首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary damage is a critical determinant of the functional outcome in patients with spinal cord injury (SCI), and involves multiple mechanisms of which the most important is the loss of nerve cells mediated by multiple factors. Autophagy can result in cell death, and plays a key role in the development of SCI. It has been recognized that valproic acid (VPA) is neuroprotective in certain experimental animal models, however, the levels of autophagic changes in the process of neuroprotection by VPA treatment following SCI are still unknown. In the present study, we determined the extent of autophagy after VPA treatment in a rat model of SCI. We found that both the mRNA and protein levels of Beclin-1 and LC3 were significantly increased at 1, 2, and 6 h after SCI and peaked at 2 h; however, Western blot showed that autophagy was markedly decreased by VPA treatment at 2 h post-injury. Besides, post-SCI treatment with VPA improved the Basso-Beattie-Bresnahan scale, increased the number of ventral horn motoneurons, and reduced myelin sheath damage compared with vehicle-treated animals at 42 days after SCI. Together, our results demonstrated the characteristics of autophagy expression following SCI, and found that VPA reduced autophagy and enhanced motor function.  相似文献   

2.
目的探讨雷公藤甲素(TP)与甲泼尼龙(MP)调节细胞自噬和凋亡促进脊髓损伤(SCI)修复的作用机制,为临床替代MP治疗SCI提供理论依据和新的可选择性药物。 方法选取60只雌性Thy-YFP转基因小鼠建立SCI模型,按照随机数字表法分为假手术组(Sham组)、DMSO溶液处理组(DMSO组)、MP实验组和TP实验组,每组15只。TP实验组、DMSO组及Sham组小鼠分别于术后立即腹腔注射TP(0.002 mg/10 g)、等量5%DMSO、0.9%NaCl溶液,连续给药7 d;MP实验组小鼠于术后30 min、6 h、24 h腹腔注射MP溶液(0.3 mg/10 g)。采用BMC评价运动功能,HE染色及Nissl染色法检测脊髓组织学变化,采用免疫印迹及免疫荧光染色检测自噬相关蛋白(Beclin-1、LC3B、p62)及凋亡相关蛋白(Bcl-2、Bax、caspase-3)的水平。 结果TP实验组干预后SCI小鼠BMS运动功能评分随着时间推移逐渐升高,神经元数量增多,自噬相关蛋白Beclin-1、LC3B上调且p62降低,细胞凋亡相关蛋白caspase-3、Bax降低且抗凋亡蛋白Bcl-2升高;无论是运动功能评价、组织学变化,还是SCI后细胞自噬增强、细胞凋亡减少,TP实验组均优于DMSO组(P<0.05),但与MP实验组比较差异均无统计学意义(P>0.05)。 结论TP在急性SCI中通过上调自噬、抑制凋亡可以促进损伤后的脊髓运动功能恢复,与MP相比对SCI具有相同的潜在保护作用。  相似文献   

3.
AimSpinal cord injury (SCI) is a serious disabling injury worldwide, and the excessive inflammatory response it causes plays an important role in secondary injury. Regulating the inflammatory response can be a potential therapeutic strategy for improving the prognosis of SCI. Zinc has been demonstrated to have a neuroprotective effect in experimental spinal cord injury models. In this study, we aimed to explore the neuroprotective effect of zinc through the suppression of the NLRP3 inflammasome.MethodAllen''s method was used to establish an SCI model in C57BL/6J mice. The Basso Mouse Scale (BMS), Nissl staining were employed to confirm the protective effect of zinc on neuronal survival and functional recovery in vivo. Western blotting (WB), immunofluorescence (IF), and enzyme‐linked immunosorbent assay (ELISA) were used to detect the expression levels of NLRP3 inflammasome and autophagy‐related proteins. Transmission electron microscopy (TEM) was used to confirm the occurrence of zinc‐induced autophagy. In vitro, lipopolysaccharide (LPS) and ATP polarized BV2 cells to a proinflammatory phenotype. 3‐Methyladenine (3‐MA) and bafilomycin A1 (BafA1) were chosen to explore the relationship between the NLRP3 inflammasome and autophagy. A coimmunoprecipitation assay was used to detect the ubiquitination of the NLRP3 protein.ResultsOur data showed that zinc significantly promoted motor function recovery after SCI. In vivo, zinc treatment inhibited the protein expression level of NLRP3 while increasing the level of autophagy. These effects were fully validated by the polarization of BV2 cells to a proinflammatory phenotype. The results showed that when 3‐MA and BafA1 were applied, the promotion of autophagy by zinc was blocked and that the inhibitory effect of zinc on NLRP3 was reversed. Furthermore, co‐IP confirmed that the promotion of autophagy by zinc also activated the protein expression of ubiquitin and suppressed high levels of NLRP3.ConclusionZinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination after SCI.  相似文献   

4.
Lithium promotes autophagy and has a neuroprotective effect on spinal cord injury(SCI); however, the underlying mechanisms remain unclear. Therefore, in this study, we investigated the effects of lithium and the autophagy inhibitor 3-methyladenine(3-MA) in a rat model of SCI. The rats were randomly assigned to the SCI, lithium, 3-MA and sham groups. In the 3-MA group, rats were intraperitoneally injected with 3-MA(3 mg/kg) 2 hours before SCI. In the lithium and 3-MA groups, rats were intraperitoneally injected with lithium(LiCl; 30 mg/kg) 6 hours after SCI and thereafter once daily until sacrifice. At 2, 3 and 4 weeks after SCI, neurological function and diffusion tensor imaging indicators were remarkably improved in the lithium group compared with the SCI and 3-MA groups. The Basso, Beattie and Bresnahan locomotor rating scale score and fractional anisotropy values were increased, and the apparent diffusion coefficient value was decreased. Immunohistochemical staining showed that immunoreactivities for Beclin-1 and light-chain 3 B peaked 1 day after SCI in the lithium and SCI groups. Immunoreactivities for Beclin-1 and light-chain 3 B were weaker in the 3-MA group than in the SCI group, indicating that 3-MA inhibits lithium-induced autophagy. Furthermore, NeuN+ neurons were more numerous in the lithium group than in the SCI and 3-MA groups, with the fewest in the latter. Our findings show that lithium reduces neuronal damage after acute SCI and promotes neurological recovery by inducing autophagy. The neuroprotective mechanism of action may not be entirely dependent on the enhancement of autophagy, and furthermore, 3-MA might not completely inhibit all autophagy pathways.  相似文献   

5.
Spinal cord injury(SCI) is a serious central nervous system trauma that leads to loss of motor and sensory functions in the SCI patients. One of the cell death mechanisms is autophagy, which is ‘self-eating' of the damaged and misfolded proteins and nucleic acids, damaged mitochondria, and other impaired organelles for recycling of cellular building blocks. Autophagy is different from all other cell death mechanisms in one important aspect that it gives the cells an opportunity to survive or demise depending on the circumstances. Autophagy is a therapeutic target for alleviation of pathogenesis in traumatic SCI. However, functions of autophagy in traumatic SCI remain controversial. Spatial and temporal patterns of activation of autophagy after traumatic SCI have been reported to be contradictory. Formation of autophagosomes following therapeutic activation or inhibition of autophagy flux is ambiguous in traumatic SCI studies. Both beneficial and harmful outcomes due to enhancement autophagy have been reported in traumatic SCI studies in preclinical models. Only further studies will make it clear whether therapeutic activation or inhibition of autophagy is beneficial in overall outcomes in preclinical models of traumatic SCI. Therapeutic enhancement of autophagy flux may digest the damaged components of the central nervous system cells for recycling and thereby facilitating functional recovery. Many studies demonstrated activation of autophagy flux and inhibition of apoptosis for neuroprotective effects in traumatic SCI. Therapeutic induction of autophagy in traumatic SCI promotes axonal regeneration, supporting another beneficial role of autophagy in traumatic SCI. In contrast, some other studies demonstrated that disruption of autophagy flux in traumatic SCI strongly correlated with neuronal death at remote location and impaired functional recovery. This article describes our current understanding of roles of autophagy in acute and chronic traumatic SCI, crosstalk between autophagy and apoptosis, therapeutic activation or inhibition of autophagy for promoting functional recovery, and future of autophagy in traumatic SCI.  相似文献   

6.
Neurons have a limited capacity to regenerate in the adult central nervous system (CNS). The inability of damaged axons to re-establish original circuits results in permanent functional impairment after spinal cord injury (SCI). Despite abortive regeneration of axotomized CNS neurons, limited spontaneous recovery of motor function emerges after partial SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways spared by the injury, suggesting that plasticity of intact circuits is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy), the intact CST functionally sprouts into the denervated side of the spinal cord. Furthermore, pharmacologic and genetic methods that enhance the intrinsic growth capacity of adult neurons or block extracellular growth inhibitors are effective at significantly enhancing intact CST reorganization and recovery of motor function. Owing to its importance in controlling fine motor behavior in primates, the CST is the most widely studied descending motor pathway; however, additional studies in rodents have shown that plasticity within other spared descending motor pathways, including the rubrospinal tract, raphespinal tract, and reticulospinal tract, can also result in restoration of function after incomplete SCI. Identifying the molecular mechanisms that drive plasticity within intact circuits is crucial in developing novel, potent, and specific therapeutics to restore function after SCI. In this review we discuss the evidence supporting a focus on exploring the capacity of intact motor circuits to functionally repair the damaged CNS after SCI.  相似文献   

7.
Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms including inhibition of glycogen synthase kinase-3 (GSK-3), a major tau kinase. Recently, it has been shown that, in various neurodegenerative proteinopathies, lithium could induce autophagy. To analyze how lithium is therapeutically beneficial in tauopathies, transgenic mice overexpressing human mutant tau (P301L) were treated with oral lithium chloride (LiCl) for 4 months starting at the age of 5 months. At first, we examined the effects of treatment on behavior (using a battery of behavioral tests), tau phosphorylation (by biochemical assays), and number of neurofibrillary tangles (NFTs) (by immunohistopathology). In comparison with control mice, LiCl-treated mice showed a significantly better score in the sensory motor tasks, as well as decreases in tau phosphorylation, soluble tau level, and number of NFTs. Next, we examined lithium effects on autophagy using an antibody against microtubule-associated protein 1 light chain 3 (LC3) as an autophagosome marker. The number of LC3-positive autophagosome-like puncta was increased in neurons of LiCl-treated mice. Neurons containing NFTs were completely LC3-negative, whereas LC3-positive autophagosome-like puncta contained phosphorylated-tau (p-tau). The protein level of p62 was decreased in LiCl-treated mice. These data suggested that oral long-term lithium treatment could attenuate p-tau-induced motor disturbance not only by inhibiting GSK-3 but also by enhancing autophagy in tauopathy model mice.  相似文献   

8.
Spinal cord injury(SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.  相似文献   

9.
The neuroprotective effects of 17beta-estradiol (E2) were investigated using an in vitro model of traumatic brain injury in which cortical neuronal cultures were subjected to mechanical strain-injury. The rise in intracellular calcium ([Ca(2+)](i)) following neuronal injury was reduced by addition of 10 or 100 nM E2 to the cultures immediately following injury. Neuronal damage was measured 24 h after injury by propidium iodide uptake and cell viability by carboxyfluorescein diacetate uptake. Addition of 1, 10, or 100 nM E2 to cell cultures immediately following injury decreased neuronal damage and increased neuronal viability compared to vehicle-treated neurons. These results demonstrate the neuroprotective activity of E2 in an in vitro model of neuronal injury, and suggest that such effects may be related to the ability of E2 to modulate [Ca(2+)](i).  相似文献   

10.
Spinal cord injury(SCI) causes disturbances of motor skills.Free radicals have been shown to be essential for the development of spinal cord trauma.Despite some progress,until now no effective pharmacological therapies against SCI have been verified.The purpose of our experiment was to investigate the neuroprotective effects of ebselen on experimental SCI.Twenty-two rats subjected to SCI were randomly subjected to SCI with no further treatment(n = 10) or intragastric administration of ebselen(10 mg/kg) immediately and 24 hours after SCI.Behavioral changes were assessed using the Basso,Beattie,and Bresnahan locomotor scale and footprint test during 12 weeks after SCI.Histopathological and immunohistochemical analyses of spinal cords and brains were performed at 12 weeks after SCI.Magnetic resonance imaging analysis of spinal cords was also performed at 12 weeks after SCI.Rats treated with ebselen presented only limited neurobehavioral progress as well as reduced spinal cord injuries compared with the control group,namely length of lesions(cysts/scars)visualized histopathologically in the spinal cord sections was less but cavity area was very similar.The same pattern was found in T2-weighted magnetic resonance images(cavities) and diffusion-weighted images(scars).The number of FluoroGold retrogradely labeled neurons in brain stem and motor cortex was several-fold higher in ebselen-treated rats than in the control group.The findings suggest that ebselen has only limited neuroprotective effects on injured spinal cord.All exprimental procedures were approved by the Local Animal Ethics Committee for Experiments on Animals in Katowice(Katowice,Poland)(approval No.19/2009).  相似文献   

11.
After spinal cord injury (SCI), apoptosis of neurons and oligodendrocytes is associated with axonal degeneration and loss of neurological function. Recent data have suggested a potential role for FAS death receptor-mediated apoptosis in the pathophysiology of SCI. In this study, we examined the effect of FAS deficiency on SCI in vitro and in vivo. FAS(Lpr/lpr) mutant mice and wildtype background-matched mice were subjected to a T5-6 clip compression SCI, and complementary studies were done in an organotypic slice culture model of SCI. Post-traumatic apoptosis in the spinal cord, which was seen in neurons and oligodendrocytes, was decreased in the FAS-deficient mice both in vivo and in vitro particularly in oligodendrocytes. FAS deficiency was also associated with improved locomotor recovery, axonal sparing and preservation of oligodendrocytes and myelin. However, FAS deficiency did not result in a significant increase in surviving neurons in the spinal cord at 6 weeks after injury, likely reflecting the importance of other cell death mechanisms for neurons. We conclude that inhibition of the FAS pathway may be a clinically attractive neuroprotective strategy directed towards oligodendroglial and axonal preservation in the treatment of SCI and neurotrauma.  相似文献   

12.
13.
Antithrombin (AT) reveals its antiinflammatory activity by promoting endothelial release of prostacyclin (PGI(2)) in vivo. Since neuroinflammation is critically involved in the development of ischemia/reperfusion (I/R)-induced spinal cord injury (SCI), it is possible that AT reduces the I/R-induced SCI by attenuating the inflammatory responses. We examined this possibility using rat model of I/R-induced SCI in the present study. AT significantly reduced the mortality and motor disturbances by inhibiting reduction of the number of motor neurons in animals subjected to SCI. Microinfarctions of the spinal cord seen after reperfusion were markedly reduced by AT. AT significantly enhanced the I/R-induced increases in spinal cord tissue levels of 6-keto-PGFIalpha, a stable metabolite of PGI2. AT significantly inhibited the I/R-induced increases in spinal cord tissue levels of TNF-alpha, rat interleukin-8 and myeloperoxidase. In contrast,Trp(49) -modified AT did not show any protective effects. Pretreatment with indomethacin significantly reversed the protective effects of AT. An inactive derivative of factor Xa, which selectively inhibits thrombin generation, has been shown to fail to reduce SCI.Taken together, these observations strongly suggested that AT might reduce I/R-induced SCI mainly by the antiinflammatory effect through promotion of endothelial production of PGI(2). These findings also suggested that AT might be a potential neuroprotective agent.  相似文献   

14.
Spinal cord injury is a major cause of disability and results in many serious physical, psychological, and social difficulties. Numerous studies have shown that traumatic spinal cord injuries (SCI) lead to neuronal loss and axonal degeneration in and around the injury site that cause partial disability or complete paralysis. An important strategy in the treatment of SCI is to promote neuron survival and axon outgrowth, making possible the recovery of neural connections. Using an in vitro survival assay, we have identified ginsenosides Rb1 and Rg1, extracted from ginseng root (Panax ginseng C. A. Meyer), as efficient neuroprotective agents for spinal cord neurons. These compounds protect spinal neurons from excitotoxicity induced by glutamate and kainic acid, as well as oxidative stress induced by H(2)O(2). The neuroprotective effects are dose-dependent. The optimal doses are 20-40 microM for ginsenosides Rb1 and Rg1. The effects are specific for Rb1 and Rg1, since a third ginsenoside, Re, did not exhibit any activity. Ginseng has been used for thousands of years in the treatment of neurological disorders and other diseases in Asia. Ginsenosides Rb1 and Rg1 represent potentially effective therapeutic agents for spinal cord injuries.  相似文献   

15.
Neuroglobin (NGB) is a recently discovered globin, which is widely expressed in vertebrates central and peripheral nervous systems. Previous studies have shown that NGB is important in protecting neurons from hypoxic/ischemic brain injuries. However, there are no reports on the neuroprotective effects of NGB after mechanical injury. Currently, we showed that the NGB expression level in neurons increased continuously from 2 h after injury, and reached a peak at 16 h (p<0.01), after which it decreased sharply. NGB that was overexpressed in mechanically injured B104 cells showed significant neuroprotective effects. Lactate dehydrogenase (LDH) activity decreased and cell survival rates increased (p<0.01, n=5). In the rat model of focal brain trauma, the NGB expression increased sharply at 1 h, after which it increased continuously until it reached a peak at 6 h, and then gradually decreased (p<0.01, n=5). Furthermore, moderate and severe injury resulted in significantly higher NGB levels than did mild injury (p<0.01, n=5). Our results indicate that NGB exerts significant neuroprotective effects after mechanical injury, and thus has important implications for the prognosis and cure of traumatic brain injury.  相似文献   

16.
The cytokine erythropoietin (EPO) has been shown to be neuroprotective in a variety of models of central and peripheral nervous system injury. Derivatives of EPO that lack its erythropoietic effects have recently been developed, and the initial reports suggest that they have a neuroprotective potential comparable to that of EPO. One such derivative is carbamylated EPO (CEPO). In the current study we compared the effects of treatment with EPO and CEPO on some of the early neurodegenerative events that occur following spinal cord injury (SCI) induced by hemisection. Adult male Wistar rats received a unilateral hemisection of the spinal cord. Thirty minutes and 24 h following injury, animals received an intraperitoneal injection of saline, EPO (40 microg/kg) or CEPO (40 microg/kg). Results indicated that 3 days post-injury, both CEPO and EPO decreased to a similar extent the size of the lesion compared with control animals. Both compounds also decreased the number of terminal transferase-mediated dUTP nick-end labelling (TUNEL)-labelled apopotic nuclei around the lesion site, as well as the number of axons expressing the injury marker beta-amyloid precursor protein. EPO and CEPO also increased Schwann cell infiltration into the lesion site, although neither compound had any effect on macrophage infiltration either within the lesion site itself or in the surrounding intact tissue. In addition, immunohistochemistry showed an increased expression of both the EPO receptor and the beta common receptor subunit, the components of the receptor complex proposed to mediate the neuroprotective effects of EPO and CEPO in neurons near the site of the injury. The results show that not only does CEPO have an efficacy comparable to that of EPO in its neuroprotective potential following injury, but also that changes in the receptors for these compounds following SCI may underlie their neuroprotective efficacy.  相似文献   

17.
Macrophage migration inhibitory factor (MIF) is a multipotential protein that acts as a proinflammatory cytokine, a pituitary hormone, and a cell proliferation and migration factor. The objective of this study was to elucidate the role of MIF in spinal cord injury (SCI) using female MIF knockout (KO) mice. Mouse spinal cord compression injury was produced by application of a static load (T8 level, 20 g, 5 min). We analyzed the motor function of the hind limbs and performed histological examinations. Hind-limb function recovered significantly in the KO mice starting from three weeks after injury. Cresyl-violet staining revealed that the number of surviving neurons in the KO mice was significantly larger than that of WT mice six weeks after injury. Immunohistochemical analysis revealed that the number of NeuN/caspase-3-active, double-positive, apoptotic neurons in the KO mice was significantly smaller than that of the WT mice 24 and 72 h after SCI. These results were related to in-vitro studies showing increased resistance of cerebellar granular neurons from MIF-KO animals to glutamate neurotoxicity. These results suggest that MIF existence hinders neuronal survival after SCI. Suppression of MIF may attenuate detrimental secondary molecular responses of the injured spinal cord.  相似文献   

18.
Our previous study revealed that early application of electrical field stimulation(EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was neuroprotective in the dorsal corticospinal tract after spinal cord injury(SCI). The objective of this study was to further evaluate the effect of EFS on protection of anterior horn motoneurons and their target musculature after SCI and its mechanism. Rats were randomized into three equal groups. The EFS group received EFS for 30 minutes immediately after injury at T_(10). SCI group rats were only subjected to SCI and sham group rats were only subjected to laminectomy. Luxol fast blue staining demonstrated that spinal cord tissue in the injury center was better protected; cross-sectional area and perimeter of injured tissue were significantly smaller in the EFS group than in the SCI group. Immunofluorescence and transmission electron microscopy showed that the number of spinal cord anterior horn motoneurons was greater and the number of abnormal neurons reduced in the EFS group compared with the SCI group. Wet weight and cross-sectional area of vastus lateralis muscles were smaller in the SCI group to in the sham group. However, EFS improved muscle atrophy and behavioral examination showed that EFS significantly increased the angle in the inclined plane test and Tarlov's motor grading score. The above results confirm that early EFS can effectively impede spinal cord anterior horn motoneuron loss, promote motor function recovery and reduce muscle atrophy in rats after SCI.  相似文献   

19.
Spinal cord injury (SCI) is a devastating disease that leads to permanent disability of victims for which no suitable therapeutic intervention has been achieved so far. Thus, exploration of novel therapeutic agents and nano-drug delivery to enhance neuroprotection after SCI is the need of the hour. Previous research on SCI is largely focused to improve neurological manifestations of the disease while ignoring spinal cord pathological changes. Recent studies from our laboratory have shown that pathological recovery of SCI appears to be well correlated with the improvement of sensory motor functions. Thus, efforts should be made to reduce or minimize spinal cord cell pathology to achieve functional and cellular recovery to enhance the quality of lives of the victims. While treating spinal cord disease, recovery of both neuronal and non-neuronal cells, e.g., endothelia and glial cells are also necessary to maintain a healthy spinal cord function after trauma. This review focuses effects of novel therapeutic strategies on the role of spinal cord microvascular reactions and endothelia cell functions, i.e., blood–spinal cord barrier (BSCB) in SCI and repair mechanisms. Thus, new therapeutic approach to minimize spinal cord pathology after trauma using antibodies to various neurotransmitters and/or drug delivery to the cord directly by topical application to maintain strong localized effects on the injured cells are discussed. In addition, the use of nanowired drugs to affect remote areas of the cord after their application on the injured spinal cord in thwarting the injury process rapidly and to enhance the neuroprotective effects of the parent compounds are also described in the light of current knowledge and our own investigations. It appears that local treatment with new therapeutic agents and nanowired drugs after SCI are needed to enhance neurorepair leading to improved spinal cord cellular functions and the sensory motor performances.  相似文献   

20.
Inflammation and oxidative stress play major roles in the pathogenesis after spinal cord injury (SCI). Here, we examined the neuroprotective effects of Angelica dahuricae radix (ADR) extract after SCI. ADR extract significantly decreased the levels of proinflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in a lipopolysaccharide (LPS)-activated microglial cell line, BV2 cells. ADR extract also significantly alleviated the level of reactive oxygen species in LPS-activated BV2 cells. To examine the neuroprotective effect of ADR extract after SCI, spinally injured rats were administered ADR extract orally at a dose of 100 mg/kg for 14 days. ADR extract treatment significantly reduced the levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. The levels of superoxide anion (O(2·)(-)) and protein nitration were also significantly decreased by ADR extract. In addition, ADR extract inhibited p38 mitogen-activated protein kinase activation and pronerve growth factor expression in microglia after SCI. Furthermore, ADR extract significantly inhibited caspase-3 activation following apoptotic cell death of neurons and oligodendrocytes, thereby improving functional recovery after injury. Thus, our data suggest that ADR extract provides neuroprotection by alleviating inflammation and oxidative stress and can be used as an orally administered therapeutic agent for acute SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号