首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human liver microsomes have typically resulted in marked underprediction of in vivo human intrinsic clearance (CL(int)); therefore, the utility of cryopreserved hepatocytes as an alternative in vitro system has become an important issue. In this study, 10 compounds (tolbutamide, diclofenac, S-warfarin, S-mephenytoin, dextromethorphan, bufuralol, quinidine, nifedipine, testosterone, and terfenadine) were selected as substrate probes for CYP2C9, 2C19, 2D6, and 3A4, and the kinetics of metabolite formation (n = 14 pathways) were investigated in three individual lots of cryopreserved hepatocytes and in a pool of human liver microsomes. For the majority of the compounds, lower unbound K(M) or S(50) values were observed in hepatocytes compared with microsomes, on average by 50% over a 200-fold range (0.5-140 microM). Expressed on an equivalent liver weight basis, a good correlation between microsomal and hepatocyte V(max) values was observed for most pathways greater than 5 orders of magnitude (0.16-216 nmol/min/g liver). Unbound hepatocyte CL(int) (CL(int,u)) values, when scaled to the whole liver (range 0.38-4000 ml/min/kg), were on average 2.5-fold higher than microsomal CL(int,u) values, with the exception of tolbutamide and diclofenac, for which lower hepatocellular CL(int,u) values were observed. Hepatocyte predicted CL(int) values were compared with human in vivo CL(int) values, and to supplement our data, in vitro data from cryopreserved hepatocytes were collated from four other published sources. These data show that for 37 drugs, there is, on average, a 4.5-fold under-prediction of the in vivo CL(int) using cryopreserved hepatocytes, representing a significant reduction in prediction bias compared with human microsomes.  相似文献   

2.
AIMS: To investigate the effects of incubation conditions on the kinetic constants for zidovudine (AZT) glucuronidation by human liver microsomes, and whether microsomal intrinsic clearance (CLint) derived for the various conditions predicted hepatic AZT clearance by glucuronidation (CLH) in vivo. METHODS: The effects of incubation constituents, particularly buffer type (phosphate, Tris) and activators (Brij58, alamethacin, UDP-N-acetylglucosamine (UDP-NAcG)), on the kinetics of AZT glucuronidation by human liver microsomes was investigated. AZT glucuronide (AZTG) formation by microsomal incubations was quantified by h.p.l.c. Microsomal CLint values determined for the various experimental conditions were extrapolated to a whole organ CLint and these data were used to calculate in vivo CLH using the well-stirred, parallel tube and dispersion models. RESULTS: Mean CLint values for Brij58 activated microsomes in both phosphate (3.66 +/- 1.40 micro l min-1 mg-1, 95% CI 1.92, 5.39) and Tris (3.79 +/- 0.74 micro l min-1 mg-1, 95% CI 2.87, 4.71) buffers were higher (P < 0.05) than the respective values for native microsomes (1.04 +/- 0.42, 95% CI 0.53, 1.56 and 1.37 +/- 0.30 micro l min-1 mg-1, 95% CI 1.00, 1.73). Extrapolation of the microsomal data to a whole organ CLint and substitution of these values in the expressions for the well-stirred, parallel tube and dispersion models underestimated the known in vivo blood AZT clearance by glucuronidation by 6.5- to 23-fold (3.61-12.71 l h-1vs 82 l h-1). There was no significant difference in the CLH predicted by each of the models for each set of conditions. A wide range of incubation constituents and conditions were subsequently investigated to assess their effects on GAZT formation, including alamethacin, UDP-NAcG, MgCl2, d-saccharic acid 1,4-lactone, ATP, GTP, and buffer pH and ionic strength. Of these, only decreasing the phosphate buffer concentration from 0.1 m to 0.02 m for Brij58 activated microsomes substantially increased the rate of GAZT formation, but the extrapolated CLH determined for this condition still underestimated known AZT glucuronidation clearance by more than 4-fold. AZT was shown not to bind nonspecifically to microsomes. Analysis of published data for other glucuronidated drugs confirmed a trend for microsomal CLint to underestimate in vivo CLH. CONCLUSIONS: AZT glucuronidation kinetics by human liver microsomes are markedly dependent on incubation conditions, and there is a need for interlaboratory standardization. Extrapolation of in vitro CLint underestimates in vivo hepatic clearance of drugs eliminated by glucuronidation.  相似文献   

3.
1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes.  相似文献   

4.
We recently proposed a possible stereoselective activation by lansoprazole of CYP2C9-catalyzed tolbutamide hydroxylation, as well as stereoselective inhibition of several cytochrome P450 (P450) isoforms. This study evaluated the effects of lansoprazole enantiomers on CYP2C9 activity in vitro, using several probe substrates. For tolbutamide 4-methylhydroxylation and phenytoin 4-hydroxylation, R-lansoprazole was an activator (140 and 550% of control at 100 microM R-lansoprazole, EC50 values of 19.9 and 30.2 microM, respectively). R-Lansoprazole-mediated activation of the formation of 4-hydroxyphenytoin was also seen with recombinant human CYP2C9. R-Lansoprazole increased the Michaelis-Menten-derived V(max) of phenytoin 4-hydroxylation from 0.024 to 0.121 pmol/min/pmol P450, and lowered its K(m) from 20.5 to 15.0 microM, suggesting that R-lansoprazole activates CYP2C9-mediated phenytoin metabolism without displacing phenytoin from the active site. Kinetic parameters were also estimated using the two-site binding equation, with alpha values <1 and beta values >1, indicative of activation. Additionally, phenytoin at 10 to 200 microM had no reciprocal effect on the hydroxylation of R-lansoprazole. Meanwhile, R-lansoprazole had no activation effect on diclofenac and S-warfarin metabolism in the incubation study using both recombinant CYP2C9 and human liver microsomes. These substrate-dependent activation effects suggest that phenytoin has a different binding orientation compared with diclofenac and S-warfarin. Overall, these results suggest that R-lansoprazole activates CYP2C9 in a stereospecific and substrate-specific manner, possibly by binding within the active site and inducing positive cooperativity. This is the first report to describe stereoselective activation of this cytochrome P450 isoform.  相似文献   

5.
Acetonitrile is an organic solvent commonly used to increase the solubility of lipophilic substrates for in vitro studies. In this study, we examined its effect on four reactions (diclofenac hydroxylation, tolbutamide methyl hydroxylation, phenytoin hydroxylation, and celecoxib methyl hydroxylation) catalyzed by human liver microsomes and by the recombinant CYP2C9. In both cases, the effect of acetonitrile on activity was found to be substrate-dependent. Namely, it increased diclofenac 4'-hydroxylase and tolbutamide methyl hydroxylase activities, but decreased celecoxib methyl hydroxylase activity in a concentration-dependent manner. By comparison, hydroxylation of phenytoin was resistant to its effect. The presence of acetonitrile (3%, v/v) gave rise to a lower K(m) and a higher V(max) for diclofenac hydroxylase in both liver microsomes and recombinant CYP2C9 preparations (87 and 52% increase in V(max)/K(m) ratio, respectively). On the other hand, the inhibitory effect of the solvent (1%, v/v) toward celecoxib hydroxylase was characterized by a decrease in V(max) (human liver microsomes) or a change in both K(m) and V(max) (rCYP2C9), leading to 25 and 46% decrease in V(max)/K(m) for both systems. The results of this study underscore the need for careful evaluation of solvent effects before initiation of inhibition or cytochrome P450 reaction phenotyping studies.  相似文献   

6.
To investigate whether the free-drug theory is accurate in that only unbound drug is available for drug metabolism or enzyme inhibition. The effect of addition of rat liver cytosol to an in vitro system using human liver microsomes was examined by measuring the catalytic activities of CYP2C9 (tolbutamide and diclofenac) and CYP3A4 (terfenadine). And, the results were compared with those obtained when human serum albumin (HSA) was added to microsomes as far as unbound drug concentrations were concerned. After addition of rat liver cytosol, the unbound Km value (Km,u) for terfenadine metabolism by CYP3A4, and the unbound Ki value of miconazole (Ki,u) for CYP2C9 were smaller than for the controls. Addition of HSA resulted in smaller Km,u values for diclofenac and terfenadine metabolism by CYP2C9 and CYP3A4, respectively, and the Ki,u value for ketoconazole inhibition of CYP3A4 was also reduced. These results suggest protein-facilitated effects on drug metabolism and enzyme inhibition for both CYP2C9 and CYP3A4. However, no protein-facilitated drug metabolism was observed for tolbutamide in the presence of HSA or cytosol, or for diclofenac in the presence of cytosol. Protein-facilitated enzyme inhibition did not occur with miconazole in the presence of HSA or with ketoconazole in the presence of rat liver cytosol. Protein-facilitated metabolism and enzyme inhibition were observed for CYP2C9 and CYP3A4 in five cases but there was no obvious pattern of enzyme, substrate, or binding protein specificity. Further investigations are necessary to clarify the relevance of these results to in vivo observations.  相似文献   

7.
The aim of this study was to re-examine the human hepatic metabolism of diclofenac, with special focus on the generation of minor hydroxylated metabolites implicated in the idiosyncratic hepatotoxicity of the drug. Different experimental approaches were used: human hepatocytes, human microsomes, and engineered cells expressing single human CYP (cytochromes P450). Human hepatocytes formed 3'-hydroxy-, 4'-hydroxy-, 5-hydroxy- 4',5-dihydroxy-, and N,5-dihydroxydiclofenac, as well as several lactams. Formation of 4'- and 5-hydroxydiclofenac by human liver microsomes followed a Michaelis-Menten kinetics (Km 9 +/- 1 microM; Vmax 432 +/- 15 pmol/min/mg and Km 43 +/- 5 microM; and Vmax 15.4 +/- 0.6 pmol/min/mg, respectively). Secondary metabolites were detected after incubation of 5-hydroxydiclofenac with human liver microsomes, yielding 4',5-dihydroxydiclofenac (Km 15 +/- 1 microM; Vmax 96 +/- 3 pmol/min/mg) and small amounts of N,5-dihydroxydiclofenac (non-Michaelis-Menten kinetics). Based on microsome studies and the incubations with human hepatocytes and engineered cells, we estimated that in vivo CYP2C9 would be exclusively responsible for the 4' hydroxylation of diclofenac (>99.5%) as well as 5-hydroxydiclofenac (>97%). CYP2C9 was exclusively responsible for the formation of 3'-hydroxydiclofenac. Multiple regression analysis evidenced that the rate of production of 5-hydroxydiclofenac in human microsomes followed the algorithm: 0.040 x S-mephenytoin 4'-hydroxylation + 0.083 x tolbutamide methylhydroxylation, (multiple correlation coefficient = 0.969). However, the incubation of diclofenac with cell lines expressing different human CYP suggested that 7 isoforms could be involved. Comparison of data obtained with CYP-expressing cells and human hepatocytes suggests that CYP2C8 > CYP2C19 approximately CYP2C18 > CYP2B6 are the isoforms implicated in the 5-hydroxylation of diclofenac in vivo.  相似文献   

8.
Intrinsic clearance (CL(int)) of seven probe cytochrome P450 substrates, across a wide range of clearance, was compared in microsomes and cryopreserved hepatocytes from the same four livers. Previous comparisons have shown system dependence, but using preparations from different donor livers. Four-fold average underprediction of microsomal CL(int) by hepatocytes (scaled to whole liver) for high clearance substrates (midazolam, nifedipine, and diclofenac) was observed with relatively unbiased prediction (within 1.5-fold average) for the low/medium clearance substrates (tolbutamide, alprazolam, bufuralol, and triazolam). CL(int) of midazolam and nifedipine corresponded between livers over a tenfold range, but the absolute ranges were lower for hepatocytes, indicating independence of hepatocyte bias from substrate. In contrast, the absolute ranges of CL(int) for the low clearance CYP3A4 substrate alprazolam were similar between the systems, indicating independence of hepatocyte bias from enzyme. The trend in CL(int) between the systems was similar to that in a dataset of published CL(int) for 46 substrates in microsomes and hepatocytes (unrelated liver sources), supporting a fundamental rate limitation of the hepatocyte system. A tendency of decreasing V(max) in hepatocytes relative to microsomes, with increasing clearance, suggests that a capacity limitation, such as cofactor rate limitation, may be involved in this phenomenon.  相似文献   

9.
Cytochromes P450 (CYPs) catalyze the 4-hydroxylation of all-trans-retinoic acid (ATRA), an agent used in the treatment of certain malignancies. Literature studies have implicated several CYPs in this reaction, but the relative importance of individual CYPs is unclear. Human microsomal CYPs that contribute to the activity were evaluated by correlation with activities of hepatic drug-metabolizing CYPs, the capacity of cDNA-derived CYPs to catalyze the reaction, and inhibition of the microsomal activity by chemicals. 4-HydroxyATRA formation in microsomes varied 7-fold (8.7 to 61 pmol/mg protein/min) and correlated partially with activities mediated by CYPs 3A, 2C, and 1A (p = 0.53 to 0.66). cDNA-derived CYPs 2C8, 2C9, and 3A4, but not 1A1 or 1A2, catalyzed ATRA 4-hydroxylation (2.53, 4.68, and 1.29 pmol/pmol CYP/hr). The Km for the reaction was 9 +/- 3 microM in hepatic microsomes (N = 3) and 6 microM in microsomes containing cDNA-derived CYP2C8; by comparison, Km values for the activity mediated by CYPs 2C9 and 3A4 were 100 and 74 microM, respectively. Inhibition of microsomal ATRA 4-hydroxylation was elicited by chemicals that interact with CYP2C8 (paclitaxel and diclofenac), but not those that interact with CYP2C9 (sulfaphenazole, tolbutamide, and torasemide). The CYP3A inhibitor troleandomycin and an anti-CYP3A IgG inhibited the activity slightly. Greater inhibition was produced by the less selective CYP3A inhibitors parathion, quinidine, and ketoconazole; CYP1A inhibitors were ineffective. These findings suggest that CYP2C8 is a major contributor to ATRA 4-hydroxylation in human liver and that 3A subfamily CYPs may be minor participants. Individual variation in CYP2C8 and 3A4 expression may influence ATRA pharmacokinetics and drug interactions during therapy.  相似文献   

10.
Predicting drug-drug interactions requires an assessment of the drug concentration available to the enzyme active site, both in vivo, and within an in vitro incubation. These predictions are confounded when the inhibitor accumulates within the liver, either as a result of active transport processes or intracellular binding (including lysosomal trapping). In theory, hepatocytes should provide a more accurate estimation of inhibitory potency compared with microsomes for those compounds that undergo hepatic accumulation. However, they are not routinely used for Ki determination and there is limited comparative information available. Therefore, the aims of this study were to compare Ki values determined in rat microsomes and freshly isolated hepatocytes using six cytochrome P450 inhibitors (miconazole, fluconazole, ketoconazole, quinine, fluoxetine, and fluvoxamine) with a range of uptake properties (cell-to-medium concentration ratios 4.2-6000). Inhibition studies were performed using four probe substrates for CYP2C, CYP2D, and CYP3A enzymes (tolbutamide and phenytoin, dextromethorphan and midazolam, respectively). Comparison of unbound Ki values (range 0.05-30 microM) showed good agreement between microsomes and hepatocytes for inhibition of 18 pathways of metabolism. In addition to this, there was no relationship between the cell-to-medium concentration ratios (covering over 3 orders of magnitude) and the microsomal to hepatocyte Ki ratio of these inhibitors. These data suggest that the hepatic accumulation of these inhibitors results from intracellular binding rather than the involvement of uptake transporters and indicate that microsomes and hepatocytes appear to be equivalent for determining the inhibitory potency of the six inhibitors investigated in the present study.  相似文献   

11.
目的:探讨羟氯喹在人肝微粒体中的主要代谢酶及其代谢特点和参数。方法:建立高效液相色谱-荧光检测器(HPLC-FLD)测定孵育液中羟氯喹的方法,观察9种CYP酶特异性抑制剂对羟氯喹代谢的影响,计算羟氯喹的酶促动力学参数如米氏常数(Km)、最大反应速度(Vmax)和药物的内在清除率(CLint)。结果:9种酶抑制剂中孟鲁司特(CYP2CB抑制剂)、酮康唑(CYP3A4抑制剂)、噻氯匹定(CYP2B6抑制剂)能够显著抑制羟氯喹的代谢(P < 0.05)。羟氯喹在人肝微粒体中Vmax为233.6 ng·mL-1·h-1·mgprotein-1,Km为14.5 ng·mL-1,CLint为16.2 h-1·mgprotein-1。结论:羟氯喹主要通过CYP2C8、CYP3A4和CYP2B6代谢,药物在体内清除速率慢,药物相互作用和蓄积是发生不良反应的重要因素。  相似文献   

12.
End-product inhibition was explored as a mechanism for the lower clearance determination obtained from microsomes compared with hepatocytes. Triazolam, diazepam and phenytoin microsomal substrate depletion was reduced by 23, 34 and 39%, respectively, when incubated with their primary metabolites. Ki values of 28+/-6 and 11+/-1 microM were obtained when 4'-hydroxydiazepam and p-hydroxyphenytoin where incubated with diazepam and phenytoin, respectively. Alamethicin (a glucuronidation activator) was unsuccessful in alleviating these effects. IC50 values of 17, 32 and 18 microM for phenytoin and 83, 110 and 97 microM for diazepam were observed with salicylamide- (a glucuronidation inhibitor) treated hepatocytes, control hepatocytes and microsomes, respectively, when incubated with their primary metabolites. These differences suggest that metabolite concentrations in the vicinity of the enzyme are lower in hepatocytes compared with microsomes, reducing the likelihood of end-product inhibition in the former system. In conclusion, end-product inhibition may be more prominent in microsomes (in particular for substrate depletion assays where metabolism tends to be more extensive); results suggest that this phenomenon may contribute to the observed variations in metabolism characteristics and intrinsic clearance (CLint) between hepatocytes and microsomes.  相似文献   

13.
Effects of rifampin on in vitro oxidative metabolism and in vivo pharmacokinetics of diclofenac (DF), a prototypic CYP2C9 marker substrate, were investigated in rhesus monkeys. In monkey hepatocytes, rifampin markedly induced DF 4'-hydroxylase activity, with values for EC(50) of 0.2 to 0.4 microM and E(max) of 2- to 5-fold over control. However, pretreatment with rifampin did not alter the pharmacokinetics of DF obtained after either i.v. or intrahepatic portal vein (i.pv.) administration of DF to monkeys. At the dose studied, plasma concentrations of rifampin reached 10 microM, far exceeding the in vitro EC(50) values. Under similar treatment conditions, rifampin was previously shown to induce midazolam (MDZ) 1'-hydroxylation in rhesus monkey hepatocytes (EC(50) and E(max) values approximately 0.2 microM and approximately 2- to 3-fold, respectively), and markedly affected the in vivo pharmacokinetics of MDZ (>10-fold decreases in the i.pv. MDZ systemic exposure and its hepatic availability, F(h)) in this animal species. In monkey liver microsomes, DF underwent, predominantly, glucuronidation, and, modestly, oxidation; the intrinsic clearance (CL(int) = V(max)/K(m)) value for the glucuronidation pathway accounted for >95% (versus about 75% in human liver microsomes) of the total (glucuronidation + hydroxylation) intrinsic clearance value. In monkey hepatocytes, the hydroxylation also was a minor component (< or =10%) relative to the glucuronidation, supporting the liver microsomal finding. Collectively, our results suggest that the oxidative metabolism is not the major in vivo clearance mechanism of DF in either untreated or rifampin-treated monkeys and, conceivably, also in humans, raising a question about the utility of DF as an in vivo CYP2C9 probe.  相似文献   

14.
The stereoselective glucuronidation of propranolol (PL) in human and cynomolgus monkey liver microsomes, and the roles of human hepatic UDP-glucuronosyltransferase (UGT) isoforms involved in the enantiomeric glucuronidation of PL using recombinant UGT enzymes were investigated. In Michaelis-Menten plots, R- and S-PL glucuronidation by human liver microsomes showed sigmoidal kinetics whereas the kinetics of enantiomeric PL glucuronidation by cynomolgus monkey liver microsomes was monophasic. The Km, Vmax and CLint values of cynomolgus monkey liver microsomes were generally higher than the S50, Vmax and CLmax values of human liver microsomes in R- and S-PL glucuronidation. The glucuronidation of R- and S-PL was catalyzed by at least 3 UGT isoforms: UGT1A9, UGT2B4 and UGT2B7. Michaelis-Menten plots for R- and S-PL glucuronidation by UGT1A9 were monophasic, whereas the kinetics of UGT2B7 showed sigmoidal curves. Enantiomeric R-PL glucuronidation by UGT2B4 showed sigmoidal kinetics, whereas S-PL glucuronidation displayed monophasic kinetics. UGT1A9 showed remarkable stereoselectivity in Vmax and CLint values of R-PL < S-PL. These findings demonstrate that the profiles of enantiomeric PL glucuronidation in human and cynomolgus monkey liver microsomes are largely different and suggest that the human hepatic UGT isoforms UGT1A9, UGT2B4 and UGT2B7 play distinctive roles in enantiomeric PL glucuronidation.  相似文献   

15.
Treatment of CD1 mice with acetone raised activities of hepatic microsomal p-nitrophenol hydroxylase, ethoxycoumarin de-ethylase, acetone hydroxylase and diethylnitrosamine de-ethylase (DENd) several-fold. P-450IIE1-linked acetone hydroxylase showed the highest inducibility. In microsomes from acetone-pretreated mice the cytochrome b5 and P-450 content was nearly doubled and their electrophoretic profile showed induction of a protein of Mr 53,000, probably P-450IIE1. Liver phase II enzymes were not affected by acetone treatment. Kinetic analyses of DENd were performed in control or acetone-induced microsomes and Km and Vmax were determined. Two distinctly apparent Km values (0.56 and 20.3 mM) were observed for DENd of control microsomes and at least 3 apparent Km values (0.05, 0.51, 8.4 mM) were observed in acetone-induced microsomes. Thus, acetone administration to mice induces a high-affinity form of DENd which can be important in vivo at low diethylnitrosamine (DEN) exposure as this enzyme functions when DEN concentration is below 0.1 mM.  相似文献   

16.
1. The aim of the present study was to investigate the potency of various sulfonamides to inhibit tolbutamide hydroxylation (a CYP2C activity) in hepatic microsomal fractions and hepatocytes of the dwarf goat. Also a number of suggested substrates for human CYP2C9 was investigated. 2. From Dixon plots (microsomal fractions) it was observed that all compounds were competitive inhibitors of tolbutamide hydroxylation. Phenytoin (PT) showed the lowest Ki. Ki for the sulfonamides ranged between 205 and 4546 μM, sulfadoxine having the lowest Ki followed by sulfadimethoxine, sulfamoxole, sulfadimidine and sulfaphenazole. 3. In hepatocytes sulfaphenazole and diclofenac were the most potent inhibitors. 4. Out data indicate that PT, diclofenac (DF) and phenylbutazone (PBZ) are relative strong competitive inhibitors of tolbutamide hydroxylation and they are probably also substrates for the same enzyme. Differential inhibition of tolbutamide hydroxylation by sulfonamides was observed. 5. Correlation of structural parameters with the inhibition constant or the inhibition in hepatocytes showed that molecular volume, polarisability and molecular surface area are important parameters in determining the rate of inhibition of tolbutamide hydroxylation by sulfonamides in both microsomes and hepatocytes. In addition, log Poct are also involved oct in determining inhibition constants in microsomal fractions.  相似文献   

17.
AIMS: To investigate the kinetics of CYP-mediated N-demethylation of methadone in human liver microsomes, and examine the role of stereoselectivity and CYP isoforms involved. METHODS: The kinetics of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) formation via N-demethylation of rac-, (R)- and (S)-methadone in human liver microsomes prepared from six liver samples were determined by h.p.l.c., and inhibition of metabolic function was studied using isoform-specific chemical inhibitors and monoclonal antibodies. Microsomes containing expressed CYP3A4, CYP2D6 and CYP2C19 were also used to examine the formation of EDDP. RESULTS: The V max, Km, and CLint values for the formation of EDDP from rac-, (R)- and (S)-methadone were in the ranges of 20-77 nmol mg-1 protein h-1, 125-252 microm, and 91-494 ml h-1 g-1 protein. Km and CLint values for (R)- and (S)-methadone were not statistically significantly different (P >0.05), while V max values for (S)-methadone were 15% (P=0.045) lower than for (R)-methadone. Expressed CYP3A4 and CYP2C19 showed similar reaction rates for both (R)- and (S)-methadone, while CYP2D6 did not catalyse this reaction. Selective chemical inhibitors of CYP3A (troleandomycin, ketoconazole) and monoclonal human CYP3A4 antibodies significantly inhibited (P<0.05) the formation of EDDP in a concentration dependent manner by up to 80%. Sulphaphenazole (CYP2C9) also significantly inhibited (P<0.05) EDDP formation (range 14-25%). There were no statistically significant differences in the inhibition observed between the three substrates. Selective inhibitors of CYP1A2 (furafylline), CYP2A6 (coumarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (quinidine) and CYP2E1 (diethyldithiocarbamic acid sodium salt and monoclonal human CYP2E1 antibodies) had no significant (P >0.05) effect. CONCLUSIONS: The N-demethylation of methadone in human liver microsomes is not markedly stereoselective, and is mediated mainly by CYP3A4 with the possible involvement of CYP2C9 and CYP2C19. Thus, the large interindividual variation reported for methadone pharmacokinetics may be due to variability in the expression of these CYP isoforms, and the reported stereoselectivity in the systemic clearance of methadone in vivo is not due to stereoselectivity in N-demethylation.  相似文献   

18.
Nonspecific binding of drugs to human liver microsomes   总被引:5,自引:0,他引:5       下载免费PDF全文
AIMS: To characterize the nonspecific binding to human liver microsomes of drugs with varying physicochemical characteristics, and to develop a model for the effect of nonspecific binding on the in vitro kinetics of drug metabolism enzymes. METHODS: The extent of nonspecific binding to human liver microsomes of the acidic drugs caffeine, naproxen, tolbutamide and phenytoin, and of the basic drugs amiodarone, amitriptyline and nortriptyline was investigated. These drugs were chosen for study on the basis of their lipophilicity, charge, and extent of ionization at pH 7.4. The fraction of drug unbound in the microsomal mixture, fu(mic), was determined by equilibrium dialysis against 0.1 M phosphate buffer, pH 7.4. The data were fitted to a standard saturable binding model defined by the binding affinity KD, and the maximum binding capacity Bmax. The derived binding parameters, KD and Bmax, were used to simulate the effects of saturable nonspecific binding on in vitro enzyme kinetics. RESULTS: The acidic drugs caffeine, tolbutamide and naproxen did not bind appreciably to the microsomal membrane. Phenytoin, a lipophilic weak acid which is mainly unionized at pH 7. 4, was bound to a small extent (fu(mic) = 0.88) and the binding did not depend on drug concentration over the range used. The three weak bases amiodarone, amitriptyline and nortriptyline all bound extensively to the microsomal membrane. The binding was saturable for nortriptyline and amitriptyline. Bmax and KD values for nortriptyline at 1 mg ml-1 microsomal protein were 382 +/- 54 microM and 147 +/- 44 microM, respectively, and for amitriptyline were 375 +/- 23 microM and 178 +/- 33 microM, respectively. Bmax, but not KD, varied approximately proportionately with the microsome concentration. When KD is much less than the Km for a reaction, the apparent Km based on total drug can be corrected by multiplying by fu(mic). When the substrate concentration used in a kinetic study is similar to or greater than the KD (Km >/= KD), simulations predict complex effects on the reaction kinetics. When expressed in terms of total drug concentrations, sigmoidal reaction velocity vs substrate concentration plots and curved Eadie Hofstee plots are predicted. CONCLUSIONS: Nonspecific drug binding in microsomal incubation mixtures can be qualitatively predicted from the physicochemical characteristics of the drug substrate. The binding of lipophilic weak bases is saturable and can be described by a standard binding model. If the substrate concentrations used for in vitro kinetic studies are in the saturable binding range, complex effects are predicted on the reaction kinetics when expressed in terms of total (added) drug concentration. Sigmoidal reaction curves result which are similar to the Hill plots seen with cooperative substrate binding.  相似文献   

19.
Tolbutamide hydroxylation has been investigated in human liver microsomes. Anti-human liver NADPH-cytochrome P-450 reductase IgG inhibited hydroxytolbutamide formation and this metabolite was not formed when NADPH-generating system was omitted from microsomal incubations. Tolbutamide hydroxylation followed Michaelis-Menten kinetics, consistent with the involvement of a single form of cytochrome P-450 in this reaction. Mean apparent Km and Vmax values for hydroxytolbutamide formation were 120 +/- 41 microM and 0.273 +/- 0.066 nmol min-1 mg-1, respectively. A range of clinically used drugs and xenobiotics used as probes for cytochrome P-450 activity in laboratory animals was screened for inhibitory effects on hydroxytolbutamide formation. Caffeine, paraxanthine, theophylline, theobromine, debrisoquine, erythromycin, phenacetin, propranolol, aminopyrine, benzo(a)pyrene and 7-ethoxycoumarin were all found not to inhibit tolbutamide hydroxylation. In contrast, sulphaphenazole, phenylbutazone, nifedipine, verapamil, cimetidine, aniline, dextropropoxyphene and mephenytoin were competitive inhibitors of tolbutamide hydroxylation. The respective apparent Ki values for these compounds were 0.12 microM, 11 microM, 15 microM, 118 microM, 140 microM, 182 microM, 225 microM and 375 microM. Sulphinpyrazone inhibited tolbutamide hydroxylation with atypical kinetics. The in vitro data is in good agreement with in vivo drug interactions with tolbutamide. The data also confirm that tolbutamide hydroxylation is not associated with the cytochromes P-450 responsible for methylxanthine metabolism or with the form responsible for the polymorphic oxidation of debrisoquine.  相似文献   

20.
The intrinsic clearances (CLint) of 50 neutral and basic marketed drugs were determined in fresh human hepatocytes and the data used to predict human in vivo hepatic metabolic clearance (CLmet). A statistically significant correlation between scaled CLmet and actual CLmet was observed (r2 = 0.48, p < 0.05), and for 73% of the drugs studied, scaled clearances were within 2-fold of the actual clearance. These data have shown that CLint data generated in human hepatocytes can be used to provide estimates of human hepatic CLmet for both phase I and phase II processes. In addition, the utility of commercial and in-house cryopreserved hepatocytes was assessed by comparing with data derived from fresh cells. A set of 14 drugs metabolized by the major human cytochromes P450 (P450s) (CYP1A2, 2C9, 2C19, 2D6, and 3A4) and uridine diphosphate glucuronosyltransferases (UGT1A1, 1A4, 1A9, and 2B7) have been used to characterize the activity of freshly isolated and cryopreserved human and dog hepatocytes. The cryopreserved human and dog cells retained on average 94% and 81%, respectively, of the CLint determined in fresh cells. Cryopreserved hepatocytes retain their full activity for more than 1 year in liquid N2 and are thus a flexible resource of hepatocytes for in vitro assays. In summary, this laboratory has successfully cryopreserved human and dog hepatocytes as assessed by the turnover of prototypic P450 and UGT substrates, and both fresh and cryopreserved human hepatocytes may be used for the prediction of human hepatic CLmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号