首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合共同空间模式(CSP)、离散小波变换(DWT)和长短期记忆网络(LSTM)方法,提出一种基于空间频率与时间序列信息的多类运动想象脑电特征提取方法。首先利用滑动矩形窗获得时间序列脑电信号,并采用DWT从每一段脑电信号提取运动想象脑电相关的子带小波系数,其次将小波系数通过一对多CSP进一步特征提取,得到的特征作为LSTM的输入,然后对LSTM的时间序列输出在时间步上进行平均,最后使用Softmax分类器进行分类。实验结果显示,新算法取得92.23%的准确率,相比CSP特征以及结合频率或时间序列信息的CSP特征有较大提升,表明空间、频率、时间序列信息的互补性和有效性。  相似文献   

2.
Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels.  相似文献   

3.
In this paper we present an optimal wavelet packet (OWP) method based on Davies-Bouldin criterion for the classification of surface electromyographic signals. To reduce the feature dimensionality of the outputs of the OWP decomposition, the principle components analysis was employed. Then we chose a neural network classifier to discriminate four types of prosthesis movements. The proposed method achieved a mean classification accuracy of 93.75%, which outperformed the method using the energy of wavelet packet coefficients (with mean classification accuracy 86.25%) and the fuzzy wavelet packet method (87.5%).  相似文献   

4.
This paper presented the usage of statistics over the set of the features representing the electroencephalogram (EEG) signals. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents, wavelet coefficients and the power levels of power spectral density (PSD) values obtained by eigenvector methods of the EEG signals were used as inputs of the MLPNN trained with Levenberg-Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.  相似文献   

5.
In this study, topographic brain mapping and wavelet transform-neural network method are used for the classification of grand mal (clonic stage) and petit mal (absence) epilepsies into healthy, ictal and interictal (EEGs). Preprocessing is included to remove artifacts occurred by blinking, wandering baseline (electrodes movement) and eyeball movement using the Discrete Wavelet Transformation (DWT). De-noising EEG signals from the AC power supply frequency with a suitable notch filter is another job of preprocessing. In experimental data, the preprocessing enhanced speed and accuracy of the processing stage (wavelet transform and neural network). The EEGs signals are categorized to normal and petit mal and clonic epilepsy by an expert neurologist. The categorization is confirmed by Fast Fourier Transform (FFT) analysis and brain mapping. The dataset includes waves such as sharp, spike and spike-slow wave. Through the Counties Wavelet Transform (CWT) of EEG records, transient features are accurately captured and separated and used as classifier input. We introduce a two-stage classifier based on the Learning Vector Quantization (LVQ) neural network location in both time and frequency contexts. The brain mapping used for finding the epilepsy locates in the brain. The simulation results are very promising and the accuracy of the proposed classifier in experimental clinical data is ∼80%.  相似文献   

6.
提出一种利用小波变换和能量算子对EEG进行预处理提取癫痫特征信号,进行近似熵估计,对脑电信号进行分类的新方法。首先利用小波分析将EEG信号进行4层分解分成多个子频带,对频率接近棘波的第1,2层小波系数计算非线性能量算子,再对能量算子进行近似熵估计,最后用SVM对EEG信号进行分类。结果表明,该方法对癫痫发作期EEG和正常的EEG分类效果比较理想。  相似文献   

7.
8.
Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies-Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k-nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.  相似文献   

9.
In recent years, acoustical analysis of the swallowing mechanism has received considerable attention due to its diagnostic potentials. This paper presents a hidden Markov model (HMM) based method for the swallowing sound segmentation and classification. Swallowing sound signals of 15 healthy and 11 dysphagic subjects were studied. The signals were divided into sequences of 25 ms segments each of which were represented by seven features. The sequences of features were modeled by HMMs. Trained HMMs were used for segmentation of the swallowing sounds into three distinct phases, i.e., initial quiet period, initial discrete sounds (IDS) and bolus transit sounds (BTS). Among the seven features, accuracy of segmentation by the HMM based on multi-scale product of wavelet coefficients was higher than that of the other HMMs and the linear prediction coefficient (LPC)-based HMM showed the weakest performance. In addition, HMMs were used for classification of the swallowing sounds of healthy subjects and dysphagic patients. Classification accuracy of different HMM configurations was investigated. When we increased the number of states of the HMMs from 4 to 8, the classification error gradually decreased. In most cases, classification error for N = 9 was higher than that of N = 8. Among the seven features used, root mean square (RMS) and waveform fractal dimension (WFD) showed the best performance in the HMM-based classification of swallowing sounds. When the sequences of the features of IDS segment were modeled separately, the accuracy reached up to 85.5%. As a second stage classification, a screening algorithm was used which correctly classified all the subjects but one healthy subject when RMS was used as characteristic feature of the swallowing sounds and the number of states was set to N = 8.  相似文献   

10.
In this paper, complexity analysis and dynamic characteristics of electroencephalogram (EEG) signal based on maximal overlap discrete wavelet transform (MODWT) has been exploited for the identification of seizure onset. Since wavelet-based studies were well suited for classification of normal and epileptic seizure EEG, we have applied MODWT which is an improved version of discrete wavelet transform (DWT). The selection of optimal wavelet sub-band and features plays a crucial role to understand the brain dynamics in epileptic patients. Therefore, we have investigated MODWT using four different wavelets, namely Haar, Coif4, Dmey, and Sym4 sub-bands until seven levels. Further, we have explored the potentials of six entropies, namely sigmoid, Shannon, wavelet, Renyi, Tsallis, and Steins unbiased risk estimator (SURE) entropies in each sub-band. The sigmoid entropy extracted from Haar wavelet in sub-band D4 showed the highest accuracy of 98.44% using support vector machine classifier for the EEG collected from Ramaiah Medical College and Hospitals (RMCH). Further, the highest accuracy of 100% and 94.51% was achieved for the University of Bonn (UBonn) and CHB-MIT databases respectively. The findings of the study showed that Haar and Dmey wavelets were found to be computationally economical and expensive respectively. Besides, in terms of dynamic characteristics, MODWT results revealed that the highest energy present in sub-bands D2, D3, and D4 and entropies in those respective sub-bands outperformed other entropies in terms of classification results for RMCH database. Similarly, using all the entropies, sub-bands D5 and D6 outperformed other sub-bands for UBonn and CHB-MIT databases respectively. In conclusion, the comparison results of MODWT outperformed DWT.  相似文献   

11.
癫痫发作检测一直是一项富有挑战性的工作,随着癫痫发病率的增加,高性能癫痫自动检测算法在临床上可以减轻医务工作者的工作量,具有重要的临床医学研究意义。提出基于加权水平可视图的癫痫检测新方法。首先利用加权水平可视图将单通道脑电信号转化为复杂网络,并提取生成的复杂网络的度的平方和权重度分布熵两个特征;最后将两个特征之和作为单特征输入到线性分类器中,用来识别癫痫间歇期和发作期信号。对波恩大学的癫痫脑电数据集进行实验,评价所提出的检测算法的性能。使用该癫痫脑电数据集间歇期和发作期各100个实验样本,样本长度为1 024。实验结果表明,所提出的方法具有较高的分类精度,可达到98.5%。由于分类的特征为单特征,所以更加简单高效,可用于癫痫发作在线自动检测。  相似文献   

12.
Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide. The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram (EEG) as a noninvasive procedure to record neuronal activities in the brain. EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals. Shannon entropy, collision entropy, transfer entropy, conditional probability, and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform. Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification. Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector. The accuracy of the proposed approach is higher for Q=2 and J=10. Transfer entropy is observed to be significant for different class combinations. Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time. The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals. The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.  相似文献   

13.
基于小波包分析的意识任务特征提取与分类   总被引:4,自引:0,他引:4  
将基于小波包变换的多尺度分析方法应用于自发脑电 (EEG)的特征提取。在对 3种意识任务的脑电信号进行多级小波包分解的基础上 ,将不同尺度空间的能量信号作为特征值 ,组成不同意识任务的特征向量 ,并利用径向基函数神经网络进行分类测试。结果表明 ,小波包变换方法的分类正确率高于自回归模型方法。小波包分析方法可以作为不同意识任务脑电信号特征提取的一种新方法 ,具有较强的稳定性  相似文献   

14.
In this work, we have used a time–frequency domain analysis method called discrete wavelet transform (DWT) technique. This method stand out compared to other proposed methods because of its algorithmic elegance and accuracy. A wavelet is a mathematical function based on time-frequency analysis in signal processing. It is useful particularly because it allows a weak signal to be recovered from a noisy signal without much distortion. A wavelet analysis works by analysing the image and converting it to mathematical function which is decoded by the receiver. Furthermore, we have used Shannon entropy and approximate entropy (ApEn) for extracting the complexities associated with electroencephalographic (EEG) signals. The ApEn is a suitable feature to characterise the EEGs because its value drops suddenly due to excessive synchronous discharge of neurons in the brain during epileptic activity in this study. EEG signals are decomposed into six EEG sub-bands namely D1–D5 and A5 using DWT technique. Non-linear features such as ApEn and Shannon entropy are calculated from these sub-bands and support vector machine classifiers are used for classification purpose. This scheme is tested using EEG data recorded from five healthy subjects and five epileptic patients during the inter-ictal and ictal periods. The data are acquired from University of Bonn, Germany. The proposed method is evaluated through 15 classification problems, and obtained high classification accuracy of 100% for two cases and it indicates the good classifying performance of the proposed method.  相似文献   

15.
The aim of this study was to compare methods for feature extraction and classification of EEG signals for a brain–computer interface (BCI) driven by auditory and spatial navigation imagery. Features were extracted using autoregressive modeling and optimized discrete wavelet transform. The features were selected with exhaustive search, from the combination of features of two and three channels, and with a discriminative measure (r 2). Moreover, Bayesian classifier and support vector machine (SVM) with Gaussian kernel were compared. The results showed that the two classifiers provided similar classification accuracy. Conversely, the exhaustive search of the optimal combination of features from two and three channels significantly improved performance with respect to using r 2 for channel selection. With features optimally extracted from three channels with optimized scaling filter in the discrete wavelet transform, the classification accuracy was on average 72.2%. Thus, the choice of features had greater impact on performance than the choice of the classifier for discrimination between the two non-motor imagery tasks investigated. The results are relevant for the choice of the translation algorithm for an on-line BCI system based on non-motor imagery.  相似文献   

16.
基于离散小波变换提取脑机接口中脑电特征   总被引:13,自引:0,他引:13  
在脑机接口中,针对脑电特征提取利用单一种类信息、使用数据量大、分类性能较差等缺点,提出一种新颖的基于离散小波变换的方法。分析了小波变换特征提取的特点和特征表示方式,用Daubechies类db4小波函数对脑电信号进行6层分解,抽取小波变换各子带关键的部分逼近系数、小波系数、小波子带系数均值组成特征向量。以分类正确率为指标检验了提取特征的性能。实验结果表明,这种方法能够利用少量数据提取脑电信号本质特征,具有较高的分类性能,为利用脑电识别人的不同意图提供了快速而有效的手段。  相似文献   

17.
Translation of electroencephalographic (EEG) recordings into control signals for brain–computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes the application of a fuzzy support vector machine (FSVM) with a radial basis function kernel for classifying motor imagery tasks, while the statistical features over the set of the wavelet coefficients were extracted to characterize the time–frequency distribution of EEG signals. In the proposed FSVM classifier, a low fraction of support vectors was used as a criterion for choosing the kernel parameter and the trade-off parameter, together with the membership parameter based solely on training data. FSVM and support vector machine (SVM) classifiers outperformed the winner of the BCI Competition 2003 and other similar studies on the same Graz dataset, in terms of the competition criterion of the mutual information (MI), while the FSVM classifier yielded a better performance than the SVM approach. FSVM and SVM classifiers perform much better than the winner of the BCI Competition 2005 on the same Graz dataset for the subject O3 according to the competition criterion of the maximal MI steepness, while the FSVM classifier outperforms the SVM method. The proposed FSVM model has potential in reducing the effects of noise or outliers in the online classification of EEG signals in BCIs.  相似文献   

18.
In epilepsy diagnosis or epileptic seizure detection, much effort has been focused on finding effective combination of feature extraction and classification methods. In this paper, we develop a wavelet-based sparse functional linear model for representation of EEG signals. The aim of this modeling approach is to capture discriminative random components of EEG signals using wavelet variances. To achieve this goal, a forward search algorithm is proposed for determination of an appropriate wavelet decomposition level. Two EEG databases from University of Bonn and University of Freiburg are used for illustration of applicability of the proposed method to both epilepsy diagnosis and epileptic seizure detection problems. For this data considered, we show that wavelet-based sparse functional linear model with a simple classifier such as 1-NN classification method leads to higher classification results than those obtained using other complicated methods such as support vector machine. This approach produces a 100 % classification accuracy for various classification tasks using the EEG database from University of Bonn, and outperforms many other state-of-the-art techniques. The proposed classification scheme leads to 99 % overall classification accuracy for the EEG data from University of Freiburg.  相似文献   

19.
认知功能损害是精神分裂症的三大原发症状之一,在疾病早期发现和高危人群风险预警等方面具有重要价值。为了研究精神分裂症患者在认知负载状态下的脑电图特异性,本试验收集17例精神分裂症患者和19例健康受试者的脑电信号作为对照,基于小波变换提取各频段信号,计算非线性动力学及脑功能网络属性等特征,并利用机器学习算法将两类人群进行自动分类分析。试验结果表明,两组受试者在认知负载状态下,Fp1和Fp2导联在α、β、θ、γ这4个频带的关联维数和样本熵的差异均具有统计学意义,提示大脑额叶功能损伤是精神分裂症认知功能损害的重要原因。进一步基于机器学习的自动分类分析结果表明,将非线性动力学与脑功能网络属性相结合作为分类器的输入特征,所得分类效果最优,其结果显示准确率为76.77%、敏感度为72.09%、特异性为80.36%。本研究结果表明,脑电信号的非线性动力学和脑功能网络属性等特征,或可作为精神分裂症早期筛查和辅助诊断的潜在生物标记物。  相似文献   

20.
The detection of seizure onset and events using electroencephalogram (EEG) signals are important tasks in epilepsy research. The literature available on seizure detection has discussed the implementation of advanced signal processing algorithms using tools accessed over the cloud. However, seizure monitoring application needs near sensor processing due to privacy and latency issues. In this paper, a real time seizure detection system has been implemented using an embedded system. The proposed system is based on ensemble empirical mode decomposition (EEMD) and tunable-Q wavelet transform (TQWT) algorithms. The analysis and classification of non-stationary EEG signals require the wavelet transform with high Q-factor. However, direct use of TQWT increases the computational complexity of feature extraction from multivariate EEG signals. In this paper, the first step is to process the signal by using EEMD to obtain 8 intrinsic mode functions (IMFs). The Kraskov (KraEn), sample (SampEn), and permutation (PermEn) entropy features of IMFs are extracted and based on optimum values, and 4 IMFs are decomposed using TQWT. Secondly, centered correntropy (CenCorrEn) features of the 1st and 16th sub-band of TQWT have been used as classifier inputs. The performance of multilayer perceptron neural networks (MLPNN), least squares support vector machine (LSSVM), and random forest (RF) classifiers has been tested on the multichannel EEG data recorded from a local hospital. The RF classifier has produced the highest accuracy of 96.2% in classifying the signals. The proposed scheme has been employed in developing an embedded seizure detection system to assist neurologists in making seizure diagnostic decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号