首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO2 NPs were used to compare the effects. Exposure to 32?μg/mL ZnO NPs (p?2 NPs (p?>?0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO2 NP exposure (p?>?0.05). The presence of 250?nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p?p?>?0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p?>?0.05) except neutral red uptake assay (p?相似文献   

2.
In the last two decades, nanoparticles (NPs) have found applications in a wide variety of consumer goods. Titanium dioxide (TiO2) and silver (Ag) NPs are both found in cosmetics and foods, but their increasing use is of concern due to their ability to be taken up by biological systems. While there are some reports of TiO2 and Ag NPs affecting complex organisms, their effects on reproduction and development have been largely understudied. Here, the effects of orally administered TiO2 or Ag NPs on reproduction and development in two different model organisms were investigated. TiO2 NPs reduced the developmental success of CD-1 mice after a single oral dose of 100 or 1000 mg/kg to dams, resulting in a statistically significant increase in fetal deformities and mortality. Similarly, TiO2 NP addition to food led to a significant progeny loss in the fruit fly, Drosophila, as shown by a decline in female fecundity. Ag NP administration resulted in an increase in the mortality of fetal mice. Similarly in Drosophila, Ag NP feeding led to a significant decrease in developmental success, but unlike TiO2 NP treatment, there was no decline in fecundity. The distinct response associated with each type of NP likely reflects differences in NP administration as well as the biology of the particular model. Taken together, however, this study warns that these common NPs could be detrimental to the reproductive and developmental health of both invertebrates and vertebrates.  相似文献   

3.
《Nanotoxicology》2013,7(5):543-553
Abstract

Increasing the production and applications of TiO2 nanoparticles (NPs) has led to grow concerns about the consequences for the environment. In this study, we investigated the effects of a set of TiO2 NPs on the viability of mussel hemocytes and gill cells using neutral red and thiazolyl tetrazolium bromide assays. For this, we compared the cytotoxicity of TiO2 NPs (0.1–100?mg Ti/L) produced by different techniques: rutile NPs (60?nm) produced by milling and containing disodium laureth sulfosuccinate (DSLS), rutile NPs (10, 40 and 60?nm) produced by wet chemistry and anatase/rutile NPs (~100?nm) produced by plasma synthesis. The commercially available P25 anatase/rutile NPs (10–20?nm) were also tested. Exposures were performed in parallel with their respective bulk forms and the cytotoxicity of the additive DSLS was also tested. Z potential values in distilled water indicated different stabilities depending on the NP type and all NPs tested formed agglomerates/aggregates in cell culture media. In general, TiO2 NPs showed a relatively low and dose-dependent toxicity for both cell models with the two assays tested. NPs produced by milling showed the highest effects, probably due to the toxicity of DSLS. Size-dependent toxicity was found for NPs produced by wet chemistry (10?nm?>?40?nm and 60?nm). All TiO2 NPs tested were more toxic than bulk forms excepting for plasma produced ones, which were the least toxic TiO2 tested. The mixture bulk anatase/rutile TiO2 was more toxic than bulk rutile TiO2. In conclusion, the toxicity of TiO2 NPs varied with the mode of synthesis, crystalline structure and size of NPs and can also be influenced by the presence of additives in the suspensions.  相似文献   

4.
To evaluate the nanoparticle (NP) toxicity, much efforts have been devoted for developing methods to accurately disperse NPs into aqueous suspensions prior to in vitro toxicological studies. As NP toxicity is strongly dependent on their physicochemical properties, NP characterization is a key step for any in vitro toxicological study. This study demonstrates that the static multiple light scattering (SMLS) technique allows for the simultaneous screening of the NP size, agglomeration state, stability and dosimetry in biological media. Batch dispersions of TiO2 P25 NPs in water with various bovine serum albumin (BSA) mass fractions (from 0% to 0.5%) and dilutions of these dispersions into cell culture media were characterized with SMLS. In the batch dispersions, TiO2 NPs are stable and well dispersed for BSA mass fraction lower than 0.2% while agglomeration and rapid settling is observed for higher BSA mass fractions. Paradoxically, when diluted in cell culture media, TiO2 NPs are well dispersed and stable for BSA mass fractions higher than 0.2%. The TiO2 NP dosimetry of these dilutions was evaluated experimentally with SMLS and confronted with numerical approaches. The TiO2 NP bottom concentration evolves far more slowly in the case of the higher BSA mass fraction. Such measurements give valuable insights on the NP fate and transport in biological media to obtain in fine reliable size and dose-cytotoxicity responses.  相似文献   

5.
Existing literature pointed out that the liver may be the target organ of toxicity induced by titanium dioxide nanoparticles (TiO2 NPs) via oral exposure. Gender differences in health effects widely exist and relevant toxicological research is important for safety assessment. To explore the gender susceptibility of TiO2 NP‐induced hepatic toxicity and the underlying mechanism, we examined female and male Sprague‐Dawley rats administrated with TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day for 90 days. The serum biochemical indicators and liver pathological observation were used to assess hepatic toxicity. We found significant hepatic toxicity could be induced by subchronic oral exposure to TiO2 NPs, which was more obvious and severe in female rats. No accumulation of TiO2 NPs in the liver was observed, indicating that hepatic toxicity may not be caused through direct pathways. Oxidized glutathione, lipid peroxidation products increased significantly and reduced glutathione decreased significantly in the liver of rats in repeated TiO2 NP‐exposed groups. Hematological parameters of white blood cells and inflammatory cytokines in serum including interleukin 1α, interleukin 4 and tumor necrosis factor also increased significantly. Indirect pathways through initiating oxidative stress and inflammatory responses were suggested as the possible mechanism of the hepatic toxicity in this experiment. The higher sensitivity to redox homeostasis imbalance and inflammation of female rats may be the main reason for gender differences. Our research suggested that gender should be a susceptible factor for identifying and monitoring long‐term oral toxicity of TiO2 NPs.  相似文献   

6.
Although titanium dioxide nanoparticles (TiO2 NPs) have been extensively studied, their possible impact on health due to their specific properties supported by their size and geometry, remains to be fully characterized to support risk assessment. To further document NPs biological effects, we investigated the impact of TiO2 NPs morphology on biological outcomes. To this end, TiO2 NPs were synthesized as nanoneedles (NNs), titanate scrolled nanosheets (TNs), gel-sol-based isotropic nanoparticles (INPs) and tested for perturbation of cellular homeostasis (cellular ion content, cell proliferation, stress pathways) in three cell types and compared to the P25. We showed that TiO2 NPs were internalized at various degrees and their toxicity depended on both titanium content and NPs shape, which impacted on intracellular calcium homeostasis thereby leading to endoplasmic reticulum stress. Finally, we showed that a minimal intracellular content of TiO2 NPs was mandatory to induce toxicity enlightening once more the crucial notion of internalized dose threshold beside the well-recognized dose of exposure.  相似文献   

7.
To design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200?nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice. After exposure, analysis of bronchoalveolar lavage (BAL) cell population, protein secretion and cytokine release as well as lung histology were carried out. The inflammatory response was compared to the one induced by non-biodegradable counterparts, namely, TiO2 of rutile and anatase crystal form and polystyrene (PS). PLGA NPs were mostly present in mice lungs, with little passage to other organs. An increase in neutrophil recruitment was observed in mice exposed to PS NPs 24?h after nebulization, which declined at 48?h. This result was supported by an increase in interleukin (IL)-6 and tumor necrosis factor α (TNFα) in BAL supernatant at 24?h. TiO2 anatase NPs were still present in lung cells 48?h after nebulization and induced the expression of pro-inflammatory cytokines and the recruitment of polymorphonuclear cells to BAL. In contrast, regardless of their surface charge, PLGA NPs did not induce significant changes in the inflammation markers analyzed. In conclusion, these results point out to a safe use of PLGA NPs regardless of their surface coating compared to non-biodegradable ones.  相似文献   

8.
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior‐related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5‐hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C‐fos, C‐jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 163–175, 2016.  相似文献   

9.
10.
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in foods, cosmetics, and medicine. Although the inhalation toxicity of TiO2 NPs has been studied, the potential adverse effects of oral exposure of low-dose TiO2 NPs are largely unclear. Herein, with macrophage cell lines, primary cells, and mouse models, we show that TiO2 NPs prime macrophages into a specific activation state characterized by excessive inflammation and suppressed innate immune function. After a month of dietary exposure in mice or exposure in vitro to TiO2 NPs (10 and 50?nm), the expressions of pro-inflammatory genes in macrophages were increased, and the expressions of anti-inflammatory genes were decreased. In addition, for macrophages exposed to TiO2 NPs in vitro and in vivo, their chemotactic, phagocytic, and bactericidal activities were lower. This imbalance in the immune system could enhance the susceptibility to infections. In mice, after a month of dietary exposure to low doses of TiO2 NPs, an aggravated septic shock occurred in response to lipopolysaccharide challenge, leading to elevated levels of inflammatory cytokines in serum and reduced overall survival. Moreover, TLR4-deficient mice and primary macrophages, or TLR4-independent stimuli, showed less response to TiO2 NPs. These results demonstrate that TiO2 NPs induce an abnormal state of macrophages characterized by excessive inflammation and suppressed innate immune function in a TLR4-dependent manner, which may suggest a potential health risk, particularly for those with additional complications, such as bacterial infections.  相似文献   

11.
Titanium dioxide nanoparticles (TiO2 NPs) are reported to increase plasma glucose levels in mice at specific doses. The production and accumulation of reactive oxygen species (ROS) is potentially the most important factor underlying the biological toxicity of TiO2 NPs but the underlying mechanisms are unclear at present. Data from genome‐wide analyses showed that TiO2 NPs induce endoplasmic reticulum (ER) stress and ROS generation, leading to the inference that TiO2 NP‐induced ER stress contributes to enhancement of ROS in mice. Resveratrol (Res) effectively relieved TiO2 NP‐induced ER stress and ROS generation by ameliorating expression of a common set of activated genes for both processes, signifying that ER stress and ROS are closely related. TiO2 NP‐induced ER stress occurred earlier than ROS generation. Upon treatment with 4‐phenylbutyric acid to relieve ER stress, plasma glucose levels tended toward normal and TiO2 NP increased ROS production was inhibited. These results suggest that TiO2 NP‐induced ER stress promotes the generation of ROS, in turn, triggering increased plasma glucose levels in mice. In addition, Res that displays the ability to reduce ER stress presents a dietary polyphenol antioxidant that can effectively prevent the toxicological effects of TiO2 NPs on plasma glucose metabolism.  相似文献   

12.
Despite the wide use of nanoscale materials in several fields, some aspects of the nanoparticle behavior have to be still investigated. In this work, we faced the aspect of environmental effects of increasing concentrations of TiO2NPs using the Mytilus galloprovincialis as an animal model and carrying out a multidisciplinary approach to better explain the results. Bioaccumulation suggested that the gills and digestive gland are the most sensitive organs to TiO2NP exposure. Histological observations have evidenced an altered tissue organization and a consistent infiltration of hemocytes, as a consequence of the immune system activation, even though an increase in lipid peroxidation is uncertain and DNA damage became relevant only at high exposure dose (10?mg/L) or for longer exposure time (96?h). However, the over expression of SOD1 mRNA strengthen the concept that the toxicity of TiO2NPs could occur indirectly by ROS production. TEM analysis showed the presence of multilamellar bodies, RER fragmentation, and cytoplasmic vacuolization within relevant presence of dense granules, residual bodies, and lipid inclusions. These findings support the evidence of an initial inflammatory response by the cells of the target organs leading to apoptosis. In conclusion, we can state that certainly the exposure to TiO2NPs has affected our animal model from cellular to molecular levels. Interestingly, the same responses are caused by lower TiO2NP concentration and longer exposure time as well as higher doses and shorter exposure. We do not know if some of the conditions detected are reversible, then further studies are required to clarify this aspect.  相似文献   

13.
The toxicity of titanium dioxide nanoparticles (TiO2‐NPs), used in several applications, seems to be influenced by their specific physicochemical characteristics. Cyto‐genotoxic and inflammatory effects induced by a mixture of 79% anatase/21% rutile TiO2‐NPs were investigated in human alveolar (A549) and bronchial (BEAS‐2B) cells exposed to 1–40 µg ml–1 30 min, 2 and 24 h to assess potential pulmonary toxicity. The specific physicochemical properties such as crystallinity, NP size and shape, agglomerate size, surface charge and specific surface area (SSA) were analysed. Cytotoxic effects were studied by evaluating cell viability using the WST1 assay and membrane damage using LDH analysis. Direct/oxidative DNA damage was assessed by the Fpg‐comet assay and the inflammatory potential was evaluated as interleukin (IL)‐6, IL‐8 and tumour necrosis factor (TNF)‐α release by enzyme‐linked immunosorbant assay (ELISA). In A549 cells no significant viability reduction and moderate membrane damage, only at the highest concentration, were detected, whereas BEAS‐2B cells showed a significant viability reduction and early membrane damage starting from 10 µg ml–1. Direct/oxidative DNA damage at 40 µg ml–1 and increased IL‐6 release at 5 µg ml–1 were found only in A549 cells after 2 h. The secretion of pro‐inflammatory cytokine IL‐6, involved in the early acute inflammatory response, and oxidative DNA damage indicate the promotion of early and transient oxidative‐inflammatory effects of tested TiO2‐NPs on human alveolar cells. The findings show a higher susceptibility of normal bronchial cells to cytotoxic effects and higher responsiveness of transformed alveolar cells to genotoxic, oxidative and early inflammatory effects induced by tested TiO2‐NPs. This different cell behaviour after TiO2‐NPs exposure suggests the use of both cell lines and multiple end‐points to elucidate NP toxicity on the respiratory system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The present study was designed to evaluate and compare the time- and dose-dependent cellular response of human periodontal ligament fibroblasts (hPDLFs), and mouse dermal fibroblasts (mDFs) to three different types of nanoparticles (NPs); fullerenes (C60), single walled carbon nanotubes (SWCNTs) and iron (II,III) oxide (Fe3O4) nanoparticles via in vitro toxicity methods, and impedance based biosensor system. NPs were characterized according to their morphology, structure, surface area, particle size distribution and zeta potential by using transmission electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, dynamic light scattering and zeta sizer analyses. The Mössbauer spectroscopy was used in order to magnetically characterize the Fe3O4 NPs. The hPDLFs and mDFs were exposed to different concentrations of the NPs (0.1, 1, 10, 50 and 100?μg/mL) for predetermined time intervals (6, 24 and 48?h) under controlled conditions. Subsequently, NP exposed cells were tested for viability, membrane leakage and generation of intracellular reactive oxygen species. Additional to in vitro cytotoxicity assays, the cellular responses to selected NPs were determined in real time using an impedance based biosensor system. Taken together, information obtained from all experiments suggests that toxicity of the selected NPs is cell type, concentration and time dependent.  相似文献   

15.
《Nanotoxicology》2013,7(8):994-1004
Abstract

The increasing use of nanotechnology in our daily life can have many unintended effects and pose adverse impact on human health, environment and ecosystems. Wider application of engineered nanoparticles, especially TiO2 nanoparticles (TiO2 NP) necessitates the understanding of toxicity and mechanism of action. Metabolomics provides a unique opportunity to find out biomarkers of nanoparticles exposure, which leads to the identification of cellular pathways and their biological mechanisms. Gas chromatography mass spectrometry (GC–MS)-based metabolomics approach was used in the present study to understand the toxicity of sub-lethal concentrations (7.7 and 38.5?µg/ml) of TiO2 NP (<25?nm) in well-known, soil nematode Caenorhabditis elegans (C. elegans). Multivariate pattern recognition analysis reflected the perturbations in the metabolism (amino acids, organic acids, sugars) of C. elegans on exposure to TiO2 NP. The biological pathways affected due to the exposure of TiO2 NP were identified, among them mainly affected pathways are tricarboxylic acid (TCA) cycle, arachidonic acid metabolism and glyoxalate dicarobxylate metabolism. The manifestation of differential metabolic profile in organism exposed to TiO2 (NP or bulk particle) was witnessed as an effect on reproduction. The present study demonstrates that metabolomics can be employed as a tool to understand the potential toxicity of nanoparticles in terms of organism–environment interactions as well as in assessing the organism function at the molecular level.  相似文献   

16.
When entering a biological environment, proteins could be adsorbed onto nanoparticles (NPs), which can potentially influence the toxicity of NPs. This study used bovine serum albumin (BSA) as the model for serum protein and investigated its interactions with three different types of ZnO NPs, coded as XFI06 (pristine NPs of 20?nm), NM110 (pristine NPs of 100?nm) and NM111 (hydrophobic NPs of 130?nm). Atomic force microscope indicated the adsorption of BSA to ZnO NPs, leading to the increase of NP diameters. Pre-incubation with BSA did not significantly affect hydrodynamic size but decreased Zeta potential of NM110 and NM111. The fluorescence and synchronous fluorescence of BSA were quenched after pre-incubation with ZnO NPs, and the quenching effects were more obvious for XFI06 and NM110. Exposure to all types of ZnO NPs significantly induced cytotoxicity and lysosomal destabilization, which was slightly alleviated when NPs were pre-incubated with BSA. However, ZnO NPs with or without pre-incubation of BSA resulted in comparable intracellular Zn ions, glutathione and reactive oxygen species in THP-1 macrophages. Exposure to ZnO NPs promoted the expression of endoplasmic reticulum (ER) stress markers (DDIT3 and XBP-1s) and apoptosis genes (CASP9 and CASP12). Pre-incubation with BSA had minimal impact on ER stress gene expression but decreased apoptosis gene expression. Combined, these results suggested that pre-incubation with BSA could modestly alleviate the cytotoxicity and reduce ER stress related apoptosis gene expression in THP-1 macrophages after ZnO NP exposure.  相似文献   

17.
Shuai Zhang  Rui Deng 《Nanotoxicology》2017,11(9-10):1115-1126
Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as ‘joint toxicity’. This study evaluated joint toxicities of TiO2 nanoparticles (TiO2NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3′,4,4′-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO2NPs–OC interactions, effects of TiO2NPs and OCs on biophysicochemical properties of algae and effects of TiO2NPs and OCs on each other’s bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO2NPs–atrazine, antagonistic effect for TiO2NPs–hexachlorobenzene and TiO2NPs–3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO2NPs–pentachlorobenzene. There was nearly no adsorption of OCs by TiO2NPs, and the physicochemical properties of TiO2NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO2NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO2NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO2NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.  相似文献   

18.
Recent studies show that Janus Fe3O4‐TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles, an in vitro study using a human liver cell line HL‐7702 cells was conducted. For comparison, the Janus Fe3O4‐TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3O4‐TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC‐1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3O4‐TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3O4‐TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3O4‐TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3O4‐TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3O4‐TiO2 NPs.  相似文献   

19.
Concomitant releases of various engineered nanoparticles (NPs) into the environment have resulted in concerns regarding their combined toxicity to aquatic organisms. It is however, still elusive to distinguish the contribution to toxicity of components in NP mixtures. In the present study, we quantitatively evaluated the relative contribution of NPs in their particulate form (NP(particle)) and of dissolved ions released from NPs (NP(ion)) to the combined toxicity of binary mixtures of ZnO NPs and graphene oxide nanoplatelets (GO NPs) to three aquatic organisms of different trophic levels, including an alga species (Scenedesmus obliquus), a cladoceran species (Daphnia magna), and a freshwater fish larva (Danio rerio). Our results revealed that the effects of ZnO NPs and GO NPs were additive to S. obliquus and D. magna but antagonistic to D. rerio. The relative contribution to toxicity (RCT) of the mixture components to S. obliquus decreased in the order of RCTGO NP(particle) >?RCTZnO NP(particle)?>?RCTZnO NP(ion), while the RCT of the mixture components to D. magna and D. rerio decreased in the order of RCTZnO NP(particle)?>?RCTGO NP(particle)?>?RCTZnO NP(ion). This finding also implies that the suspended particles rather than the dissolved Zn-ions dictated the combined toxicity of binary mixtures of ZnO NPs and GO NPs to the aquatic organisms of different trophic level. The alleviation of the contribution to toxicity of the ionic form of ZnO NPs was caused by the adsorption of the dissolved ions on GO NPs. Furthermore, the ZnO NP(particle) and GO NP(particle) displayed a different contribution to the observed mixture toxicity, dependent on the trophic level of the aquatic organisms tested. The difference of the contributions between the two particulate forms was mainly associated with differences in the intracellular accumulation of reactive oxygen species. Our findings highlight the important role of particles in the ecological impact of multi-nanomaterial systems.  相似文献   

20.
Autophagy is the catabolic process involving the sequestration of the cytoplasm within double-membrane vesicles, which fuse with lysosomes to form autolysosomes in which autophagic targets are degraded. Since most endocytic routes of nanomaterial uptake converge upon the lysosome and the possibility that autophagy induction by NMs may be an attempt by the cell to self-preserve following the external challenge, this study investigated the role of autophagy following exposure to a panel of widely used metal-based NMs with high toxicity (Ag and ZnO) or low toxicity (TiO2) in a pulmonary (A549) and hepatic (HepG2) cell line. The in vitro exposure to the Ag and ZnO NMs resulted in the induction of both apoptosis and autophagy pathways in both cell types. However, the progression of autophagy was blocked in the formation of the autolysosome, which coincided with morphologic changes in the actin cytoskeleton. This response was not observed following the exposure to low-toxicity TiO2 NMs. Overall, the results show that high toxicity NMs can cause a dysfunction in the autophagy pathway which is associated with apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号