首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The TB10.4 antigen of Mycobacterium bovis/Mycobacterium tuberculosis induces a strong Th1 CD4+ T-cell response. Thus, it is currently under intensive study as a possible vaccine candidate. However, how TB10.4 activates innate immune cells is unclear. How TB10.4 interacts with toll-like receptors (TLRs) and signaling pathways responsible for active inflammation have also not been fully elucidated. Here, as stimulated RAW264.7 cells with recombinant TB10.4 (rTB10.4), derived from M. bovis, increased TNF-α, IL-6 and IL-12 p40 secretin in a dose-dependent manner. Blocking assays showed that TLR2-, but not TLR4-neutralizing antibody reduced expression of TNF-α, IL-6 and IL-12 p40 in RAW264.7 cells. rTB10.4 stimulation activated p38 kinase (p38) and extracellular-regulated kinase (ERK) was TLR2-dependent, whereas inhibition of p38 and ERK activity significantly reduced TNF-α, IL-6 and IL-12 p40 production. Furthermore, rTB10.4 stimulation of RAW264.7 cells resulted in TLR2-mediated activation of NF-κB and induced translocation of NF-κB p65 from the cytoplasm to the nucleus via IκBα degradation. rTB10.4-induced TNF-α, IL-6 and IL-12 p40 release was attenuated by the specific IκB phosphorylation inhibitor, BAY 11-7082. These findings indicate that the M. bovis-derived rTB10.4 induced production of TNF-α, IL-6 and IL-12 p40 involves p38, ERK and NF-κB via the TLR2 pathway.  相似文献   

2.
3.
Recent evidences suggest that the extracts of plant products are able to modulate innate immune responses. A saponin GL and a chalcone ILG are representative components of Glycyrrhiza uralensis, which attenuate inflammatory responses mediated by TLRs. Here, we show that GL and ILG suppress different steps of the LPS sensor TLR4/MD-2 complex signaling at the receptor level. Extract of G. uralensis suppressed IL-6 and TNF-α production induced by lipid A moiety of LPS in RAW264.7 cells. Among various G. uralensis-related components of saponins and flavanones/chalcones, GL and ILG could suppress IL-6 production induced by lipid A in dose-dependent manners in RAW264.7 cells. Furthermore, elevation of plasma TNF-α in LPS-injected mice was attenuated by passive administration of GL or ILG. GL and ILG inhibited lipid A-induced NF-κB activation in Ba/F3 cells expressing TLR4/MD-2 and CD14 and BMMs. These components also inhibited activation of MAPKs, including JNK, p38, and ERK in BMMs. In addition, GL and ILG inhibited NF-κB activation and IL-6 production induced by paclitaxel, a nonbacterial TLR4 ligand. Interestingly, GL attenuated the formation of the LPS-TLR4/MD-2 complexes, resulting in inhibition of homodimerization of TLR4. Although ILG did not affect LPS binding to TLR4/MD-2, it could inhibit LPS-induced TLR4 homodimerization. These results imply that GL and ILG modulate the TLR4/MD-2 complex at the receptor level, leading to suppress LPS-induced activation of signaling cascades and cytokine production, but their effects are exerted at different steps of TLR4/MD-2 signaling.  相似文献   

4.
The lipopolysaccharide (LPS) of Porphyromonas gingivalis is thought to induce periodontitis. In this study, we isolated Schisandrin from the dried fruits of Schisandra chinensis and examined the anti-inflammatory effect of Schisandrin in macrophages stimulated with LPS from P. gingivalis. First, Schisandrin inhibited LPS-induced pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6. And Schisandrin suppressed the nuclear translocation and activity of NF-κB and phosphorylation of IκBα in LPS-stimulated RAW 264.7 cells. Next, the presence of a selective inhibitor of HO-1 (SnPP) and a siRNA specific for HO-1 inhibited Schisandrin-mediated anti-inflammatory activity. Furthermore, Schisandrin induced HO-1 expression of RAW 264.7 cells through Nrf-2, PI3K/Akt, and ERK activation. Therefore, these results suggest that the anti-inflammatory effects of Schisandrin on P. gingivalis LPS-stimulated RAW 264.7 cells may be due to a reduction of NF-κB activity and induction of the expression of HO-1, leading to TNF-α, IL-1β, and IL-6 down-regulation.  相似文献   

5.
In the present study we characterized the molecular mechanism by which esterase A (EstA) protein, a novel virulence factor of Streptococcus pneumoniae induces inflammation. Stimulation of RAW 264.7 macrophages with purified EstA protein induced the expression of inducible nitrogen oxide synthase (iNOS) mRNA and nitrogen oxide (NO) production in a concentration-dependent manner. Inhibitors of iNOS, NF-κB, p38 and ERK 1/2 MAPK pathways significantly decreased (50–78%) EstA-induced NO production. Similarly, EstA induced TNF-α, IL-1β and IL-6 mRNA expression in RAW 264.7 macrophages in a dose-dependent manner, and pre-treatment of the cell cultures with specific NF-κB, p38 and ERK 1/2 MAPK pathway inhibitors significantly decreased EstA-induced TNF-α, IL-1β and IL-6 protein production. Furthermore, immunoblot analysis revealed the degradation of the inhibitory kappa B (IKB-α) in response to EstA stimulation. Taken together, our data suggests that EstA protein is a novel inducer of NO and pro-inflammatory cytokines by activating the NF-κB, p38 and ERK 1/2 MAPK pathways during inflammatory responses. Future studies on the upstream protein kinases of the MAPK/NF-κB pathways and the kinetics of cytokine production will provide further details into the mechanism of EstA-induced inflammatory response.  相似文献   

6.
7.
It is known that macrophage scavenger receptor A (SR-A) can protect mice from endotoxemia. In addition, Escherichia coli O111:B4 LPS from Sigma (sLPS), which contains both TLR4 and TLR2 agonists, was previously reported to be able to induce SR-A expression on murine macrophage cell line RAW264.7. However, the relative role of both TLR4 and TLR2 agonists from Sigma (sLPS) in the up-regulation of SR-A on RAW264.7 is still undefined. Here, we found that sLPS could only slightly up-regulate SR-A on RAW264.7 following removing its TLR4 and TLR2 agonists, respectively. In contrast, the combination of TLR4 agonist uLPS (re-extracted sLPS) and TLR2 agonist Pam3CSK4 dramatically induced SR-A expression, and synergistically promoted RAW264.7 to bind and internalize FITC-LPS specifically through SR-A. The combination had no such effect either on TLR2 or TLR4 expression, and incubation with IL-6, IL-10, IL-12 or TNF-alpha alone could not induce SR-A expression on RAW264.7. In addition, treatment with a NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) could only weakly suppress the up-regulation of SR-A by the combination. However, the combination synergistically promoted MAPK p38 phosphorylation, and p38 specific inhibitor SB203580 completely suppressed its inducible effect on SR-A expression. Hence, we demonstrated that up-regulation of SR-A by sLPS was resulted from the cooperation of its TLR4 and TLR2 agonists through p38, and we also presented a novel synergy effect of TLR2 and TLR4 agonists.  相似文献   

8.
Treponema pallidum subsp. pallidum membrane proteins are considered as potent inducers in the initiation and development of inflammation. In the present study, the mechanism that leads to the production of interleukin 6 (IL-6), one of the key proinflammatory cytokines, by human monocytic THP-1 cells when these cells are treated with T. pallidum flagellin FlaA2 was investigated. Stimulation with flagellin FlaA2 can induce IL-6 expression in human monocytes and augment the phosphorylation of ERK, p38, and NF-κB, but has no effect on the phosphorylation of JNK. Likewise, FlaA2-induced IL-6 production was found to be attenuated by inhibitors for ERK, p38, and NF-κB, but not by JNK inhibitor. Immunofluorescence analysis showed that flagellin FlaA2 could stimulate the translocation of IκBα from the cytosol to the nucleus, and this phenomenon could be inhibited by the specific inhibitor BAY11-7082. FlaA2–induced IL-6 expression was also proved to be abrogated by transfection with dominant negative (DN) plasmid of MyD88. We further demonstrated that transfection with DN-TLR2 was sufficient to attenuate IL-6 expression and the phosphorylation of ERK, p38, and IκBα. These results suggest that flagellin FlaA2 induces IL-6 production via signaling pathways involving TLR2, MyD88, ERK, p38, and NF-κB in monocytes, which could contribute to the pathogenesis of T. pallidum.  相似文献   

9.
Excessive activation of macrophages is implicated in various inflammation resulted injuries. Saponins from Panax japonicus (SPJ) have been shown to possess anti-inflammatory activities. However, whether Chikusetsusaponin V (CsV), the most abundant component of SPJ, can exert anti-inflammatory activities is unknown. The present study was aimed to investigate the anti-inflammatory effects of CsV in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells and the underlying mechanisms. Our data showed that CsV dose-dependently inhibited NO, iNOS, TNF-α and IL-1β expressions in LPS-stimulated RAW264.7 cells. Increased protein levels of nuclear NF-κB and elevated phosphorylation levels of ERK and JNK in LPS-stimulated RAW 264.7 cells were also found downregulated by CsV treatment. Furthermore, the increase of CD14 and TLR4 mRNA expression due to LPS stimulation were significantly reversed by CsV treatment. These results suggested that CsV attenuated LPS-induced inflammatory responses partly via TLR4/CD14-mediated NF-κB and MAPK pathways.  相似文献   

10.
Myeloid differentiation protein 2 (MD-2) is required in the recognition of lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and participates in LPS-induced alveolar macrophage (AM) inflammation during acute lung injury (ALI). Activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome aggravates inflammation in LPS-induced ALI. However, there is currently little known about the relationship between MD-2 signaling and the NLRP3 inflammasome. This study showed that NLRP3 expression, IL-1beta (IL-1β) secretion, and pyroptosis were up-regulated after LPS stimulation in the NR8383 AM cell-line. MD-2 gene knock-down reduced LPS-induced mRNA and protein expression of NLRP3 and IL-1β secretion in NR8383 cells, and inhibited the MyD88/NF-κB signaling pathway. Conversely, over-expression of MD-2 not only heightened NLRP3, MyD88, and NF-κB p65 protein expression, it also aggravated the LPS-induced inflammatory response. Furthermore, the NF-κB inhibitor SN50 had a beneficial role in decreasing NLRP3 and caspase-1 mRNA and protein expression. The observations suggest that MD-2 helps to regulate LPS-induced NLRP3 inflammasome activation and the inflammatory response in NR8383 cells, and likely does so by affecting MyD88/NF-κB signaling.  相似文献   

11.
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (guanine-nucleotide exchange factor-H1)-RhoA signaling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signaling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.  相似文献   

12.
Although fisetin, a natural flavonoid, was known to inhibit proliferation, carcinogenesis and inflammation, the underlying anti-inflammatory mechanism of fistein still remains unclear. Thus, in the present study, the anti-inflammatory mechanism of fisetin was investigated in association with mitogen-activated protein kinase (MAPK) and nuclear factor κ B (NF-κB) pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophages. We found that fisetin significantly reduced the nitrate oxide (NO) production and also inhibited the expression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) at protein and mRNA levels in LPS-stimulated cells. Consistently, fisetin significantly reduced the LPS-stimulated secretion of proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor α (TNF-α). Furthermore, fisetin suppressed the activation of nuclear factor κ B (NF-κB) and the phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal regulated kinase (ERK) and p38 MAPK in LPS-treated RAW264.7 cells. Overall, our findings demonstrate that fisetin exerted anti-inflammatory activity via inactivation of JNK and NF-κB in LPS-stimulated macrophage cells.  相似文献   

13.
目的:探讨黄芪总皂苷(TAS)对脂多糖(LPS)诱导的BV2小胶质细胞炎症损伤的抗炎作用机制.方法:用CCK-8法筛选出对细胞活力无抑制的药物浓度;用浓度为1 mg/L的LPS刺激BV2细胞24 h,建立细胞炎症模型;实验分为正常组、LPS组、高剂量(75 mg/L)TAS组和低剂量(50 mg/L)TAS组;应用流式...  相似文献   

14.
目的研究天抗(TK)对脂多糖(LPS)诱导的小鼠炎症模型的抗炎作用及机制研究。方法将42只昆明小鼠随机分为正常对照(NC)组、模型对照(LPS)组、地塞米松(DXM)组、天抗低(TK-L)、中(TK-M)和高(TK-H)剂量组(0.2,0.8和3.2 g/kg)。各组分别灌胃给药7 d后,腹腔注射30 mg/kg的LPS诱导小鼠急性炎性模型,6 h后处死小鼠,检测小鼠脾脏指数,ELISA测定小鼠血清中IL-1β、IL-6和TNF-α的表达水平;生化法检测小鼠血清中SOD和MDA的表达;qRT-PCR检测小鼠脾脏TLR4、MyD88、TRAF6、p65、IL-1β、IL-6和TNF-αmRNA的表达水平;Western blot检测小鼠脾脏TLR4、MyD88、TRAF6、p-p65和p65蛋白表达水平。结果与LPS组相比,TK组小鼠的脾脏指数明显降低,血清和脾脏组织中IL-1β、IL-6、TNF-α和MDA水平显著下降,SOD水平明显升高,小鼠脾脏组织的TLR4、MyD88、TRAF6和p-p65等蛋白及mRNA表达水平均明显降低。结论天抗对LPS诱导的小鼠急性炎症模型具有抗炎作用,其作用机制可能是通过TLR4/MyD88/NF-κB(p-65)信号通路抑制炎症因子的释放。  相似文献   

15.
16.
Yu PJ  Jin H  Zhang JY  Wang GF  Li JR  Zhu ZG  Tian YX  Wu SY  Xu W  Zhang JJ  Wu SG 《Inflammation》2012,35(3):967-977
Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.  相似文献   

17.
Stevioside, a diterpene glycoside isolated from Stevia rebaudiana, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The objective of this study was to investigate the molecular mechanism of stevioside in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. RAW264.7 cells were stimulated with LPS in the presence or absence of stevioside. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) were determined by western blot. The results showed that stevioside dose-dependently inhibited the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β in LPS-stimulated RAW264.7 cells. Western blot analysis showed that stevioside suppressed LPS-induced NF-κB activation, IκBa degradation, phosphorylation of ERK, JNK, and P38. Our results suggest that stevioside exerts an anti-inflammatory property by inhibiting the activation of NF-κB and mitogen-activated protein kinase signaling and the release of proinflammatory cytokines. These findings suggest that stevioside may be a therapeutic agent against inflammatory diseases.  相似文献   

18.
目的:研究肾上腺素对脂多糖(LPS)诱导的小鼠单核巨噬细胞株RAW264.7中促炎介质[肿瘤坏死因子(TNF-α)、一氧化氮(NO)、环加氧酶-2(COX-2)]和抗炎介质[血红素氧化酶-1(HO-1)、白介素10(IL-10)]表达及NF-κB活化的影响。 方法: 以10 μg/L的LPS刺激体外培养的RAW264.7细胞作为炎症模型,加入不同浓度的肾上腺素(1、5、10、50 μmol/L)孵育24 h后,收集培养上清并提取细胞总蛋白,酶联免疫法测定上清中TNF-α、IL-10浓度,Griess法检测上清NO含量(以NO2-/NO3-表示),免疫印迹法检测细胞总蛋白中COX-2、HO-1、IκB-α的含量。 结果: 10 μg/L的LPS明显诱导TNF-α、NO(NO2-/NO3-)、COX-2、IL-10及HO-1的产生;LPS+肾上腺素组与LPS单独作用组相比促炎介质TNF-α、NO(NO2-/NO3-)、COX-2的表达量显著下降,而抗炎介质IL-10、HO-1的表达却明显增强;肾上腺素与LPS共同作用组中IκB-α的含量与单独LPS作用组相比无明显差异。 结论: 肾上腺素下调LPS诱导的巨噬细胞中促炎介质的表达同时促进抗炎介质的表达,这种效应并不通过影响NF-κB的活化来实现。  相似文献   

19.
CPS are major virulence factors in infections caused by Neisseria meningitidis and form the basis for meningococcal serogroup designation and protective meningococcal vaccines. CPS polymers are anchored in the meningococcal outer membrane through a 1,2-diacylglycerol moiety, but the innate immunostimulatory activity of CPS is largely unexplored. Well-established human and murine macrophage cell lines and HEK/TLR stably transfected cells were stimulated with CPS, purified from an endotoxin-deficient meningococcal serogroup B NMB-lpxA mutant. CPS induced inflammatory responses via TLR2- and TLR4-MD-2. Meningococcal CPS induced a dose-dependent release of cytokines (TNF-α, IL-6, IL-8, and CXCL10) and NO from human and murine macrophages, respectively. CPS induced IL-8 release from HEK cells stably transfected with TLR2/6, TLR2, TLR2/CD14, and TLR4/MD-2/CD14 but not HEK cells alone. mAb to TLR2 but not an isotype control antibody blocked CPS-induced IL-8 release from HEK-TLR2/6-transfected cells. A significant reduction in TNF-α and IL-8 release was seen when THP-1- and HEK-TLR4/MD-2-CD14- but not HEK-TLR2- or HEK-TLR2/6-transfected cells were stimulated with CPS in the presence of Eritoran (E5564), a lipid A antagonist that binds to MD-2, and a similar reduction in NO and TNF-α release was also seen in RAW 264.7 cells in the presence of Eritoran. CD14 and LBP enhanced CPS bioactivity, and NF-κB was, as anticipated, the major signaling pathway. Thus, these data suggest that innate immune recognition of meningococcal CPS by macrophages can occur via TLR2- and TLR4-MD-2 pathways.  相似文献   

20.
7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, has received considerable attention as a selective tyrosine kinase receptor B agonist. Several studies have indicated that 7,8-DHF has neurotrophic and antioxidant activities. However, little is known about the cellular and molecular mechanisms underlying the anti-inflammatory activity of 7,8-DHF. Therefore, we investigated whether 7,8-DHF affects the expression of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Our results indicated that 7,8-DHF significantly attenuated secretion of LPS-induced inflammatory mediators nitric oxide (NO), prostaglandin E? (PGE?) and interleukin-1β (IL-1β) in RAW264.7 cells. Additionally, LPS-induced expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and IL-1β was decreased by pre-treatment with 7,8-DHF. Our results also showed that 7,8-DHF reduces LPS-induced nuclear factor-κB (NF-κB) activity via the suppression of the nuclear translocation of NF-κB p65 and the degradation of inhibitor κB (lκB). In addition, 7,8-DHF inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular-signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). These results suggest that the anti-inflammatory property of 7,8-DHF is related to the downregulation of iNOS, COX-2 and IL-1β, due to NF-κB inhibition as well as to the negative regulation of MAPK activation in RAW264.7 cells. Thus, 7,8-DHF may be a novel therapeutic agent for the prevention of various inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号