首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Paraquat neurotoxicity is distinct from that of MPTP and rotenone.   总被引:3,自引:0,他引:3  
Paraquat, MPTP, and rotenone reproduce features of Parkinson's disease (PD) in experimental animals. The exact mechanisms by which these compounds damage the dopamine system are not firmly established, but selective damage to dopamine neurons and inhibition of complex I are thought to be involved. We and others have previously documented that the toxic metabolite of MPTP, MPP+, is transported into dopamine neurons through the dopamine transporter (DAT), while rotenone is not transported by DAT. We have also demonstrated the requirement for complex I inhibition and oxidative damage in the dopaminergic neurodegeneration produced by rotenone. Based on structural similarity to MPP+, it has been proposed that paraquat exerts selective dopaminergic toxicity through transport by the DAT and subsequent inhibition of mitochondrial complex I. In this study we report that paraquat is neither a substrate nor inhibitor of DAT. We also demonstrate that in vivo exposure to MPTP and rotenone, but not paraquat, inhibits binding of 3H-dihydrorotenone to complex I in brain mitochondria. Rotenone and MPP+ were both effective inhibitors of complex I activity in isolated brain mitochondria, while paraquat exhibited weak inhibitory effects only at millimolar concentrations. These data indicate that, despite the apparent structural similarity to MPP+, paraquat exerts its deleterious effects on dopamine neurons in a manner that is unique from rotenone and MPTP.  相似文献   

2.
Acetyl-L-carnitine (ALCAR) plays an integral role in the transport of long chain fatty acids across the inner mitochondrial membrane for oxidative phosphorylation. In non-human primates, administration of ALCAR was reported to prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurological injury to the substantia nigra. The present study investigates the effects of ALCAR against the toxicity of 1-methyl-4-phenylpyridinium (MPP(+)), the neurotoxic metabolite of MPTP, in murine brain neuroblastoma cells. MPP(+), a potent mitochondrial toxin, induced a dose-dependent reduction in mitochondrial oxygen consumption and cell viability, corresponding to an accelerated rate of cellular glucose utilization. Treatment with ALCAR, but not L-carnitine, prevented MPP(+) toxicity and partially restored intracellular ATP concentrations, but did not reverse the MPP(+)-induced loss of mitochondrial oxygen consumption. These data indicate that protective effects are independent of oxidative phosphorylation. ALCAR had a substantial glucose sparing effect in both controls and MPP(+)-treated groups, demonstrating a potential role in enhancing glucose utilization through glycolysis. Antagonizing the entry of fatty acids into the mitochondria, with either insulin or malonyl CoA, did not interfere with ALCAR protection against MPP(+). On the contrary, insulin potentiated the protective effects of ALCAR. In conclusion, these data indicate that ALCAR protects against MPP(+) toxicity, independent of mitochondrial oxidative capacity or beta-oxidation of fatty acids. In contrast, the protective effects of ALCAR appear to involve potentiation of energy derived from glucose through anaerobic glycolysis.  相似文献   

3.
The active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N-methyl-4-phenylpyridinium (MPP(+)), selectively destroys the dopaminergic neurons and induces the symptoms of Parkinson's disease. Inhibition of mitochondrial complex I and/or the perturbation of dopamine metabolism through cellular and granular accumulation have been proposed as some of the major causes of neurotoxicity. In the present study we have synthesized and characterized a number of MPTP and MPP(+) derivatives that are suitable for the comparative neurotoxicity and complex I inhibition versus dopamine metabolism perturbation studies. Structure-activity studies with bovine chromaffin granule ghosts show that 3'-hydroxy-MPP(+) is one of the best known substrates for the vesicular monoamine transporter (VMAT). A series of compounds that combine the structural features of MPP(+) and a previously characterized VMAT inhibitor, 3-amino-2-phenyl-propene, have been identified as the most effective VMAT inhibitors. These derivatives have been used to define the structural requirements of the VMAT substrate and inhibitor activities.  相似文献   

4.
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated beta-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min-1 and Km of 79.36+/-3 microM (formation of MPTP-OH) and 18.95 min-1 and Km 69.6+/-2.2 microM (PTP). Small amounts of dehydrogenated toxins MPDP+ and MPP+ were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP+ and MPP+ toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated beta-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various beta-carbolines were efficiently hydroxylated to hydroxy-beta-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role in the metabolic outcome of both MPTP and beta-carbolines.  相似文献   

5.
Obata T 《Toxicology》2006,218(1):75-79
The present study was examined whether or not 2-bromoethyamine, a semicarbazide-sensitive amine oxidase (SSAO, EC; 1.4.3.6) inhibitor, would increase an active dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical ((*)OH) generation in the rat striatum. Rats were anesthetized, and sodium salicylate (0.5 mM or 0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of (*)OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Infusion of 2-bromoethylamine (100 microM or 100 pmol/microl/min) into the striatum drastically increased the formation of (*)OH products, trapped as DHBA by the action of MPP(+). Further, I studied the effect of allopurinol, a xanthine oxidase inhibitor, an 2-bromoethylamine and MPP(+)-induced (*)OH generation. Allopurinol (10 microM or 10 pmol/microl/min) significantly suppressed 2-bromoethyamine and MPP(+)-induced (*)OH. These results suggest that a definite mechanism is not clear at the moment, after inhibition of tissue-bound and/or blood plasma SSAO activity, with consequent increases in bioactive amine levels, enhances the formation of (*)OH products of efflux/oxidation due to MPP(+).  相似文献   

6.
The in vivo dopaminergic neurotoxic properties of 45 MPTP and MPP+ analogues and related compounds were examined by an intrastriatal microdialysis assay in conscious rats. MPP(+)-like toxicity, as evidenced by the irreversible effects on DA release and enhancement of lactate formation, was observed with a variety of structural types although no compound was more toxic than MPP+. The following global structure-toxicity relationships could be derived: (1) only permanently charged compounds showed neurotoxic effects; (2) with the exception of amino groups, hydrophilic substituents abolished toxicity; (3) activity was enhanced by lipophilic groups although increased steric bulk around the nitrogen atom tended to decrease activity; (4) nonaromatic, quaternary systems (methiodide of MPTP, guanidinium derivatives) were only weakly toxic; and (5) certain bi- and tricyclic systems, including putative metabolites of potential endogenous MPTP-like compounds, were weakly toxic. The lack of toxic effects following perfusions with DA itself confirmed that MPTP dopaminergic neurotoxicity is not likely to be mediated by the MPP(+)-induced release of DA. With some interesting exceptions, these in vivo data correlate reasonably well with in vitro data on the nerve terminal uptake properties and the inhibitory effects on mitochondrial respiration of these compounds.  相似文献   

7.
We used the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to evaluate the sensitivity and specificity of the peripheral benzodiazepine receptor (PBR) as a biomarker of chemical-induced neurotoxicity. Receptor autoradiography of [3H]-PK11195, a PBR selective ligand, indicated dose-dependent increases throughout the nigrostriatal dopaminergic system as early as 24 h after MPTP administration (10-80 mg/kg), which persisted for at least 21 days. The binding of [3H]-PK11195 was increased as much as 98% in the corpus striatum and 114% in the substantia nigra, following MPTP exposure. The integrity of nigrostriatal dopaminergic terminals in the corpus striatum was assessed by measuring high affinity dopamine transporter (DAT) levels and dopamine content. DAT levels were measured by [3H]-WIN 35,428 autoradiography, and dopamine content decreased with increasing MPTP dose. Reductions of both indices of dopaminergic terminal integrity correlated with increased levels of [3H]-PK11195-binding in the striatum (r2 = 0.84 for DAT and 0.93 for dopamine content). Tyrosine hydroxylase (TH) immunohistochemistry demonstrated dose-dependent reductions of dopaminergic neurons in the substantia nigra pars compacta, with a 67% loss measured 7 days after treatment with 80 mg/kg MPTP. The loss of TH-positive neurons was correlated (r2 = 0.95) with increased levels of [3H]-PK11195 binding in the substantia nigra. These findings demonstrate that the PBR is both sensitive and specific for identifying brain regions involved in MPTP neurotoxicity.  相似文献   

8.
The long-term effects of permethrin (PM) and its interaction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal dopaminergic pathways were investigated in C57BL/6 mice. In a 3-month exposure, technical PM (1.5mg/kg) was administered once per week, with MPTP (20mg/kg) given once on either the 7th week or 11th week. In a 6-month exposure, PM (0.8mg/kg or 1.5mg/kg) was administered once per week for 26 weeks, with MPTP (20mg/kg) given once, on week 24. Alterations in the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and alpha-synuclein proteins were analyzed 1 day after the last PM treatment using western blot assay. PM had no significant effect on striatal dopaminergic pathways by itself, whereas MPTP significantly reduced the expression of TH and DAT proteins. In both exposure paradigms, weekly 1.5mg/kg PM treatments antagonized the toxic effect of MPTP on TH and DAT expression (p<0.05). There was no significant alteration of alpha-synuclein expression following any exposure to PM and/or MPTP. [(3)H]Tetrabenazine (TBZ) binding assay for expression of striatal vesicular monoamine transporter (VMAT) showed no effect of PM, but the reduction in this protein caused by MPTP was attenuated by PM, consistent with effects on other dopaminergic biomarkers. The overall findings demonstrate that long-term, low-dose exposure to PM alone did not cause signs of neurotoxicity to striatal dopaminergic neural terminals, or enhance the effects of MPTP. We conclude that under typical use conditions, PM poses little Parkinsonian hazard to humans, including when impregnated into clothing for control of biting flies.  相似文献   

9.
目的:观察银杏叶提取物(EGb)对1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)及其离子1-甲基-4-苯基吡啶(MPP~ )诱导的帕金森症(PD)模型的保护作用。方法:用脑立体定位仪向黑质(AP-5.4mm,-2.2mm,H8.3mm)内注射MPTP诱导大鼠旋转。在注射MPTP 24h后将大鼠处死,硫代巴比妥法测定黑质中丙二醛(MDA),羟胺法(即改进的黄嘌呤氧化酶法)测定黑质中超氧化物歧化酶(SOD),荧光分光光度法(激发波长310nm,发射波长390nm)测定纹状体中多巴胺(DA)的含量。MPP~ 诱导PC12细胞凋亡,HE染色,光镜下观察凋亡细胞;吖啶橙/溴乙锭(AO/EB)染色,荧光显微镜记数凋亡细胞,观察不同浓度EGb(25,50,100mg/L)在6h,12h,24h对细胞凋亡率的影响。结果:EGb 100mg/kg组可减少模型鼠的旋转次数及旋转持续时间(n=10,P<0.05);与MPTP组比较,EGb 50mg/kg和100mg/kg组MDA相对降低,SOD及DA相对增高(n=10,P<0.05和P<0.01)。MPP~ 10μmol/L可诱导PC12细胞凋亡,EGb 50和100mg/L组在6h,12h,24h可降低细胞凋亡率(P<0.05和P<0.01,n=3)。结论:EGb对MPTP诱导的PD动物模型及其离子MPP~ 诱导的PD细胞模型均有保护作用,其保护机制与清除自由基及抑制神经元凋亡有关。  相似文献   

10.
Monoamine transporters play key roles in controlling monoamine levels and modulating monoamine reuptake. The objective of the present study was to identify monoamine transporter inhibitors from herbal sources. We discovered that bakuchiol analogs isolated from Fructus Psoraleae inhibited monoamine transporter uptake to differing degrees. The bakuchiol analog, Delta3,2-hydroxybakuchiol was the most potent and efficacious reuptake blocker and was thus selected as the candidate target. Monoamine transporter inhibition by Delta3,2-hydroxybakuchiol was more selective for the dopamine transporter (DAT) (IC50=0.58+/-0.1 microM) and norepinephrine transporter (NET) (IC50=0.69+/-0.12 microM) than for the serotonin transporter (SERT) (IC50=312.02+/-56.69 microM). Delta3,2-Hydroxybakuchiol exhibited greater potency (pEC50 for DAT and NET) than bupropion and exhibited similar efficacy (E(max) for DAT and/or NET) to bupropion and GBR12,935. Pharmacokinetically, Delta3,2-hydroxybakuchiol competitively inhibited DAT and NET with partial reversibility and occupied cocaine binding sites. Moreover, Delta3,2-hydroxybakuchiol counteracted 1-methyl-4-phenylpyridinium-induced toxicity in cells expressing DAT with similar efficacy to GBR12,935. In vivo studies showed that Delta3,2-hydroxybakuchiol increased the activity of intact mice and improved the decreased activity of reserpinized mice. In the conditioned place preference test, preference scores in intact mice were unaffected by Delta3,2-hydroxybakuchiol treatment. Bakuchiol analogs, especially Delta3,2-hydroxybakuchiol, are monoamine transporter inhibitors involved in regulating dopaminergic and noradrenergic neurotransmission and may have represented potential pharmacotherapies for disorders such as Parkinson's disease, depression, and cocaine addiction.  相似文献   

11.
Astrocytes are the site of bioactivation of the parkinsonism-inducing agent 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) into its toxic 1-methyl-4-phenylpyridinium (MPP(+)) metabolite. The mechanism by which MPP(+) is capable of decreasing astrocytic glutamate uptake was evaluated in this study using primary cultures of astrocytes. Addition of glutamate to these cultures was followed by its efficient clearance from the extracellular space. However, when astrocytes were preincubated with MPP(+), glutamate clearance was significantly impaired. This effect was concentration-dependent, became more pronounced by prolonging the incubation in the presence of MPP(+) and occurred at a time when cell membrane integrity was still preserved. No evidence was found that reactive oxygen species contributed to MPP(+)-induced decrease in glutamate clearance. Indeed, neither the spin trapping agent alpha-phenyl-tert-butyl nitrone, the lazaroid antioxidant U-74389G, nor the disulfide-reducing agent dithiothreitol was capable of restoring glutamate net uptake. The effect of MPP(+) on glutamate clearance: (i) was accompanied by a decrease in cellular ATP; (ii) could be enhanced by withdrawing glucose from the incubation medium or by inhibiting glycolysis with 2-deoxyglucose, and (iii) could be reproduced using the mitochondrial complex I inhibitor rotenone. Taken together, these results indicate that, by acting as a mitochondrial poison, MPP(+) impairs energy metabolism of astrocytes and significantly reduces their ability to maintain low levels of extracellular glutamate.  相似文献   

12.
This review focuses on the mechanisms of action and the injurious effect of complex I inhibitors, of which 1-methyl-4-phenylpyridinium ion (MPP(+)) is a well studied example. These compounds can be divided into two groups, i.e. competitive inhibitors with respect to ubiquinone, such as piericidine A, and non-competitive inhibitors such as rotenone. Complex I inhibitors such as MPP(+) have been reported to induce anatomical, behavioral, and biochemical changes similar to those seen in Parkinson's disease, which is characterized by nigrostriatal dopaminergic neuro-degeneration. Spectroscopic analyses and structure-activity relationship studies have indicated that the V-shaped structure of the rotenone molecule is critical for binding to the rotenone binding site on complex I. Many isoquinoline derivatives, some of them endogenous, are also complex I inhibitors. Many lines of evidence show that complex I inhibitors elicit neuronal cell death. Recently, it was reported that chronic and systemic exposure to low-dose rotenone reproduces the features of Parkinson's disease. This work further focused attention on compounds acting on mitochondria, such as MPP(+). In Guadeloupe, the French West Indies, patients with atypical parkinsonism or progressive supranuclear palsy are frequently encountered. These diseases seem to be associated with ingestion of tropical herbal teas or tropical fruits of the Annonaceae family, which contain complex I inhibitors such as benzylisoquinoline derivatives and acetogenins. Complex I inhibitors may not simply result in reactive oxygen species generation or ATP exhaustion, but may influence complex downstream signal transduction processes. An understanding of these changes would throw light on the ways in which complex I inhibitors induce a wide range of abnormalities.  相似文献   

13.
A dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), can induce dopaminergic denervation and Parkinsonism in humans. The active metabolite of MPTP is the 1-methyl-4-phenylpyridinium ion (MPP(+)). Previously we reported that MPP(+) is incorporated via the dopamine transport system and causes delayed cell death in GH3 cells, a clonal strain from the rat anterior pituitary. In this study, we investigated whether MPP(+) induces apoptosis. GH3 cells cultured with MPP(+) exhibited DNA laddering and fragmentation in a time- and concentration-dependent manner. The effect of MPP(+) was inhibited in GH3 cells treated with a pan-caspase inhibitor (100 microM ZVAD-fmk), an antioxidant (25 mM N-acetyl-l-cysteine), or epidermal growth factor (EGF; 50 ng/mL). Because EGF stimulated tyrosine phosphorylation of the EGF receptor and tyrphostin AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline; 5 microM, a specific inhibitor of EGF receptor kinase] abolished EGF inhibition, involvement of EGF receptor kinase is assumed. Protein kinase C-dependent processes and Bcl-2 protein expression were shown not to be involved in EGF inhibition. MPP(+) increased cytochrome c immunoreactivity in cytosolic fractions in GH3 cells. The addition of 200 microM MPP(+) to isolated mitochondrial fractions from GH3 cells stimulated the release of a 13-kDa protein that cross-reacted with anti-cytochrome c antibody. The release was inhibited in EGF-treated GH3 cells. Our findings demonstrated that (i) MPP(+) induces apoptosis of GH3 cells via cytochrome c release and caspase activation, and (ii) apoptosis by MPP(+) can be blocked by N-acetyl-l-cysteine or EGF treatment.  相似文献   

14.
Astaxanthin (AST) is a powerful antioxidant that occurs naturally in a wide variety of living organisms. We have investigated the role of AST in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis of the substantia nigra (SN) neurons in the mouse model of Parkinson’s disease (PD) and 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity of SH-SY5Y human neuroblastoma cells. In in vitro study, AST inhibits MPP+-induced production of intracellular reactive oxygen species (ROS) and cytotoxicity in SH-SY5Y human neuroblastoma cells. Preincubation of AST (50 μM) significantly attenuates MPP+-induced oxidative damage. Furthermore, AST is able to enhance the expression of Bcl-2 protein but reduce the expression of α-synuclein and Bax, and suppress the cleavage of caspase-3. Our results suggest that the protective effects of AST on MPP+-induced apoptosis may be due to its anti-oxidative properties and anti-apoptotic activity via induction of expression of superoxide dismutase (SOD) and catalase and regulating the expression of Bcl-2 and Bax. Pretreatment with AST (30 mg/kg) markedly increases tyrosine hydroxylase (TH)-positive neurons and decreases the argyrophilic neurons compared with the MPTP model group. In summary, AST shows protection from MPP+/MPTP-induced apoptosis in the SH-SY5Y cells and PD model mouse SN neurons, and this effect may be attributable to upregulation of the expression of Bcl-2 protein, downregulation of the expression of Bax and α-synuclein, and inhibition of the activation of caspase-3. These data indicate that AST may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative disease such as Parkinson’s disease.  相似文献   

15.

BACKGROUND AND PURPOSE

Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT.

EXPERIMENTAL APPROACH

Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function.

KEY RESULTS

In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55.

CONCLUSIONS AND IMPLICATIONS

MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity.  相似文献   

16.
Aim: To explore the effect of melatonin on PC 12 cell death induced by 1-methyl-4-phenylpyridinium (MPP^ ). Methods: MTT assay, lactate dehydrogenase (LDH) efflux assay, and immunohistochemistry methods were used to measure neurotoxicity of PC 12 cells treated acutely with MPP^ in low glucose and high glucose conditions, and to assess the neuroprotective effect of melatonin on PC 12 cell death induced by MPP^ .Results: In a low glucose condition, MPP^ significantly induced PC 12 cell death, which showed time and concentration dependence. In a serum-free low glucose condition, the percentages of viability of cells treated with MPP^ for 12, 24, 48, 72, and 96 h were 85.1%, 75.4%, 64.9%, 28.15%, and 9%, respectively. The level of LDH in the culture medium increased and tyrosine hydroxylase positive (TH^ ) cell count decreased. However, in a serum-free high glucose condition, MPP^ did not significantly induce PC12 cell death compared with control at various concentrations and time regimens. When the cells were preincubated with melatonin 250 μmol/L for 48, 72, and 96 h in a serum-free low glucose condition, cell survival rate significantly increased to 78.1%, 58.8%, and 31.6%, respectively. Melatonin abolished the LDH leakage of cells treated with MPP^ and increased TH^ cells count. Conclusion: MPP^ caused concentration-dependent PC12 cell death. The level of glucose was an important factor to MPP^ induced dopaminergic PC 12 cell death. Low glucose level could potentiate MPP^ toxicity, while high glucose level could reduce the toxicity. In addition, melatonin attenuated PC12 cell death induced by MPP^ .  相似文献   

17.
Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice and nonhuman primates causes a parkinsonian disorder characterized by a loss of dopamine-producing neurons in the substantia nigra and corresponding motor deficits. MPTP has been proposed to exert its neurotoxic effects through a variety of mechanisms, including inhibition of complex I of the mitochondrial respiratory chain, displacement of dopamine from vesicular stores, and formation of reactive oxygen species from mitochondrial or cytosolic sources. However, the mechanism of MPTP-induced neurotoxicity is still a matter of debate. Recently, we reported that the yeast single-subunit nicotinamide adenine dinucleotide (reduced) dehydrogenase (NDI1) is resistant to rotenone, a complex I inhibitor that produces a parkinsonian syndrome in rats, and that overexpression of NDI1 in SK-N-MC cells prevents the toxicity of rotenone. In this study, we used viral-mediated overexpression of NDI1 in SK-N-MC cells and animals to determine the relative contribution of complex I inhibition in the toxicity of MPTP. In cell culture, NDI1 overexpression abolished the toxicity of 1-methyl-4-phenylpyridinium, the active metabolite of MPTP. Overexpression of NDI1 through stereotactic administration of a viral vector harboring the NDI1 gene into the substantia nigra protected mice from both the neurochemical and behavioral deficits elicited by MPTP. These data identify inhibition of complex I as a requirement for dopaminergic neurodegeneration and subsequent behavioral deficits produced by MPTP. Furthermore, combined with reports of a complex I defect in Parkinson's disease (PD) patients, the present study affirms the utility of MPTP in understanding the molecular mechanisms underlying dopaminergic neurodegeneration in PD.  相似文献   

18.
Extrapyramidal symptoms, such as tardive dyskinesia, often develop in patients on long-term treatment with haloperidol. It has been proposed that these symptoms could be caused by neurotoxic effects of haloperidol metabolites following uptake by monoamine transporters, in an analogous mechanism to the neurotoxic effect of MPP+ (1-methyl-4-phenylpyridinium) metabolised from MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In this study, the hypothesis was partially investigated by determining the potencies of haloperidol and reduced haloperidol and the corresponding pyridinium and tetrahydropyridine metabolites, compared with MPP+ and MPTP, as inhibitors of the noradrenaline transporter (NAT), dopamine transporter (DAT) and 5-HT transporter (SERT). Two days after COS-7 cells were transiently transfected with the cDNA for the human NAT, DAT or SERT (Lipofectamine method), the cells were incubated with 10 nM [3H]noradrenaline, dopamine or 5-HT, respectively, for 2 min at 37 C, in the absence or presence of various concentrations of the eight compounds or a specific uptake inhibitor (NAT: nisoxetine 1 microM; DAT: GBR 12909 1 microM; SERT: citalopram 10 microM). Specific amine uptake (fmol/ mg protein) was calculated as the difference in uptake in the absence and presence of the specific uptake inhibitor. Ki values were calculated for the eight compounds for inhibition of NAT, DAT and SERT. Haloperidol, its five metabolites and MPP+ and MPTP all inhibited NAT, DAT and SERT. For the pyridinium and tetrahydropyridine metabolites of haloperidol, there were not marked differences between their potencies as inhibitors between each other for NAT or DAT or between NAT and DAT, with all of the Ki values in the range of 5.8-16 microM. However, there were more marked differences for SERT, with all but one of the metabolites showing selectivity for inhibition of SERT relative to NAT and DAT. Haloperidol and reduced haloperidol had similar inhibitory potencies for all three transporters, and were clearly less potent than the other haloperidol metabolites only for inhibition of SERT. The lack of correlation between the inhibitory potencies of the haloperidol metabolites and their structural analogues, MPTP and MPP+, suggests that they are not likely to cause neurotoxicity by a mechanism analogous to that of the latter neurotoxin.  相似文献   

19.
Female mice with a heterozygous mutation of their dopamine transporter (+/− DAT) showed relatively robust reductions in striatal DAT specific binding (38-50%), while +/− DAT males showed modest reductions (24-32%). Significant decreases in substantia nigra DAT specific binding (42%) and mRNA (24%) were obtained in +/− DAT females, but not +/− DAT males (19% and 5%, respectively). The effects of this DAT perturbation upon vesicular monoamine transporter-2 (VMAT-2) function revealed significantly greater reserpine-evoked DA output from +/+ and +/− DAT female as compared to male mice and the DA output profile differed markedly between +/+ and +/− DAT females, but not males. No changes in VMAT-2 protein or mRNA levels were present among these conditions. On the basis of these data, we propose: (1) a genetic mutation of the DAT does not exert equivalent effects upon the DAT in female and male mice, with females being more affected; (2) an alteration in the DAT may also affect VMAT-2 function; (3) this interaction between DAT and VMAT-2 function is more prevalent in female mice; and (4) the +/− DAT mutation affects VMAT-2 function through an indirect mechanism, that does not involve an alteration in VMAT-2 protein or mRNA. Such DAT/VMAT-2 interactions can be of significance to the gender differences observed in drug addiction and Parkinson's disease.  相似文献   

20.
Summary Degeneration of nigrostriatal dopaminergic neurons is the primary histopathological feature of Parkinson's disease. The neurotoxin MPTP (1-methyl-4phenyl-1,2,3,6-tetrahydropyridine) induces a neurological syndrome in man and non-human primates very similar to idiopathic Parkinson's disease by selectively destroying dopaminergic nigrostriatal neurons. This gives rise to the hypothesis that Parkinson's disease may be caused by endogenous or environmental toxins. Endogenous excitatory amino acids (EAAs) such as l-glutamate could be involved in neurodegenerative disorders including Parkinson's disease. We report in this study that the competitive NMDA antagonist CPP (3-((±)-2-carboxypiperazin-4yl)-propyl-1-phosphonic acid) protects nigral tyrosine hydroxylase (TH) positive neurons from degeneration induced by systemic treatment with MPTP in common marmosets. This indicates that EAAs are involved in the pathophysiological cascade of MPTP-induced neuronal cell death and that EAA antagonists may offer a neuroprotective therapy for Parkinson's disease.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionate - CPP 3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid - DOPAC dihydroxyphenylacetic acid - EAA excitatory amino acid - 5-HIAA 5-hydroxyindolacetic acid - 5-HT serotonin - HVA homovanillic acid - MAO-B monoamine oxidase type B - MK-801 dizocilpine - MPP+ 1-Methyl-4-phenylpyridinium ion - MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - NA moradrenaline - NMDA N-methyl-d-aspartate - TH tyrosine hydroxylase - QUIS quisqualate Correspondence to: K. W. Lange at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号