首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcot‐Marie‐Tooth (CMT) syndromes are a group of clinically heterogeneous disorders of the peripheral nervous system. Mutations of mitofusin 2 (MFN2) have been recognized to be associated with CMT type 2A (CMT2A). CMT2A is primarily an axonal disorder resulting in motor and sensory neuropathy. We report a male child with psychomotor delay, dysmorphic features, and weakness of lower limbs associated with electrophysiological features of severe, sensory‐motor, axonal neuropathy. The patient was diagnosed with early onset CMT2A and severe psychomotor retardation associated with c.310C>T mutation (p.R104W) in MFN2 gene. CMT2A should be considered in patients with both axonal sensory‐motor neuropathy and developmental delay.  相似文献   

2.
Charcot‐Marie‐Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1,334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole‐exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0–59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co‐occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2‐related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.  相似文献   

3.
Mitofusin‐2 (MFN2) mutations are the most common cause of autosomal dominant axonal Charcot‐Marie‐Tooth disease (CMT, type 2A), sometimes complicated by additional features such as optic atrophy (CMT6) and upper motor neuron involvement (CMT5). Several pathogenic mutations are reported, mainly acting in a dominant fashion, although few sequence variants behaved as recessive or semidominant in rare homozygous or compound heterozygous patients. We describe a 49‐year‐old woman with CMT5 associated with compound heterozygosity for two MFN2 variants, one already reported missense mutation (c.748C>T, p.R250W) and a novel nonsense sequence change (c.1426C>T, p.R476*). Her mother, carrying the p.R250W variant, had very late‐onset minimal axonal neuropathy, whilst the father harboring the nonsense sequence change had neither clinical nor electrophysiological neuropathy. The missense mutation is likely pathogenic according to in silico analyses and a previous report, while the nonsense variant is predicted to behave as a null allele. The p.R250W variant behaves as semidominant by causing only a mild, almost subclinical, neuropathy when heterozygous; the nonsense mutation in the father was phenotypically silent, suggesting that haploinsufficiency for MFN2 is not disease causative, but was deleterious in the daughter who had only one active mutated MFN2 allele.  相似文献   

4.
Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disorder of the peripheral nervous system characterized by marked progressive sensory loss, with variable autonomic and motor involvement. The HSAN I locus maps to chromosome 9q22.1–22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long chain base subunit 1 (SPTLC1). Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. Here we report the clinical, electrophysiological and pathological findings of a proband in a Chinese family with HSAN I. The affected members showed almost typical clinical features. Electrophysiological findings showed an axonal, predominantly sensory, neuropathy with motor and autonomic involvement. Sural nerve biopsy showed loss of myelinated and unmyelinated fibers. SPTLC1 mutational analysis revealed the C133W mutation, a mutation common in British HSAN I families.  相似文献   

5.
Hereditary sensory autonomic neuropathy (HSAN) type II is a rare, autosomal recessive, and early onset sensory neuropathy, characterized by severe and progressive sensation impairment, leading to ulcero‐mutilating complications. FAM134B gene, also known as RETREG1 gene, mutations have been reported to be associated to HSAN‐IIB. We report four patients from two unrelated families who developed during childhood a sensory axonal neuropathy with variable severity and pronounced nociception impairment. Complications such as recurrent ulcerations, osteomyelitis, and osteonecrosis leading to distal amputation were noticed. Dysautonomia was mild or even absent in our group of patients. Additionally, either clinical or neurophysiological motor impairment was not uncommon. Presence of upper motor neuron signs was also a distinctive feature in two related patients. After extensive workup, two novel homozygous mutations in the FAM134B gene were identified. This report expands the clinical and genetic spectrum of HSAN type II and emphasizes the phenotype variability even within the same family.  相似文献   

6.
The aim of our study was to characterize electrophysiologically and explain the genetic cause of severe Charcot–Marie–Tooth (CMT) in a 3.5‐year‐old with asymptomatic parents and a maternal grandfather with a history of mild adult‐onset axonal neuropathy. Severity of neuropathy was assessed by Charcot–Marie–Tooth neuropathy score (CMTNS). Whole‐exome sequencing was performed using an Illumina TruSeq Exome Enrichment Kit on the HiSeq 1500 with results followed up by Sanger sequencing on an ABI Prism 3500XL (Applied Biosystems, Foster City, CA, USA). Paternity was confirmed using a panel of 15 hypervariable markers. Electrophysiological studies demonstrated severe axonal sensory‐motor neuropathy in the proband, mild motor neuropathy in his mother, and mild sensory‐motor neuropathy in his grandfather. CMTNS in the proband, his mother, and grandfather was 21, 1, and 12, respectively. On genetic analysis, the boy was found to carry a heterozygous dominant MFN2 T236M mutation transmitted via the maternal line and a de novo GDAP1 H123R mutation. Our findings emphasize the need to search for more than one causative mutation when significant intrafamilial variability of CMT phenotype occurs and underline the role of whole‐exome sequencing in the diagnosis of compound forms of CMT disease.  相似文献   

7.
Introduction: Distal hereditary motor neuropathy (dHMN) is characterized by isolated distal muscle atrophy without sensory deficit. Nevertheless, clinical sensory loss has been reported despite preserved sensory nerve conduction in a few patients, thus differentiating these cases from the classical type 2 Charcot‐Marie‐Tooth disease (CMT2). Methods: We report 4 patients who presented with clinical sensory and motor neuropathy and normal peripheral sensory nerve conduction studies and were investigated with complete electrophysiological studies, including somatosensory evoked potentials (SEP). Results: These patients had a clinical presentation of classical CMT with isolated axonal motor neuropathy suggestive of dHMN. Interestingly, tibial nerve SEPs showed abnormalities suggestive of proximal involvement of dorsal roots that may explain the clinical somatosensory disturbances. Conclusions: These cases support the concept of spinal CMT that should be recognized as an intermediate form between dHMN and CMT2. SEP recording was helpful in defining a more precise phenotype of spinal CMT. Muscle Nerve 46: 603–607, 2012  相似文献   

8.
Hereditary sensory and autonomic neuropathy type I (HSAN‐1) is an autosomal dominant sensory neuropathy occurring secondary to mutations in the SPTLC1 and SPTLC2 genes. We present two generations of a single family with Ser384Phe mutation in the SPTLC2 gene located on chromosome 14q24 characterized by a typical HSAN‐1c presentation, with additional findings upper motor neuron signs, early demyelinating features on nerve conduction studies, and type II juxtafoveal retinal telangiectasias also known as macular telangiectasias (MacTel II). Although HSAN1 is characterized as an axonal neuropathy, demyelinating features were identified in two subjects on serial nerve conduction studies comprising motor conduction block, temporal dispersion, and prolongation of F‐waves. MacTell II is a rare syndrome characterized by bilateral macular depigmentation and Müller cell loss. It has a presumed genetic basis, and these cases suggest that the accumulation of toxic sphingoplipids may lead to Müller cell degeneration, subsequent neuronal loss, depigmentation, and progressive central macular thinning.  相似文献   

9.
Mitofusin 2 (MFN2) mutations are the most common cause of axonal Charcot‐Marie‐Tooth disease (CMT2). The majority are inherited in an autosomal dominant manner but recessive and semi‐dominant kindreds have also been described. We previously reported a deletion of exons 7 and 8 resulting in nonsense‐mediated decay, segregating with disease when present in trans with another pathogenic MFN2 mutation. Detailed clinical and electrophysiological data on a series of five affected patients from four kindreds and, when available, their parents and relatives were collected. MFN2 Sanger sequencing, multiplex ligation probe amplification, and haplotype analysis were performed. A severe early‐onset CMT phenotype was seen in all cases: progressive distal weakness, wasting, and sensory loss from infancy or early childhood. Optic atrophy (four of five) and wheelchair dependency in childhood were common (four of five). All were compound heterozygous for a deletion of exons 7 and 8 in MFN2 with another previously reported pathogenic mutation (Phe216Ser, Thr362Met, and Arg707Trp). Carrier parents and relatives were unaffected (age range: 24–82 years). Haplotype analysis confirmed that the deletion had a common founder in all families.  相似文献   

10.
Charcot‐Marie‐Tooth disease (CMT) is a common hereditary motor and sensory neuropathy. Epidemiological data for Chinese CMT patients are few. This study aimed to analyze the electrophysiological and genetic characteristics of Chinese Han patients. A total of 106 unrelated patients with the clinical diagnosis of CMT were included. Clinical examination, nerve conduction studies (NCS), next‐generation sequencing (NGS), and bioinformatic analyses were performed. Genetic testing was performed for 82 patients; 27 (33%) patients carried known CMT‐associated gene mutations. PMP22 duplication was detected in 10 (12%) patients and GJB1 mutations in 9 (11%) patients. The mutation rate was higher in patients with a positive family history than in the sporadic cases (50% vs. 27%, p < 0.05). Six novel CMT‐associated gene mutations including BSCL2 (c.461C>T), LITAF (c.32C>G), MFN2 (c.497C>T), GARS (c.794C>T), NEFL (c.280C>T), and MPZ (c.440T>C) were discovered. All except the LITAF (c.32C>G) mutation were identified as “disease causing” via bioinformatic analyses. In this Chinese Han population, the frequency of PMP22 gene duplication in those with CMT1 was slightly (50% vs. 70%–80%) less than in Western/Caucasian populations. The novel CMT‐associated gene mutations broaden the mutation diversity of CMT1. NGS should be considered for genetic analyses in CMT patients.  相似文献   

11.
Charcot‐Marie‐Tooth disease (CMT) comprises a group of heterogeneous peripheral axonopathies affecting 1 in 2,500 individuals. As mutations in several genes cause axonal degeneration in CMT type 2, mutations in mitofusin 2 (MFN2) account for approximately 90% of the most severe cases, making it the most common cause of inherited peripheral axonal degeneration. MFN2 is an integral mitochondrial outer membrane protein that plays a major role in mitochondrial fusion and motility; yet the mechanism by which dominant mutations in this protein lead to neurodegeneration is still not fully understood. Furthermore, future pre‐clinical drug trials will be in need of validated rodent models. We have generated a Mfn2 knock‐in mouse model expressing Mfn2R94W, which was originally identified in CMT patients. We have performed behavioral, morphological, and biochemical studies to investigate the consequences of this mutation. Homozygous inheritance leads to premature death at P1, as well as mitochondrial dysfunction, including increased mitochondrial fragmentation in mouse embryonic fibroblasts and decreased ATP levels in newborn brains. Mfn2R94W heterozygous mice show histopathology and age‐dependent open‐field test abnormalities, which support a mild peripheral neuropathy. Although behavior does not mimic the severity of the human disease phenotype, this mouse can provide useful tissues for studying molecular pathways associated with MFN2 point mutations.  相似文献   

12.
Introduction: Bcl‐2‐associated athanogene‐3 (BAG3) mutations have been described in rare cases of rapidly progressive myofibrillar myopathies. Symptoms begin in the first decade with axial involvement and contractures and are associated with cardiac and respiratory impairment in the second decade. Axonal neuropathy has been documented but usually not as a key clinical feature. Methods: We report a 24‐year‐old woman with severe rigid spine syndrome and sensory‐motor neuropathy resembling Charcot–Marie–Tooth disease (CMT). Results: Muscle MRI showed severe fat infiltration without any specific pattern. Deltoid muscle biopsy showed neurogenic changes and discrete myofibrillar abnormalities. Electrocardiogram and transthoracic echocardiography results were normal. Genetic analysis of a panel of 45 CMT genes showed no mutation. BAG3 gene screening identified the previously reported c.626C>T, pPro209Leu, mutation. Discussion: This case indicates that rigid spine syndrome and sensory‐motor axonal neuropathy are key clinical features of BAG3 mutations that should be considered even without cardiac involvement. Muscle Nerve, 57 : 330–334, 2018  相似文献   

13.
Hereditary sensory and autonomic neuropathies (HSAN) encompass a group of peripheral nervous system disorders characterized by remarkable heterogeneity from a clinical and genetic point of view. Mutations in SPTLC1 gene are responsible for HSAN type IA, which usually starts from the second to fourth decade with axonal neuropathy, sensory loss, painless distal ulcerations, and mild autonomic features, while motor involvement usually occur later as disease progresses. Beyond the classic presentation of HSAN type IA, an exceedingly rare distinct phenotype related to SPTLC1 mutations at residue serine 331 (S331) has recently been reported, characterized by earlier onset, prominent muscular atrophy, growth retardation, oculo‐skeletal abnormalities, and possible respiratory complications. In this report, we describe clinical, instrumental, and genetic aspects of a 13‐year‐old Sri Lankan male carrying the rare de novo p.S331Y heterozygous mutation in SPTLC1 gene found by whole exome sequencing. Patient's phenotype partly overlaps with the first case previously reported, however with some additional features not described before. This work represent the second report about this rare mutation and our findings strongly reinforce the hypothesis of a clearly distinct “S331 syndrome”, thus expanding the spectrum of SPTLC1‐related disorders.  相似文献   

14.
Heat shock protein B3 (HSPB3) gene encodes a small heat‐shock protein 27‐like protein which has a high sequence homology with HSPB1. A mutation in the HSPB3 was reported as the putative underlying cause of distal hereditary motor neuropathy 2C (dHMN2C) in 2010. We identified a heterozygous mutation (c.352T>C, p.Tyr118His) in the HSPB3 from a Charcot‐Marie‐Tooth disease type 2 (CMT2) family by the method of targeted next generation sequencing. The mutation was located in the well conserved alpha‐crystalline domain, and several in silico predictions indicated a pathogenic effect of the mutation. Clinical and electrophysiological features of the patients indicated the axonal type of CMT. Clinical symptoms without sensory involvements were similar between the present family and the previous family. Mutations in the HSPB1 and HSPB8 genes have been reported to be relevant with both types of CMT2 and dHMN. Our findings will help in the molecular diagnosis of CMT2 by expanding the phenotypic range due to the HSPB3 mutations.  相似文献   

15.
Charcot‐Marie‐Tooth disease (CMT) is the most common inherited peripheral neuropathy. Mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene have been found to cause X‐linked dominant CMT type 6 (CMTX6). This study identified the p.R158H PDK3 mutation after screening 67 probable X‐linked CMT families. The mutation fully segregated with the phenotype, and genotyping the family indicated the mutation arose on a different haplotype compared with the original Australian CMTX6 family. Results of bisulphite sequencing suggest that methylated deamination of a CpG dinucleotide may cause the recurrent p.R158H mutation. The frequency of the p.R158H PDK3 mutation in Koreans is very rare. Magnetic resonance imaging revealed fatty infiltration involving distal muscles in the lower extremities. In addition, fatty infiltrations were predominantly observed in the soleus muscles, with a lesser extent in tibialis anterior muscles. This differs from demyelinating CMT1A patients and is similar to axonal CMT2A patients. The clinical, neuroimaging, and electrophysiological findings from a second CMTX6 family with the p.R158H PDK3 mutation were similar to the axonal neuropathy reported in the Australian family.  相似文献   

16.
The prevalence of Charcot‐Marie‐Tooth (CMT) disease or hereditary motor and sensory neuropathy (HMSN) varies in different populations. While in some countries of Western Europe, the United States and Japan the dominant form of HMSN is the most frequent, in other countries such as those of the Mediterranean Basin, the autosomal recessive form (AR‐CMT) is more common. Autosomal recessive CMT cases are generally characterized by earlier onset, usually before the age of 2 or 3 years, and rapid clinical progression that results in severe polyneuropathy and more marked distal limb deformities such as pes equino‐varus, claw‐like hands, and often major spinal deformities. Recent clinical, morphological and molecular investigations of CMT families with autosomal recessive inheritance allowed the identification of many genes such as GDAP1, MTMR2, SBF2, NDRG1, EGR2, SH3TC2, PRX, FGD4, and FIG4, implicated in demyelinating forms (ARCMT1 or CMT4), and LMNA, MED25, HINT1, GDAP1, LRSAM1, NEFL, HSPB1 and MFN2 in axonal forms (ARCMT2). However, many patients remain without genetic diagnosis to date, prompting investigations into ARCMT families in order to help discover new genes and common pathways. This review summarizes recent advances regarding the genotypes and corresponding phenotypes of AR‐CMT.  相似文献   

17.
We report on two patients, with different POLG mutations, in whom axonal neuropathy dominated the clinical picture. One patient presented with late onset sensory axonal neuropathy caused by a homozygous c.2243G>C (p.Trp748Ser) mutation that resulted from uniparental disomy of the long arm of chromosome 15. The other patient had a complex phenotype that included early onset axonal Charcot‐Marie‐Tooth disease (CMT) caused by compound heterozygous c.926G>A (p.Arg309His) and c.2209G>C (p.Gly737Arg) mutations.  相似文献   

18.
19.
Natura non facit saltus (Latin for “nature does not make jumps”) is a maxim expressing the idea that natural things and properties change gradually, in a continuum, rather than suddenly. In biomedical sciences, for taxonomic purposes, we make jumps that emphasize differences more than similarities. Among the dysimmune neuropathies, 2 disorders, characterized by the presence of antibodies to gangliosides GM1 and GD1a and a peculiar, exclusive motor involvement, have been identified: acute motor axonal neuropathy (AMAN) and multifocal motor neuropathy (MMN). However, anti‐GM1 or ‐GD1a antibodies are also associated with acute motor and sensory axonal motor neuropathy (AMSAN). We review the results of recent clinical and experimental studies showing that AMAN and MMN are not exclusively motor. We discuss the possible explanations for the greater resistance of sensory fibers to antibody attack to finally suggest that AMAN, AMSAN, and MMN belong to a continuous spectrum with a common pathophysiological mechanism. Muscle Nerve 48 : 484–487, 2013  相似文献   

20.
Congenital hypomyelinating neuropathy (CHN) presents in the neonatal period and results in delayed development of sensory and motor functions due to several gene mutations including in EGR2, MPZ, CNTNAP1, and PMP22. The phenotype of homozygous splice‐site mutation in the PMP22 gene has not been described in humans or animal models. Here we describe a family carrying a pathogenic splice‐site c.78 + 5G>A mutation in the PMP22 gene. We evaluated the clinical, electrophysiological, histological, and genetic features of the family. The proband with homozygous mutation presented with CHN, while his consanguineous parents with heterozygous mutation were asymptomatic. The proband was a 7‐year‐old boy. He had motor retardation after birth and had remained unable to walk independently at the time of the study. The compound muscle action potentials and sensory nerve action potentials were not recordable in the boy. The motor and sensory nerve conduction velocities of the parents were slightly to moderately decreased, although they had no symptoms of peripheral neuropathy. The sural nerve biopsy of the boy revealed hypomyelinating neuropathy with absence of large myelinated fibers, no myelin breakdown products, and numerous basal lamina onion bulb formations. To our knowledge, this is the first report of a homozygous splice‐site mutation in the PMP22 gene in humans. Our study expands the phenotype and genotype of PMP22‐related neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号