首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous 3D structures from mineralized collagen were fabricated applying a procedure in which collagen fibril reassembly and precipitation of nanocrystalline hydroxyapatite (HA) occur simultaneously. The resulting matrices were evaluated in vitro with respect to their suitability as scaffolds for bone tissue engineering. We found a high capacity of the material to bind serum proteins as well as to absorb Ca2+ ions, which could be advantageous to promote cell attachment, growth, and differentiation. Human bone marrow stromal cells (hBMSCs) were seeded onto the 3D scaffolds and cultivated for 4 weeks in the presence and absence of osteogenic supplements. We studied viability, proliferation, and osteogenic differentiation in terms of total lactate dehydrogenase (LDH) activity, DNA content, and alkaline phosphatase (ALP) activity. Furthermore, the expression for bone-related genes (ALP, bone sialo protein II (BSP II), and osteocalcin) was analyzed. In our investigation we found a 2.5-fold to 5-fold raise in DNA content and an increase of ALP activity for osteogenic induced hBMSC on collagen HA scaffolds. The expression of ALP and BSP II in these cells was also stimulated in the course of cultivation; however, we did not detect an upregulation of osteocalcin gene expression. These data suggest, that porous collagen HA scaffolds are suitable for the expansion and osteogenic differentiation of hBMSC and are therefore promising candidates for application as bone grafts.  相似文献   

2.
We report studies of bone tissue engineering using human mesenchymal stem cells (MSCs), a protein substrate (film or scaffold; fast degrading unmodified collagen, or slowly degrading cross-linked collagen and silk), and a bioreactor (static culture, spinner flask, or perfused cartridge). MSCs were isolated from human bone marrow, characterized for the expression of cell surface markers and the ability to undergo chondrogenesis and osteogenesis in vitro, and cultured for 5 weeks. MSCs were positive for CD105/endoglin, and had a potential for chondrogenic and osteogenic differentiation. In static culture, calcium deposition was similar for MSC grown on collagen scaffolds and films. Under medium flow, MSC on collagen scaffolds deposited more calcium and had a higher alcaline phosphatase (AP) activity than MSC on collagen films. The amounts of DNA were markedly higher in constructs based on slowly degrading (modified collagen and silk) scaffolds than on fast degrading (unmodified collagen) scaffolds. In spinner flasks, medium flow around constructs resulted in the formation of bone rods within the peripheral region, that were interconnected and perpendicular to the construct surface, whereas in perfused constructs, individual bone rods oriented in the direction of fluid flow formed throughout the construct volume. These results suggest that osteogenesis in cultured MSC can be modulated by scaffold properties and flow environment.  相似文献   

3.
It is of high clinical relevance in bone tissue engineering that scaffolds promote a high seeding efficiency of cells capable of osteogenic differentiation, such as human bone marrow-derived mesenchymal stem cells (hMSCs). We evaluated the effects of a novel polycaprolactone (PCL) scaffold on hMSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in osteogenic stimulation medium for up to 28 days. Compared to naked PCL scaffolds, embedded scaffolds provided a higher cell seeding efficiency (t-test, P<0.05), a more homogeneous cell distribution and more osteogenically differentiated cells, verified by a more pronounced gene expression of the bone markers alkaline phosphatase, osteocalcin, bone sialoprotein I and bone sialoprotein II. Dynamic culture resulted in higher amounts of DNA (day 14 and day 21) and calcium (day 21 and day 28), compared to static culture. Dynamic culture and the embedding synergistically enhanced the calcium deposition of hMSC on day 21 and day 28. This in vitro study provides evidence that hybrid scaffolds made from natural and synthetic polymers improve cellular seeding efficiency, proliferation, distribution and osteogenic differentiation.  相似文献   

4.
Wu W  Allen R  Gao J  Wang Y 《Tissue engineering. Part A》2011,17(15-16):1979-1992
Bone marrow-derived progenitor cells are promising cell sources for vascular tissue engineering. However, conventional bone marrow mesenchymal stem cell expansion and induction strategies require plating on tissue culture plastic, a stiff substrate that may itself influence cell differentiation. Direct scaffold seeding avoids plating on plastic; to the best of our knowledge, there is no report of any scaffold that induces the differentiation of bone marrow mononuclear cells (BMNCs) to vascular cells in vitro. In this study, we hypothesize that an elastomeric scaffold with adsorbed plasma proteins and platelets will induce differentiation of BMNCs to vascular cells and promote vascular tissue formation by combining soft tissue mechanical properties with platelet-mediated tissue repairing signals. To test our hypothesis, we directly seeded rat primary BMNCs in four types of scaffolds: poly(lactide-co-glycolide), elastomeric poly(glycerol sebacate) (PGS), platelet-poor plasma-coated PGS, and PGS coated by plasma supplemented with platelets. After 21 days of culture, osteochondral differentiation of cells in poly(lactide-co-glycolide) was detected, but most of the adhered cells on the surface of all PGS scaffolds expressed calponin-I and α-smooth muscle actin, suggesting smooth muscle differentiation. Cells in PGS scaffolds also produced significant amount of collagen and elastin. Further, plasma coating improves seeding efficiency, and platelet increases proliferation, the number of differentiated cells, and extracellular matrix content. Thus, the artificial niche composed of platelets, plasma, and PGS is promising for artery tissue engineering using BMNCs.  相似文献   

5.
Li WJ  Tuli R  Huang X  Laquerriere P  Tuan RS 《Biomaterials》2005,26(25):5158-5166
Functional engineering of musculoskeletal tissues generally involves the use of differentiated or progenitor cells seeded with specific growth factors in biomaterial scaffolds. Ideally, the scaffold should be a functional and structural biomimetic of the native extracellular matrix and support multiple tissue morphogenesis. We have previously shown that electrospun, three-dimensional nanofibrous scaffolds that morphologically resemble collagen fibrils are capable of promoting favorable biological responses from seeded cells, indicative of their potential application for tissue engineering. In this study, we tested a three-dimensional nanofibrous scaffold fabricated from poly(epsilon-caprolactone) (PCL) for its ability to support and maintain multilineage differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in vitro. hMSCs were seeded onto pre-fabricated nanofibrous scaffolds, and were induced to differentiate along adipogenic, chondrogenic, or osteogenic lineages by culturing in specific differentiation media. Histological and scanning electron microscopy observations, gene expression analysis, and immunohistochemical detection of lineage-specific marker molecules confirmed the formation of three-dimensional constructs containing cells differentiated into the specified cell types. These results suggest that the PCL-based nanofibrous scaffold is a promising candidate scaffold for cell-based, multiphasic tissue engineering.  相似文献   

6.
Directed stem cell differentiation over three-dimensional porous scaffolds capable of releasing bioactive instructive cues is an important tool in tissue engineering. In this research, we have prepared dexamethasone (Dex)-releasing collagen microbead-functionalized poly(L-Lactide)-collagen hybrid scaffolds as an osteoinductive platform for human bone marrow-derived mesenchymal stem cells (MSCs). The scaffolds were prepared by a combined method of emulsion freeze-drying and porogen-leaching using pre-prepared ice collagen particulates as a porogen material. Dex release from the hybrid scaffolds was studied at 37?°C under shaking condition and the impact of released Dex towards osteogenic lineage differentiation was investigated by 3?week in vitro culture of MSCs. The results showed that hybrid scaffolds had controlled pore structure and interconnected pores deposited with collagen fibers. The hybrid scaffold facilitated cell seeding and the spatial localization of Dex/collagen microbeads facilitated a microgel-assisted spatio-temporal control of Dex release. The released Dex was useful for osteogenic differentiation of MSCs, which was confirmed from the elevated expression of osteogenic-specific gene-encoded proteins. The hybrid scaffolds should be useful for regeneration of a functional bone tissue.  相似文献   

7.
Effect of scaffold design on bone morphology in vitro   总被引:3,自引:0,他引:3  
Silk fibroin is an important polymer for scaffold designs, forming biocompatible and mechanically robust biomaterials for bone, cartilage, and ligament tissue engineering. In the present work, 3D biomaterial matrices were fabricated from silk fibroin with controlled pore diameter and pore interconnectivity, and utilized to engineer bone starting from human mesenchymal stem cells (hMSC). Osteogenic differentiation of hMSC seeded on these scaffolds resulted in extensive mineralization, alkaline phosphatase activity, and the formation of interconnected trabecular- or cortical-like mineralized networks as a function of the scaffold design utilized; allowing mineralized features of the tissue engineered bone to be dictated by the scaffold features used initially in the cell culture process. This approach to scaffold predictors of tissue structure expands the window of applications for silk fibroin-based biomaterials into the realm of directing the formation of complex tissue architecture. As a result of slow degradation inherent to silk fibroin, scaffolds preserved their initial morphology and provided a stable template during the mineralization phase of stem cells progressing through osteogenic differentiation and new extracellular matrix formation. The slow degradation feature also facilitated transport throughout the 3D scaffolds to foster improved homogeneity of new tissue, avoiding regions with decreased cellular density. The ability to direct bone morphology via scaffold design suggests new options in the use of biodegradable scaffolds to control in vitro engineered bone tissue outcomes.  相似文献   

8.
This study investigates the effect of scaffolds prepared from gelatin (G) and chitooligosaccharide (COS) on the osteogenic differentiation of rat bone-marrow-derived mesenchymal stem cells (MSC). The sponge scaffolds at G/COS mixing ratios of 100:0, 70:30 and 50:50 were fabricated by freeze-drying, followed by glutaraldehyde cross-linking. The pore size of the G/COS scaffolds ranged from 70 to 105 μm. MSC cultured in the scaffolds in the osteogenic medium were differentiated into osteogenic cells for all G/COS scaffolds. Calcium nodules were homogeneously formed on the surface of scaffolds cultured with MSC. A Fourier transform infrared (FT-IR) analysis demonstrated the formation of hydroxyapatite spectroscopically. Among all G/COS scaffolds, the highest ALP activity and calcium content were observed for MSC cultured in the G/COS 70:30 scaffolds. The G/COS 70:30 scaffolds were then pre-cultured with MSC in the osteogenic medium for 28 days and subcutaneously implanted into nude mice to evaluate ectopic bone formation. Enhanced vascularization, cell infiltration, collagen formation and calcium deposition around the scaffolds implanted were histologically observed at 2 and 8 weeks after implantation. It was concluded that the G/COS scaffold with the mixing ratio of 70:30 was a promising organic material to induce osteogenic differentiation of MSC.  相似文献   

9.
In vitro ossification and remodeling of mineralized collagen I scaffolds   总被引:1,自引:0,他引:1  
A promising strategy of bone tissue engineering is to repair bone defects by implanting biodegradable scaffolds that can undergo remodeling and be replaced completely by autologous bone tissue. For this purpose, it is necessary to create scaffolds that can be degraded by osteoclasts and enable osteoblasts to build new mineralized bone matrix. In order to achieve this goal a new porous material has been developed using biomimetically mineralized collagen I. These scaffolds were co-cultured with osteoclast-like cells and osteoblasts in order to characterize the capacity of these cells to remodel the material in vitro. It was possible to show the development of biologically active osteoclast- like cells that were able to invade and degrade the scaffold. They degraded the scaffold by internalizing it as intracellular vesicles, thereby making room for osteoblasts to invade and build new bone matrix. In addition, it could be shown that osteoblasts proliferated, differentiated, and produced new mineralized extracellular matrix. Hence, it could be shown that co-culture of osteoclastlike cells and osteoblasts on biomimetically mineralized collagen I is a promising approach for bone tissue engineering. In addition, it can be applied to study the process of bone remodeling in vitro.  相似文献   

10.
Type I collagen is the most abundant extracellular matrix protein in bone and contains arginine- glycine-aspartic acid sequences that promote cell adhesion and proliferation. We have previously shown that human mesenchymal stem cells (hMSCs) seeded in three-dimensional (3D) collagen gels upregulate BMP-2 mRNA expression in response to tensile strain, indicative of osteogenesis. Therefore, collagen could be a promising scaffold material for functional bone tissue engineering using hMSCs. However, high contraction of the collagen gels by hMSCs poses a challenge to creating large, tissue-engineered bone constructs. The effects of cyclic tensile strain, medium (with and without dexamethasone), and hMSC seeding density on contraction of collagen matrices have not been investigated. hMSCs were seeded in 3D collagen gels and subjected to cyclic tensile strain of 10% or 12% for 4 h/day at a frequency of 1 Hz in osteogenic-differentiating or complete MSC growth media for up to 14 days. Viability of hMSCs was not affected by strain or media conditions. While initial seeding density affected matrix contraction alone, there was a high interdependence of strain and medium on matrix contraction. These findings suggest a correlation between hMSC proliferation and osteogenic differentiation on collagen matrix contraction that is affected by media, cell-seeding density, and cyclic tensile strain. It is vital to understand the effects of culture conditions on collagen matrix contraction by hMSCs in order to consider hMSC-seeded collagen constructs for functional bone tissue engineering in vitro.  相似文献   

11.
Y Kang  S Kim  J Bishop  A Khademhosseini  Y Yang 《Biomaterials》2012,33(29):6998-7007
Extracellular matrix (ECM) serves a key role in cell migration, attachment, and cell development. Here we report that ECM derived from human umbilical vein endothelial cells (HUVEC) promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSC). We first produced an HUVEC-derived ECM on a three-dimensional (3D) beta-tricalcium phosphate (β-TCP) scaffold by HUVEC seeding, incubation, and decellularization. The HUVEC-derived ECM was then characterized by SEM, FTIR, XPS, and immunofluorescence staining. The effect of HUVEC-derived ECM-containing β-TCP scaffold on hMSC osteogenic differentiation was subsequently examined. SEM images indicate a dense matrix layer deposited on the surface of struts and pore walls. FTIR and XPS measurements show the presence of new functional groups (amide and hydroxyl groups) and elements (C and N) in the ECM/β-TCP scaffold when compared to the β-TCP scaffold alone. Immunofluorescence images indicate that high levels of fibronectin and collagen IV and low level of laminin were present on the scaffold. ECM-containing β-TCP scaffolds significantly increased alkaline phosphatase (ALP) specific activity and up-regulated expression of osteogenesis-related genes such as runx2, alkaline phosphatase, osteopontin and osteocalcin in hMSC, compared to β-TCP scaffolds alone. This increased effect was due to the activation of MAPK/ERK signaling pathway since disruption of this pathway using an ERK inhibitor PD98059 results in down-regulation of these osteogenic genes. Cell-derived ECM-containing calcium phosphate scaffolds is a promising osteogenic-promoting bone void filler in bone tissue regeneration.  相似文献   

12.
13.
Bone Marrow mesenchymal stem cells can be induced to differentiate into osteoblasts to regenerate damaged bone tissue using tissue engineering techniques. In this study, we examine the use of chitosan scaffolds with double pore structure prepared by an innovative method that combines freeze gelation (that produces micropores) and particle leaching out technique (that produces interconnected spherical macropores) seeking to enhance the osteogenic differentiation of goat bone marrow stromal cells (GBMSCs). The double pore architecture of the scaffold was characterized by scanning electron microscopy (SEM), microcomputed tomography and confocal laser scanning microscopy. The obtained hierarchical pore structure allowed very efficient seeding of GBMSCs that are able to occupy the whole volume of the scaffold, showing good adhesion and proliferation. GBMSCs were differentiated into osteoblasts as indicated by alkaline phosphatase activity and osteocalcin expression. The results of this study demonstrate that chitosan scaffold may be promising biomaterial for bone regeneration.  相似文献   

14.
Na K  Kim SW  Sun BK  Woo DG  Yang HN  Chung HM  Park KH 《Biomaterials》2007,28(16):2631-2637
The aim of this study was to assess the efficacy of ectopic bone formation in a three-dimensional hybrid scaffold in combination with hydroxyapatite (HA) and poly(NiPAAm-co-AAc) as an injectable vehicle in the form of a supporting matrix for the osteogenic differentiation of rabbit mesenchymal stem cells (MSCs). Osteogenic differentiation of MSCs in the hybrid scaffold was greatly influenced by the addition of growth factors. When the osteoinduction activity of hybrid scaffold was studied following implantation into the back subcutis of nude mouse in terms of histological and biochemical examinations, significantly homogeneous bone formation was histologically observed throughout the hybrid scaffolds containing growth factor (BMP-2: bone morphogenic protein-2). The level of alkaline phosphatase activity and osteocalcin content at the implanted sites of hybrid scaffolds were significantly high for the perfusion group compared with those in static culture group. We conclude that combination of MSC-seeded hybrid scaffold containing BMP-2 was a promising method by which to enhance in vitro osteogenic differentiation of MSC and in vivo ectopic bone formation.  相似文献   

15.
At present there is a strong need for suitable scaffolds that meet the requirements for bone tissue engineering applications. The objective of this study was to investigate the suitability of porous scaffolds based on a hydroxyl functionalized polymer, poly(hydroxymethylglycolide-co-ε-caprolactone) (pHMGCL), for tissue engineering. In a recent study this polymer was shown to be a promising material for bone regeneration. The scaffolds consisting of pHMGCL or poly(ε-caprolactone) (PCL) were produced by means of a rapid prototyping technique (three-dimensional plotting) and were shown to have a high porosity and an interconnected pore structure. The thermal and mechanical properties of both scaffolds were investigated and human mesenchymal stem cells were seeded onto the scaffolds to evaluate the cell attachment properties, as well as cell viability and differentiation. It was shown that the cells filled the pores of the pHMGCL scaffold within 7 days and displayed increased metabolic activity when compared with cells cultured in PCL scaffolds. Importantly, pHMGCL scaffolds supported osteogenic differentiation. Therefore, scaffolds based on pHMGCL are promising templates for bone tissue engineering applications.  相似文献   

16.
Optimal scaffold characteristics are essential for the therapeutic application of engineered tissues. Hydraulic permeability (k) affects many properties of collagen gels, such as mechanical properties, cell–scaffold interactions within three dimensions (3D), oxygen flow and nutrient diffusion. However, the cellular response to 3D gel scaffolds of defined k values has not been investigated. In this study, unconfined plastic compression under increasing load was used to produce collagen gels with increasing solid volume fractions. The Happel model was used to calculate the resulting permeability values in order to study the interaction of k with gel mechanical properties and mesenchymal stem cell (MSC)-induced gel contraction, metabolism and differentiation in both non-osteogenic (basal medium) and osteogenic medium for up to 3 weeks. Collagen gels of fibrillar densities ranging from 0.3 to >4.1 wt.% gave corresponding k values that ranged from 1.00 to 0.03 μm2. Mechanical testing under compression showed that the collagen scaffold modulus increased with collagen fibrillar density and a decrease in k value. MSC-induced gel contraction decreased as a direct function of decreasing k value. Relative to osteogenic conditions, non-osteogenic MSC cultures exhibited a more than 2-fold increase in gel contraction. MSC metabolic activity increased similarly under both osteogenic and non-osteogenic culture conditions for all levels of plastic compression. Under osteogenic conditions MSC differentiation and mineralization, as indicated by alkaline phosphatase activity and von Kossa staining, respectively, increased in response to an elevation in collagen fibrillar density and decreased gel permeability. In this study, gel scaffolds with higher collagen fibrillar densities and corresponding lower k values provided a greater potential for MSC differentiation and appear most promising for bone grafting purposes. Thus, cell–scaffold interactions can be optimized by defining the 3D properties of collagen scaffolds through k adjustment.  相似文献   

17.
Xu C  Su P  Chen X  Meng Y  Yu W  Xiang AP  Wang Y 《Biomaterials》2011,32(4):1051-1058
A novel biomimetic composite scaffold Bioglass-Collagen-Phosphatidylserine (BG-COL-PS) was fabricated with a freeze-drying technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the BG-COL-PS scaffolds exhibited interconnected porous structures with pore sizes of several microns up to about 300 μm. The scaffolds have a porosity of 75.40% and the corresponding compressive strength of 1.5469 Mpa. Rat mesenchymal stem cells (rMSCs) were seeded on BG-COL-PS or BG-COL scaffolds and cultured for 21 days in vitro. Based on the results of SEM, dsDNA content, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis and alizarin red staining, the responses of MSCs to the scaffold exhibited a higher degree of attachment, growth as well as osteogenic differentiation than those on BG-COL scaffolds in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure BG-COL-PS scaffolds and MSC/scaffold constructs were implanted in rat femurs defects for 6 weeks and studied histologically and radiographically. The in vivo results showed that BG-COL-PS composite scaffolds exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, the BG-COL-PS/MSC constructs dramatically enhanced the efficiency of new bone formation than pure BG-COL-PS scaffolds or BG-COL/MSC constructs. All these results demonstrate the usefulness of PS composited BG-COL-PS scaffolds for inducing enhanced bone formation. The BG-COL-PS scaffolds fulfill the basic requirements of bone tissue engineering scaffold and have the potential to be applied in orthopedic and reconstructive surgery.  相似文献   

18.
For successful tissue engineering, neovascularization of the implanted tissue is critical. Factors generated by endothelial cells are also considered crucial for the process of osteogenesis. The direct effects of supplementing tissue engineered constructs with cultured endothelial progenitor cells (EPCs) for enhancing bone regeneration have not been reported. In this study, we investigated the potential of EPCs to facilitate neovascularization in implants and evaluated their influence on bone regeneration. The influence of EPC soluble factors on osteogenic differentiation of mesenchymal stem cells (MSCs) was tested by adding EPC culture supernatant to MSC culture medium. To evaluate the influence of EPCs on MSC osteogenesis, canine MSCs-derived osteogenic cells and EPCs were seeded independently onto collagen fiber mesh scaffolds and co-transplanted to nude mice subcutaneously. Results from coimplant experiments were compared to implanted cells absent of EPCs 12 weeks after implantation. Factors from the culture supernatant of EPCs did not influence MSC differentiation. Coimplanted EPCs increased neovascularization and the capillary score was 1.6-fold higher as compared to the MSC only group (p < 0.05). Bone area was also greater in the MSC + EPC group (p < 0.05) and the bone thickness was 1.3-fold greater in the MSC + EPC group than the MSC only group (p < 0.05). These results suggest that soluble factors generated by EPCs may not facilitate the osteogenic differentiation of MSCs; however, newly formed vasculature may enhance regeneration of tissue-engineered bone.  相似文献   

19.
Mesenchymal stem cells (MSCs) represent an attractive cell source for tissue engineering applications, since they are readily isolated from adult bone marrow and have the ability to differentiate along multiple mesenchymal lineages, including osteogenic. Currently, utilization of MSCs for bone tissue engineering is limited because of the attenuation of their osteogenic differentiation potential and in vivo bone-forming capacity following ex vivo expansion on conventional tissue culture plastic (TCP). Previously, we demonstrated that a denatured type I collagen (DC) matrix promotes the maintenance of MSC in vitro osteogenic differentiation potential during ex vivo expansion in contrast to TCP. In this study, we further demonstrate that the maintenance of MSC osteogenic differentiation potential is primarily due to the ability of DC matrix to influence the retention of early passage osteogenic functions in late passage (LP) cells during ex vivo expansion, in contrast to solely enhancing attenuated LP cellular functions during osteogenic differentiation. Serum-associated factors played a significant role in influencing the retention of MSC osteogenic differentiation potential during expansion on the DC matrix. Significantly, the results show that although LP cells expanded ex vivo on TCP highly attentuate their in vivo bone-forming capacity, the expansion of MSCs on DC matrix preserves this ability as determined by histological, histomorphometric, and bone mineral density evaluations of MSC-seeded hydroxyapatite/tricalcium phosphate scaffolds following an 8-week implantation period within a heterotopic muscle pouch model. These findings provide further insight into the importance of matrix-mediated effects on MSC function and selective factors important in this process.  相似文献   

20.
Zhou J  Xu C  Wu G  Cao X  Zhang L  Zhai Z  Zheng Z  Chen X  Wang Y 《Acta biomaterialia》2011,7(11):3999-4006
Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen-hydroxyapatite (COL-HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号