not [Ca(2+)](cyt) and [Ca(2+)](m) overload. Electron microscopy showed that inhibition of [Na(+)](m) overload prevented disruption of the mitochondrial membrane, showing that [Na(+)](m) overload is an important upstream signal in AA- and FFA-induced myocyte apoptosis. CONCLUSION: AA and FFAs, which accumulate in the myocardium during post-I/R, may therefore act as naturally occurring endogenous ionophores and contribute to the myocyte death seen during post-I/R.  相似文献   

4.
Kv4 channels are differentially expressed across the mouse left ventricular free wall. Accordingly, the transient outward K+ current (Ito), which is produced by Kv4 channels, is greater in left ventricular epicardial (EPI) than in endocardial (ENDO) cells. However, the mechanisms underlying heterogeneous Kv4 expression in the heart are unclear. Here, we tested the hypothesis that differential [Ca2+]i and calcineurin/NFATc3 signaling in EPI and ENDO cells contributes to the gradient of Ito function in the mouse left ventricle. In support of this hypothesis, we found that [Ca2+]i, calcineurin, and NFAT activity were greater in ENDO than in EPI myocytes. However, the amplitude of Ito was the same in ENDO and EPI cells when [Ca2+]i, calcineurin, and NFAT activity were equalized. Consistent with this, we observed complete loss of Ito and Kv4 heterogeneity in NFATc3-null mice. Interestingly, Kv4.3, Kv4.2, and KChIP2 genes had different apparent thresholds for NFATc3-dependent suppression and were ordered as Kv4.3 approximately KChIP2>Kv4.2. Based on these data, we conclude that calcineurin and NFATc3 constitute a Ca(2+)-driven signaling module that contributes to the nonuniform distribution of Kv4 expression, and hence Ito function, in the mouse left ventricle.  相似文献   

5.
6.
Reductions in voltage-activated K+ (Kv) currents may underlie arrhythmias after myocardial infarction (MI). We investigated the role of beta-adrenergic signaling and the calcineurin/NFAT pathway in mediating the reductions in Kv currents observed after MI in mouse ventricular myocytes. Kv currents were produced by the summation of 3 distinct currents: I(to), I(Kslow1), and I(Kslow2). At 48 hours after MI, we found a 4-fold increase in NFAT activity, which coincided with a decrease in the amplitudes of I(to), I(Kslow1), and I(Kslow2). Consistent with this, mRNA and protein levels of Kv1.5, 2.1, 4.2, and 4.3, which underlie I(Kslow1), I(Kslow2), and I(to), were decreased after MI. Administration of the beta-blocker metoprolol prevented the activation of NFAT and the reductions in I(to), I(Kslow1), and I(Kslow2) after MI. Cyclosporine, an inhibitor of calcineurin, also prevented the reductions in these currents after MI. Importantly, Kv currents did not change after MI in ventricular myocytes from NFATc3 knockout mice. Conversely, chronic beta-adrenergic stimulation or expression of an activated NFATc3 decreased Kv currents to a similar extent as MI. Taken together, these data indicate that NFATc3 plays an essential role in the signaling pathway leading to reduced I(to), I(Kslow1), and I(Kslow2) after MI. We propose that increased beta-adrenergic signaling after MI activates calcineurin and NFATc3, which decreases I(to), I(Kslow1), and I(Kslow2) via a reduction in Kv1.5, Kv2.1, Kv4.2, and Kv4.3 expression.  相似文献   

7.
Mitochondria have been implicated as a potential site of O(2) sensing underlying hypoxic pulmonary vasoconstriction (HPV), but 2 disparate models have been proposed to explain their reaction to hypoxia. One model proposes that hypoxia-induced increases in mitochondrial reactive oxygen species (ROS) generation activate HPV through an oxidant-signaling pathway, whereas the other proposes that HPV is a result of decreased oxidant signaling. In an attempt to resolve this debate, we use a novel, ratiometric, redox-sensitive fluorescence resonance energy transfer (HSP-FRET) probe, in concert with measurements of reduced/oxidized glutathione (GSH/GSSG), to assess cytosolic redox responses in cultured pulmonary artery smooth muscle cells (PASMCs). Superfusion of PASMCs with hypoxic media increases the HSP-FRET ratio and decreases GSH/GSSG, indicating an increase in oxidant stress. The antioxidants pyrrolidinedithiocarbamate and N-acetyl-l-cysteine attenuated this response, as well as the hypoxia-induced increases in cytosolic calcium ([Ca(2+)](i)), assessed by the Ca(2+)-sensitive FRET sensor YC2.3. Adenoviral overexpression of glutathione peroxidase or cytosolic or mitochondrial catalase attenuated the hypoxia-induced increase in ROS signaling and [Ca(2+)](i). Adenoviral overexpression of cytosolic Cu, Zn-superoxide dismutase (SOD-I) had no effect on the hypoxia-induced increase in ROS signaling and [Ca(2+)](i), whereas mitochondrial matrix-targeted Mn-SOD (SOD-II) augmented [Ca(2+)](i). The mitochondrial inhibitor myxothiazol attenuated the hypoxia-induced changes in the ROS signaling and [Ca(2+)](i), whereas cyanide augmented the increase in [Ca(2+)](i). Finally, simultaneous measurement of ROS and Ca(2+) signaling in the same cell revealed that the initial increase in these 2 signals could not be distinguished temporally. These results demonstrate that hypoxia triggers increases in PASMC [Ca(2+)](i) by augmenting ROS signaling from the mitochondria.  相似文献   

8.
In the mouse, genetic reduction in the Na(+), K(+)-ATPase alpha1 or alpha2 isoforms results in different functional phenotypes: heterozygous alpha2 isolated hearts are hypercontractile, whereas heterozygous alpha1 hearts are hypocontractile. We examined Na(+)/Ca(2+) exchange (NCX) currents in voltage clamped myocytes (pipette [Na(+)]=15 mM) induced by abrupt removal of extracellular Na(+). In wild-type (WT) myocytes, peak exchanger currents were 0.59+/-0.04 pA/pF (mean+/-S.E.M., n=10). In alpha1(+/-) myocytes (alpha2 isoform increased by 54%), NCX current was reduced to 0.33+/-0.05 (n=9, P<0.001) indicating a lower subsarcolemmal [Na(+)]. In alpha2(+/-) myocytes (alpha2 isoform reduced by 54%), the NCX current was increased to 0.89+/-0.11 (n=8, P=0.03). The peak sarcolemmal Na(+) pump currents activated by abrupt increase in [K(+)](o) to 4 mM in voltage clamped myocytes in which the Na(+) pump had been completely inhibited for 5 min by exposure to 0 [K(+)](o) were similar in alpha1(+/-) (0.86+/-0.12, n=10) and alpha2(+/-) myocytes (0.94+/-0.08 pA/pF, n=16), and were slightly but insignificantly reduced relative to WT (1.03+/-0.05, n=24). The fluo-3 [Ca(2+)](i) transient (F/F(o)) in WT myocytes paced at 0.5 Hz was 2.18+/-0.09, n=34, was increased in alpha2(+/-) myocytes (F/F(o)=2.56+/-0.14, n=24, P=0.02), and was decreased in alpha1(+/-) myocytes (F/F(o)=1.93+/-0.08, n=28, P<0.05). Thus the alpha2 isoform rather than the alpha1 appears to influence Na(+)/Ca(2+) exchanger currents [Ca(2+)](i) transients, and contractility. This finding is consistent with the proposal that alpha2 isoform of the Na pump preferentially alters [Na(+)] in a subsarcolemmal micro-domain adjacent to Na(+)/Ca(2+) exchanger molecules and SR Ca(2+) release sites.  相似文献   

9.
Pathological conditions linked to imbalances in oxygen supply and demand (for example, ischaemia, hypoxia and heart failure) are associated with disruptions in intracellular sodium ([Na(+)](i)) and calcium ([Ca(2+)](i)) concentration homeostasis of myocardial cells. A decreased efflux or increased influx of sodium may cause cellular sodium overload. Sodium overload is followed by an increased influx of calcium through sodium-calcium exchange. Failure to maintain the homeostasis of [Na(+)](i) and [Ca(2+)](i) leads to electrical instability (arrhythmias), mechanical dysfunction (reduced contractility and increased diastolic tension) and mitochondrial dysfunction. These events increase ATP hydrolysis and decrease ATP formation and, if left uncorrected, they cause cell injury and death. The relative contributions of various pathways (sodium channels, exchangers and transporters) to the rise in [Na(+)](i) remain a matter of debate. Nevertheless, both the sodium-hydrogen exchanger and abnormal sodium channel conductance (that is, increased late sodium current (I(Na))) are likely to contribute to the rise in [Na(+)](i). The focus of this review is on the role of the late (sustained/persistent) I(Na) in the ionic disturbances associated with ischaemia/hypoxia and heart failure, the consequences of these ionic disturbances, and the cardioprotective effects of the antianginal and anti-ischaemic drug ranolazine. Ranolazine selectively inhibits late I(Na), reduces [Na(+)](i)-dependent calcium overload and attenuates the abnormalities of ventricular repolarisation and contractility that are associated with ischaemia/reperfusion and heart failure. Thus, inhibition of late I(Na) can reduce [Na(+)](i)-dependent calcium overload and its detrimental effects on myocardial function.  相似文献   

10.
Endothelin-1 (ET-1) is a potent agonist of cell growth that also stimulates Na(+)/H(+) exchanger isoform 1 (NHE-1) activity. It was hypothesized that the increase in intracellular Na(+) ([Na(+)](i)) mediated by NHE-1 activity may induce the reverse mode of Na(+)/Ca(2+) exchanger (NCX(rev)) increasing intracellular Ca(2+) ([Ca(2+)](i)) which in turn will induce hypertrophy. The objective of this work was to test whether the inhibition of NHE-1 or NCX(rev) prevents ET-1 induced hypertrophy in neonatal rat cardiomyocytes (NRVMs). NRVMs were cultured (24 h) in the absence (control) and presence of 5 nmol/L ET-1 alone, or combined with 1 mumol/L HOE 642 or 5 mumol/L KB-R7943. Cell surface area, (3)H-phenylalanine incorporation and atrial natriuretic factor (ANF) mRNA expression were increased to 131 +/- 3, 220 +/- 12 and 190 +/- 25% of control, respectively (P < 0.05) by ET-1. [Na(+)](i) and total [Ca(2+)](i) were higher (8.1 +/- 1.2 mmol/L and 636 +/- 117 nmol/L, respectively) in ET-1-treated than in control NRVMs (4.2 +/- 1.3 and 346 +/- 85, respectively, P < 0.05), effects that were cancelled by NHE-1 inhibition with HOE 642. The rise in [Ca(2+)](i) induced by extracellular Na(+) removal (NCX(rev)) was higher in ET-1-treated than in control NRVMs and the effect was prevented by co-treatment with HOE 642 or KB-R7943 (NCX(rev) inhibitor). The ET-1-induced increase in cell area, ANF mRNA expression and (3)H-phenylalanine incorporation in ET-1-treated NRVM were decreased by NHE-1 or NCX(rev) inhibition. Our results provide the first evidence that NCX(rev) is, secondarily to NHE-1 activation, involved in ET-1-induced hypertrophy in NRVMs.  相似文献   

11.
The present study attempted to determine whether the protein kinase C (PKC)/Na(+)-H(+)exchange (NHE) pathway would mediate the arrhythmogenic action of kappa -opioid receptor (OR) stimulation. We first determined the effects of U50,488H, a selective kappa -OR agonist, on PKC activity and cardiac rhythm in the isolated perfused rat heart, and intracellular pH (pH(i)), and Ca(2+)([Ca(2+)](i)) and Na(+)([Na(+)](i)) concentrations in the isolated ventricular myocyte. At 5-40 microm U50,488H concentration dependently increased the particulate PKC activity and pH(i), and induced arrhythmia. 40 microm U50,488H also increased [Na(+)](i)and [Ca(2+)](i). The arrhythmogenic effects of 40 microm U50,488H were abolished by nor-binaltorphimine, a selective kappa -OR antagonist. Blockade of PKC and NHE with respective blockers, 1 microm bisindolylmaleimide I or 0.5 microm calphostin C, and 1 microm 5-[N -methyl- N -isobutyl]amiloride or 1 microm 5-([N -ethyl- N -isopropopyl]amiloride, abolished and significantly attenuated, respectively, the effects of kappa -OR stimulation on pH(i), [Na(+)](i)and [Ca(2+)](i), and arrhythmia. To determine the role of pH(i), we observed U50,488H-induced arrhythmia at pH(i)6.8. At this pH(i), the pH(i)increased gradually both in the presence and absence of 40 microm U50,488H to a similar extent. While the increase in response to U50,488H was significantly less at pH(i)6.8 (from 0.09 to 0.10) than that at pH(i)7.1 (from 0.01 to 0.18), the arrhythmia induced by the agonist was the same at both high and low pHs. On the other hand, 5 microm monensin, a sodium ionophore, increased [Na(+)](i)and [Ca(2+)](i), and induced arrhythmia to similar extents as U50,488H. PKC and NHE inhibitors, that significantly attenuated the effects induced by U50,488H, had no effect on those induced by monensin. In conclusion, kappa -OR stimulation induces arrhythmia via PKC/NHE. [Na(+)](i)and [Ca(2+)](i), but not pH(i), may be directly responsible for arrhythmia induced by kappa -OR stimulation.  相似文献   

12.
Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.  相似文献   

13.
Anti-oxidant effects of estrogen reduce [Ca2+]i during metabolic inhibition   总被引:2,自引:0,他引:2  
We previously reported that 17beta-estradiol (betaE2) inhibits the rise in [Ca(2+)](i) and [Na(+)](i) during metabolic inhibition (MI) in mouse cardiomyocytes, but the mechanism has not yet been clarified. Estrogen has been reported to have anti-oxidant properties. We, therefore, have investigated whether interaction with the estrogen receptor (ER) is involved, or whether estrogen reduces free-radical-induced impairment of Na(+)-K(+) ATPase in cardiac myocytes, and whether this effect reduces [Ca(2+)](i) rise. Male mouse ventricular myocytes were studied. Flow cytometry was used with fluo-3 for [Ca(2+)](i) measurement. Dead cells were excluded from analysis by propidium iodide fluorescence. betaE2 reduced the increase in [Ca(2+)](i) during MI even in the presence of the ER blocker tamoxifen. A similar effect on [Ca(2+)](i) was produced by its non-estrogenic isomer, betaE2-estradiol. Other hormones (estrone and estriol) with a phenolic structure also inhibited Ca(2+) overload during MI, but testosterone without the structure did not. The betaE2 effect was attenuated by inhibition of Na(+)-Ca(2+) exchanger (KB-R7943) or Na(+)-K(+) ATPase (low K(+) or ouabain), but not by block of L-type Ca(2+) channel (nifedipine). Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid), a superoxide scavenger, decreased the rise in [Ca(2+)](i) and abolished the betaE2 effect during MI. We conclude that the acute cardioprotective effect of estrogen during MI may be mediated by an ER-independent anti-oxidant action, which results in improved function of Na(+)-K(+) ATPase.  相似文献   

14.
In this study, we examined the effects of extracellular ATP (ATPe) on [Ca(2+)](i), [Na(+)](i), plasma membrane potential changes and estradiol secretion in rat Sertoli cells. ATPe caused a rapid rise of [Ca(2+)](i) with an initial spike followed by a long lasting plateau. The first rapid spike was dependent on the release of Ca(2+) from internal stores as it also occurred in Ca(2+)-free medium while the long lasting plateau phase was dependent on Ca(2+) influx from the external medium. ATPe stimulated a rapid plasma membrane depolarization that was dependent on an influx of Na(+) from the external medium as demonstrated by plasma membrane potential monitoring in Na(+)-free medium and by [Na(+)](i) measurement with the Na(+)-sensitive fluorescent dye SBFI. ATPe stimulated estradiol secretion in a dose dependent manner and was fully dependent on the presence of Na(+) in the external medium while the presence of Ca(2+) was not necessary. Among the different nucleotides tested, only ATP, ATP-5'-[gamma-thio]triphosphate, UTP, alpha,beta-methylene-ATP were effective in stimulating estradiol secretion. These results demonstrate that rat Sertoli cells possess P2-purinergic receptors belonging to the P2X and P2Y subfamily which activation induces [Ca(2+)](i) and [Na(+)](i) rise and Na(+)-dependent plasma membrane depolarization leading to estradiol secretion.  相似文献   

15.
16.
Rationale: A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). Objective: We examined whether the extracellular Ca(2+)-sensing receptor (CaSR) is involved in the enhanced Ca(2+) influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. Methods and Results: In normal PASMC superfused with Ca(2+)-free solution, addition of 2.2 mmol/L Ca(2+) to the perfusate had little effect on [Ca(2+)](cyt). In IPAH-PASMC, however, restoration of extracellular Ca(2+) induced a significant increase in [Ca(2+)](cyt). Extracellular application of spermine also markedly raised [Ca(2+)](cyt) in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca(2+)-induced [Ca(2+)](cyt) rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca(2+)-mediated [Ca(2+)](cyt) increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. Conclusions: The extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca(2+) influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.  相似文献   

17.
18.
Ouabain, a specific inhibitor of the Na(+)/K(+)-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells is regulated through an interaction between the Na(+)/K(+)-pump and the Na(+)/Ca(2+)-exchanger leading to an increase in the intracellular calcium concentration ([Ca(2+)](i)) in discrete areas near the plasma membrane. [Ca(2+)](i) in smooth muscle cells was imaged in cultured rat aortic smooth muscle cell pairs (A7r5) and in rat mesenteric small artery segments simultaneously with force. In A7r5 coupling between cells was estimated by measuring membrane capacitance. Smooth muscle cells were uncoupled when the Na(+)/K(+)-pump was inhibited either by a low concentration of ouabain, which also caused a localized increase of [Ca(2+)](i) near the membrane, or by ATP depletion. Reduction of Na(+)/K(+)-pump activity by removal of extracellular potassium ([K(+)](o)) also uncoupled cells, but only after inhibition of K(ATP) channels. Inhibition of the Na(+)/Ca(2+)-exchange activity by SEA0400 or by a reduction of the equilibrium potential (making it more negative) also uncoupled the cells. Depletion of intracellular Na(+) and clamping of [Ca(2+)](i) at low concentrations prevented the uncoupling. The experiments suggest that the Na(+)/K(+)-pump may affect gap junction conductivity via localized changes in [Ca(2+)](i) through modulation of Na(+)/Ca(2+)-exchanger activity.  相似文献   

19.
We have previously demonstrated that brief episodes of tachycardia prior to a prolonged occlusion of a coronary artery, followed by reperfusion, substantially reduce the infarct size. Adenosine receptors and mitochondrial ATP-dependent K(+) channels mediate this effect. Since preconditioning can be induced or reverted by maneuvers that increase or decrease [Ca(2+)](i), respectively, and tachycardia increases [Ca(2+)](i), we studied the participation of sarcoplasmic reticulum and Ca(2+) in the preconditioning effect of tachycardia. We measured the effect of ischemia and tachycardia on Ca(2+) uptake and release by sarcoplasmic reticulum vesicles isolated from left ventricular canine myocardium. Myocardial ischemia increased Ca(2+)-release rate constants and decreased both the initial rates of Ca(2+) uptake and [(3)H]-ryanodine binding by sarcoplasmic reticulum. In addition, ischemia induced a decrease in the pentameric form of phospholamban and in the content of ryanodine-receptor Ca(2+)-release channel protein. All these effects were reverted in hearts preconditioned with tachycardia. Furthermore, tachycardia by itself increased [(3)H]-ryanodine binding, Ca(2+)-release rate constants and the protein levels of ryanodine-receptor Ca(2+)-release channels and the ATP-dependent Ca(2+) pump. These results suggest that tachycardia preserves the integrity of the sarcoplasmic reticulum preventing the excess of release and the decrease of uptake of Ca(2+) produced by ischemia, thereby avoiding cytosolic Ca(2+) overload. This sarcoplasmic reticulum protection could partly explain the preconditioning effect of tachycardia.  相似文献   

20.
BACKGROUND & AIMS: Fatty acid ethyl esters are ethanol metabolites inducing sustained, toxic elevations of the acinar cytosolic free calcium ion concentration ([Ca(2+)](C)) implicated in pancreatitis. We sought to define the mechanisms of this elevation. METHODS: Isolated mouse pancreatic acinar cells were loaded with fluorescent dyes for confocal microscopy to measure [Ca(2+)](C) (Fluo 4, Fura Red), endoplasmic reticulum calcium ion concentration ([Ca(2+)](ER), Mg Fluo 4), mitochondrial membrane potential (TMRM), ADP:ATP ratio (Mg Green), and NADH autofluorescence in response to palmitoleic acid ethyl ester and palmitoleic acid (10-100 micromol/L). Whole-cell patch clamp was used to measure the calcium-activated chloride current and apply ethanol metabolites and/or ATP intracellularly. RESULTS: Intracellular delivery of ester induced oscillatory increases of [Ca(2+)](C) and calcium-activated currents, inhibited acutely by caffeine (20 mmol/L), but not atropine, indicating involvement of inositol trisphosphate receptor channels. The stronger effect of extracellular ester or acid caused depletion of [Ca(2+)](ER), not prevented by caffeine, but associated with depleted ATP, depleted NADH autofluorescence, and depolarized mitochondria, suggesting calcium-ATPase pump failure because of lack of ATP. Intracellular ATP abolished the sustained rise in [Ca(2+)](C), although oscillatory signals persisted that were prevented by caffeine. Inhibition of ester hydrolysis markedly reduced its calcium-releasing effect and consequent toxicity. CONCLUSIONS: Fatty acid ethyl ester increases [Ca(2+)](C) through inositol trisphosphate receptors and, following hydrolysis, through calcium-ATPase pump failure from impaired mitochondrial ATP production. Lowering cellular fatty acid substrate concentrations may reduce cell injury in pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号