首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome‐wide DNA methylation modification status, as represented by the ESC‐specific hypomethylation of tissue‐dependent and differentially methylated regions (T‐DMRs) of Pou5f1 and Nanog. Here, we conducted a genome‐wide investigation of sequence characteristics associated with T‐DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T‐DMRs were predominantly present in SINE‐rich/LINE‐poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE‐rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T‐DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T‐DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T‐DMRs in ESCs, which is a novel aspect of the ESC‐specific epigenomic information.  相似文献   

2.
L1 and Alu elements are long and short interspersed retrotransposable elements (LINEs and SINEs) in humans, respectively. Proteins encoded in the autonomous L1 mediate retrotransposition of the nonautonomous Alu and cellular mRNAs. Alu is the only active SINE in the human genome and is derived from 7SL RNA of signal recognition particle. In the other eukaryotic genomes, various tRNA- and 5S rRNA-derived SINEs are found. Some of the tRNA- and 5S rRNA-derived SINEs have partner LINEs of which 3' sequences are similar to those of the SINEs. One of the tRNA-derived SINEs is shown to be mobilized by its partner LINE. Many copies of tRNA and 5S rRNA pseudogenes are present in the human genome. These pseudogenes may have been generated via the retrotransposition process using L1 proteins. Although there are no sequence similarities between L1 and Alu, L1 functionally links with Alu and even cellular genes, impacting on our genome shaping.  相似文献   

3.
The genome of the gray short-tailed opossum Monodelphis domestica is notable for its large size ( approximately 3.6 Gb). We characterized nearly 500 families of interspersed repeats from the Monodelphis. They cover approximately 52% of the genome, higher than in any other amniotic lineage studied to date, and may account for the unusually large genome size. In comparison to other mammals, Monodelphis is significantly rich in non-LTR retrotransposons from the LINE-1, CR1, and RTE families, with >29% of the genome sequence comprised of copies of these elements. Monodelphis has at least four families of RTE, and we report support for horizontal transfer of this non-LTR retrotransposon. In addition to short interspersed elements (SINEs) mobilized by L1, we found several families of SINEs that appear to use RTE elements for mobilization. In contrast to L1-mobilized SINEs, the RTE-mobilized SINEs in Monodelphis appear to shift from G+C-rich to G+C-low regions with time. Endogenous retroviruses have colonized approximately 10% of the opossum genome. We found that their density is enhanced in centromeric and/or telomeric regions of most Monodelphis chromosomes. We identified 83 new families of ancient repeats that are highly conserved across amniotic lineages, including 14 LINE-derived repeats; and a novel SINE element, MER131, that may have been exapted as a highly conserved functional noncoding RNA, and whose emergence dates back to approximately 300 million years ago. Many of these conserved repeats are also present in human, and are highly over-represented in predicted cis-regulatory modules. Seventy-six of the 83 families are present in chicken in addition to mammals.  相似文献   

4.
5.
With the development of molecular embryology and the coming of the post‐genomic era, the molecular mechanisms of morphological evolution have recently begun to be elucidated. Whole genome sequences of many vertebrate species have been determined, and comparative genomics has suggested that one source of biodiversity is conserved non‐coding elements (CNEs), which may be involved in generating new networks of gene expression. Nishihara et al. (Genome Res. 2006; 16, 864) discovered retroposon (AmnSINE1s)‐derived CNEs in the human genome, and suggested that the AmnSINE1s obtained their function (i.e., exapted) in a common mammalian ancestor and are involved in generating mammalian‐specific morphology. Therefore, investigation of the function of AmnSINE1‐derived CNEs in morphogenesis helps us understand the molecular events of how mammals obtained their specific morphological characters by exaptation that occurred when the first mammalian ancestor emerged about 250 Ma (million years ago). Because there are more than 100 AmnSINE1‐derived CNE loci in the mammalian genome, a burst of exaptation of AmnSINE1s must have occurred, possibly triggered by the Permian‐Triassic mass extinction 250 Ma. In this review, we discuss morphological evolution of the mammalian‐specific characters including brain that were exapted after retrotransposition of AmnSINE1s by referring to two CNE loci described by Sasaki et al. (Proc. Natl. Acad. Sci. USA 2008; 105, 4220).  相似文献   

6.
Short interspersed nuclear elements (SINEs) are ubiquitous components of complex animal and plant genomes. SINEs are believed to be important players in eukaryotic genome evolution. Studies on SINE integration sites have revealed non-random integration without strict nucleotide sequence requirements for the integration target, suggesting that the targeted DNA might assume specific secondary structures or protein associations. Here, we report that S1 SINE elements in the genomes of Brassica show an interesting preference for matrix attachment regions (MARs). Ten cloned genomic regions were tested for their ability to bind the nuclear matrix both before and after a SINE integration event. Eight of the genomic regions targeted by S1 display strong affinity for the nuclear matrix, while two show weaker binding. The SINE S1 did not display any matrix-binding capacity on its own in either non-methylated or methylated forms. In vivo, an integrated S1 is methylated while the surrounding genomic regions may remain undermethylated or undergo methylation. However, tested genomic regions containing methylated'S1, with or without methylated flanking genomic sequences, were found to vary in their ability to bind the matrix in vitro. These results suggest a possible molecular basis for a preferential targeting of SINEs to MARs and a possible impact of the integration events upon gene and genome function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The rates at which human genomic DNA changes by neutral substitution and insertion of certain families of transposable elements covary in large, megabase-sized segments. We used the rat, mouse, and human genomic DNA sequences to examine these processes in more detail in comparisons over both shorter (rat-mouse) and longer (rodent-primate) times, and demonstrated the generality of the covariation. Different families of transposable elements show distinctive insertion preferences and patterns of variation with substitution rates. SINEs are more abundant in GC-rich DNA, but the regional GC preference for insertion (monitored in young SINEs) differs between rodents and humans. In contrast, insertions in the rodent genomes are predominantly LINEs, which prefer to insert into AT-rich DNA in all three mammals. The insertion frequency of repeats other than SINEs correlates strongly positively with the frequency of substitutions in all species. However, correlations with SINEs show the opposite effects. The correlations are explained only in part by the GC content, indicating that other factors also contribute to the inherent tendency of DNA segments to change over evolutionary time.  相似文献   

8.
We report a sensitive, SINE (Short Interspersed DNA Element)-mediated, PCR-based, DNA damage detection assay. Here, the SINE assay is used for detection of UVB-induced DNA damage and repair in cultured mouse cells and in vivo, in mouse skin. The unique feature of the SINE assay is its ability to support simultaneous amplification of multiple, random segments of genomic DNA. This can be accomplished due to the remarkable abundance, dispersion and conservation of SINEs in mammalian genomes. The most abundant SINEs in the mouse genome are the B1 elements, at a copy number of 50,000–80,000. Due to their strong sequence conservation, primers complementary to the B1 consensus sequence anneal to the majority of their targets in the genome. Consequently, long segments of genomic DNA located between pairs of B1 elements are efficiently amplified by PCR. Thus, in conjunction with the fact that many types of DNA adducts form blocks for thermostable polymerase, the B1 element anchored PCR makes a sensitive and versatile tool for assessing the overall integrity of the transcribed regions in mouse genome. We measured UVB-dose (0.1–3 kJ m−2) dependent formation of photoproducts in DNA from cultured cells, and after 20 h observed a substantial removal of damage at doses lower or equal to 0.6 kJ m−2. The sensitivity of detection of UVB-photoproducts formation and repair was compared to that of the conventional, single locus-targeting QPCR. Using the SINE assay we also have shown the distribution of UVB and UVC induced DNA adducts at a single nucleotide resolution within the B1 elements in mouse DNA. Lastly, we demonstrated that the sensitivity of the SINE assay is adequate for measurement of UVB-dose (1–6 kJ m−2) dependent formation and subsequent removal of photoproducts in vivo, in mouse skin.  相似文献   

9.
Lerat E  Rizzon C  Biémont C 《Genome research》2003,13(8):1889-1896
The availability of the sequenced Drosophila melanogaster genome provides an opportunity to study sequence variation between copies within transposable element families. In this study,we analyzed the 624 copies of 22 transposable element (TE) families (14 LTR retrotransposons, five non-LTR retrotransposons, and three transposons). LTR and non-LTR retrotransposons possessed far fewer divergent elements than the transposons,suggesting that the difference depends on the transposition mechanism. However,there was not a continuous range of divergence of the copies in each class,which were either very similar to the canonical elements,or very divergent from them. This sequence homogeneity among TE family copies matches the theoretical models of the dynamics of these repeated sequences. The sequenced Drosophila genome thus appears to be composed of a mixture of TEs that are still active and of ancient relics that have degenerated and the distribution of which along the chromosomes results from natural selection. This clearly demonstrates that the TEs are highly active within the genome,suggesting that the genetic variability of the Drosophila genome is still being renewed by the action of TEs.  相似文献   

10.
Comparative genomics has revealed that major vertebrate lineages contain quantitatively and qualitatively different populations of retrotransposable elements and DNA transposons, with important differences also frequently observed between species of the same lineage. This is essentially due to (i) the differential evolution of ancestral families of transposable elements, with evolutionary scenarios ranging from complete extinction to massive invasion; (ii) the lineage-specific introduction of transposable elements by infection and horizontal transfer, as exemplified by endogenous retroviruses; and (iii) the lineage-specific emergence of new transposable elements, as particularly observed for non-coding retroelements called short interspersed elements (SINEs). During vertebrate evolution, transposable elements have repeatedly contributed regulatory and coding sequences to the host, leading to the emergence of new lineage-specific gene regulations and functions. In all vertebrate lineages, there is evidence of transposable element-mediated genomic rearrangements such as insertions, deletions, inversions and duplications potentially associated with or subsequent to speciation events. Taken together, these observations indicate that transposable elements are major drivers of genomic and biological diversity in vertebrates, with possible important roles in speciation and major evolutionary transitions.  相似文献   

11.
12.
13.
Entamoeba histolytica and E. dispar are closely related protozoan parasites; the former causes clinical amoebiasis in humans while the latter appears to be non-pathogenic. The molecular biology of E. histolytica shows a number of unusual features, one of which is the abundance of polyadenylated but apparently untranslatable mRNAs produced; many of these are the product of at least three families of SINEs (EhSINE1-3). Here we show that the genome of E. dispar contains numerous copies of a SINE element (EdSINE1) whose 5'- and 3'-ends are very similar to those of EhSINE1 but with a much less similar middle portion. Twelve out of 18 copies examined had target site duplications. In none out of six cases examined was there a SINE element in the homologous region of the E. histolytica genome but a single copy of EdSINE1 is present in E. histolytica where it is identified as EhSINE3.  相似文献   

14.
15.
Bao Z  Eddy SR 《Genome research》2002,12(8):1269-1276
Repetitive sequences make up a major part of eukaryotic genomes. We have developed an approach for the de novo identification and classification of repeat sequence families that is based on extensions to the usual approach of single linkage clustering of local pairwise alignments between genomic sequences. Our extensions use multiple alignment information to define the boundaries of individual copies of the repeats and to distinguish homologous but distinct repeat element families. When tested on the human genome, our approach was able to properly identify and group known transposable elements. The program, should be useful for first-pass automatic classification of repeats in newly sequenced genomes.  相似文献   

16.
17.
18.
19.
20.
Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3′ end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号