首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells/nuclei deliver massive information of microenvironment. An automatic nuclei segmentation approach can reduce pathologists’ workload and allow precise of the microenvironment for biological and clinical researches. Existing deep learning models have achieved outstanding performance under the supervision of a large amount of labeled data. However, when data from the unseen domain comes, we still have to prepare a certain degree of manual annotations for training for each domain. Unfortunately, obtaining histopathological annotations is extremely difficult. It is high expertise-dependent and time-consuming. In this paper, we attempt to build a generalized nuclei segmentation model with less data dependency and more generalizability. To this end, we propose a meta multi-task learning (Meta-MTL) model for nuclei segmentation which requires fewer training samples. A model-agnostic meta-learning is applied as the outer optimization algorithm for the segmentation model. We introduce a contour-aware multi-task learning model as the inner model. A feature fusion and interaction block (FFIB) is proposed to allow feature communication across both tasks. Extensive experiments prove that our proposed Meta-MTL model can improve the model generalization and obtain a comparable performance with state-of-the-art models with fewer training samples. Our model can also perform fast adaptation on the unseen domain with only a few manual annotations. Code is available at https://github.com/ChuHan89/Meta-MTL4NucleiSegmentation  相似文献   

2.
Deep convolutional neural networks have been highly effective in segmentation tasks. However, segmentation becomes more difficult when training images include many complex instances to segment, such as the task of nuclei segmentation in histopathology images. Weakly supervised learning can reduce the need for large-scale, high-quality ground truth annotations by involving non-expert annotators or algorithms to generate supervision information for segmentation. However, there is still a significant performance gap between weakly supervised learning and fully supervised learning approaches. In this work, we propose a weakly-supervised nuclei segmentation method in a two-stage training manner that only requires annotation of the nuclear centroids. First, we generate boundary and superpixel-based masks as pseudo ground truth labels to train our SAC-Net, which is a segmentation network enhanced by a constraint network and an attention network to effectively address the problems caused by noisy labels. Then, we refine the pseudo labels at the pixel level based on Confident Learning to train the network again. Our method shows highly competitive performance of cell nuclei segmentation in histopathology images on three public datasets. Code will be available at: https://github.com/RuoyuGuo/MaskGA_Net.  相似文献   

3.
We present our novel deep multi-task learning method for medical image segmentation. Existing multi-task methods demand ground truth annotations for both the primary and auxiliary tasks. Contrary to it, we propose to generate the pseudo-labels of an auxiliary task in an unsupervised manner. To generate the pseudo-labels, we leverage Histogram of Oriented Gradients (HOGs), one of the most widely used and powerful hand-crafted features for detection. Together with the ground truth semantic segmentation masks for the primary task and pseudo-labels for the auxiliary task, we learn the parameters of the deep network to minimize the loss of both the primary task and the auxiliary task jointly. We employed our method on two powerful and widely used semantic segmentation networks: UNet and U2Net to train in a multi-task setup. To validate our hypothesis, we performed experiments on two different medical image segmentation data sets. From the extensive quantitative and qualitative results, we observe that our method consistently improves the performance compared to the counter-part method. Moreover, our method is the winner of FetReg Endovis Sub-challenge on Semantic Segmentation organised in conjunction with MICCAI 2021. Code and implementation details are available at:https://github.com/thetna/medical_image_segmentation.  相似文献   

4.
Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet clinically acceptable accuracy, thus typically require further refinement. To this end, we propose a novel Volumetric Memory Network, dubbed as VMN, to enable segmentation of 3D medical images in an interactive manner. Provided by user hints on an arbitrary slice, a 2D interaction network is firstly employed to produce an initial 2D segmentation for the chosen slice. Then, the VMN propagates the initial segmentation mask bidirectionally to all slices of the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To facilitate smooth human-in-the-loop segmentation, a quality assessment module is introduced to suggest the next slice for interaction based on the segmentation quality of each slice produced in the previous round. Our VMN demonstrates two distinctive features: First, the memory-augmented network design offers our model the ability to quickly encode past segmentation information, which will be retrieved later for the segmentation of other slices; Second, the quality assessment module enables the model to directly estimate the quality of each segmentation prediction, which allows for an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribble, bounding box, extreme clicking). Extensive experiments have been conducted on three public medical image segmentation datasets (i.e., MSD, KiTS19, CVC-ClinicDB), and the results clearly confirm the superiority of our approach in comparison with state-of-the-art segmentation models. The code is made publicly available at https://github.com/0liliulei/Mem3D.  相似文献   

5.
Tissue-level semantic segmentation is a vital step in computational pathology. Fully-supervised models have already achieved outstanding performance with dense pixel-level annotations. However, drawing such labels on the giga-pixel whole slide images is extremely expensive and time-consuming. In this paper, we use only patch-level classification labels to achieve tissue semantic segmentation on histopathology images, finally reducing the annotation efforts. We propose a two-step model including a classification and a segmentation phases. In the classification phase, we propose a CAM-based model to generate pseudo masks by patch-level labels. In the segmentation phase, we achieve tissue semantic segmentation by our propose Multi-Layer Pseudo-Supervision. Several technical novelties have been proposed to reduce the information gap between pixel-level and patch-level annotations. As a part of this paper, we introduce a new weakly-supervised semantic segmentation (WSSS) dataset for lung adenocarcinoma (LUAD-HistoSeg). We conduct several experiments to evaluate our proposed model on two datasets. Our proposed model outperforms five state-of-the-art WSSS approaches. Note that we can achieve comparable quantitative and qualitative results with the fully-supervised model, with only around a 2% gap for MIoU and FwIoU. By comparing with manual labeling on a randomly sampled 100 patches dataset, patch-level labeling can greatly reduce the annotation time from hours to minutes. The source code and the released datasets are available at: https://github.com/ChuHan89/WSSS-Tissue.  相似文献   

6.
Supervised learning-based segmentation methods typically require a large number of annotated training data to generalize well at test time. In medical applications, curating such datasets is not a favourable option because acquiring a large number of annotated samples from experts is time-consuming and expensive. Consequently, numerous methods have been proposed in the literature for learning with limited annotated examples. Unfortunately, the proposed approaches in the literature have not yet yielded significant gains over random data augmentation for image segmentation, where random augmentations themselves do not yield high accuracy. In this work, we propose a novel task-driven data augmentation method for learning with limited labeled data where the synthetic data generator, is optimized for the segmentation task. The generator of the proposed method models intensity and shape variations using two sets of transformations, as additive intensity transformations and deformation fields. Both transformations are optimized using labeled as well as unlabeled examples in a semi-supervised framework. Our experiments on three medical datasets, namely cardiac, prostate and pancreas, show that the proposed approach significantly outperforms standard augmentation and semi-supervised approaches for image segmentation in the limited annotation setting.The code is made publicly available at https://github.com/krishnabits001/task_driven_data_augmentation.  相似文献   

7.
Mitosis counting of biopsies is an important biomarker for breast cancer patients, which supports disease prognostication and treatment planning. Developing a robust mitotic cell detection model is highly challenging due to its complex growth pattern and high similarities with non-mitotic cells. Most mitosis detection algorithms have poor generalizability across image domains and lack reproducibility and validation in multicenter settings. To overcome these issues, we propose a generalizable and robust mitosis detection algorithm (called FMDet), which is independently tested on multicenter breast histopathological images. To capture more refined morphological features of cells, we convert the object detection task as a semantic segmentation problem. The pixel-level annotations for mitotic nuclei are obtained by taking the intersection of the masks generated from a well-trained nuclear segmentation model and the bounding boxes provided by the MIDOG 2021 challenge. In our segmentation framework, a robust feature extractor is developed to capture the appearance variations of mitotic cells, which is constructed by integrating a channel-wise multi-scale attention mechanism into a fully convolutional network structure. Benefiting from the fact that the changes in the low-level spectrum do not affect the high-level semantic perception, we employ a Fourier-based data augmentation method to reduce domain discrepancies by exchanging the low-frequency spectrum between two domains. Our FMDet algorithm has been tested in the MIDOG 2021 challenge and ranked first place. Further, our algorithm is also externally validated on four independent datasets for mitosis detection, which exhibits state-of-the-art performance in comparison with previously published results. These results demonstrate that our algorithm has the potential to be deployed as an assistant decision support tool in clinical practice. Our code has been released at https://github.com/Xiyue-Wang/1st-in-MICCAI-MIDOG-2021-challenge.  相似文献   

8.
The detection and segmentation of individual cells or nuclei is often involved in image analysis across a variety of biology and biomedical applications as an indispensable prerequisite. However, the ubiquitous presence of crowd clusters with morphological variations often hinders successful instance segmentation. In this paper, nuclei cluster focused annotation strategies and frameworks are proposed to overcome this challenging practical problem. Specifically, we design a nucleus segmentation framework, namely ClusterSeg, to tackle nuclei clusters, which consists of a convolutional-transformer hybrid encoder and a 2.5-path decoder for precise predictions of nuclei instance mask, contours, and clustered-edges. Additionally, an annotation-efficient clustered-edge pointed strategy pinpoints the salient and error-prone boundaries, where a partially-supervised PS-ClusterSeg is presented using ClusterSeg as the segmentation backbone. The framework is evaluated with four privately curated image sets and two public sets with characteristic severely clustered nuclei across a variety range of image modalities, e.g., microscope, cytopathology, and histopathology images. The proposed ClusterSeg and PS-ClusterSeg are modality-independent and generalizable, and superior to current state-of-the-art approaches in multiple metrics empirically. Our collected data, the elaborate annotations to both public and private set, as well the source code, are released publicly at https://github.com/lu-yizhou/ClusterSeg.  相似文献   

9.
Brain tissue segmentation is of great value in diagnosing brain disorders. Three-dimensional (3D) and two-dimensional (2D) segmentation methods for brain Magnetic Resonance Imaging (MRI) suffer from high time complexity and low segmentation accuracy, respectively. To address these two issues, we propose a Context-assisted full Attention Network (CAN) for brain MRI segmentation by integrating 2D and 3D data of MRI. Different from the fully symmetric structure U-Net, the CAN takes the current 2D slice, its 3D contextual skull slices and 3D contextual brain slices as the input, which are further encoded by the DenseNet and decoded by our constructed full attention network. We have validated the effectiveness of the CAN on our collected dataset PWML and two public datasets dHCP2017 and MALC2012. Our code is available at https://github.com/nwuAI/CAN.  相似文献   

10.
Supervised deep learning-based methods yield accurate results for medical image segmentation. However, they require large labeled datasets for this, and obtaining them is a laborious task that requires clinical expertise. Semi/self-supervised learning-based approaches address this limitation by exploiting unlabeled data along with limited annotated data. Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images and achieve high performance in classification tasks on popular natural image datasets like ImageNet. In pixel-level prediction tasks such as segmentation, it is crucial to also learn good local level representations along with global representations to achieve better accuracy. However, the impact of the existing local contrastive loss-based methods remains limited for learning good local representations because similar and dissimilar local regions are defined based on random augmentations and spatial proximity; not based on the semantic label of local regions due to lack of large-scale expert annotations in the semi/self-supervised setting. In this paper, we propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information obtained from pseudo-labels of unlabeled images alongside limited annotated images with ground truth (GT) labels. In particular, we define the proposed contrastive loss to encourage similar representations for the pixels that have the same pseudo-label/GT label while being dissimilar to the representation of pixels with different pseudo-label/GT label in the dataset. We perform pseudo-label based self-training and train the network by jointly optimizing the proposed contrastive loss on both labeled and unlabeled sets and segmentation loss on only the limited labeled set. We evaluated the proposed approach on three public medical datasets of cardiac and prostate anatomies, and obtain high segmentation performance with a limited labeled set of one or two 3D volumes. Extensive comparisons with the state-of-the-art semi-supervised and data augmentation methods and concurrent contrastive learning methods demonstrate the substantial improvement achieved by the proposed method. The code is made publicly available at https://github.com/krishnabits001/pseudo_label_contrastive_training.  相似文献   

11.
Video feedback provides a wealth of information about surgical procedures and is the main sensory cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post-operative analysis of the surgical procedure. A fundamental building block of such capabilities is the identification and localization of surgical instruments and anatomical structures through semantic segmentation. Deep learning has advanced semantic segmentation techniques in the recent years but is inherently reliant on the availability of labelled datasets for model training. This paper introduces a dataset for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learning models for semantic segmentation on the presented dataset. The dataset is publicly available at https://cataracts-semantic-segmentation2020.grand-challenge.org/.  相似文献   

12.
Medical image segmentation methods based on deep learning have made remarkable progress. However, such existing methods are sensitive to data distribution. Therefore, slight domain shifts will cause a decline of performance in practical applications. To relieve this problem, many domain adaptation methods learn domain-invariant representations by alignment or adversarial training whereas ignoring domain-specific representations. In response to this issue, this paper rethinks the traditional domain adaptation framework and proposes a novel orthogonal decomposition adversarial domain adaptation (ODADA) architecture for medical image segmentation. The main idea behind our proposed ODADA model is to decompose the input features into domain-invariant and domain-specific representations and then use the newly designed orthogonal loss function to encourage their independence. Furthermore, we propose a two-step optimization strategy to extract domain-invariant representations by separating domain-specific representations, fighting the performance degradation caused by domain shifts. Encouragingly, the proposed ODADA framework is plug-and-play and can replace the traditional adversarial domain adaptation module. The proposed method has consistently demonstrated effectiveness through comprehensive experiments on three publicly available datasets, including cross-site prostate segmentation dataset, cross-site COVID-19 lesion segmentation dataset, and cross-modality cardiac segmentation dataset. The source code is available at https://github.com/YonghengSun1997/ODADA.  相似文献   

13.
Tissue/region segmentation of pathology images is essential for quantitative analysis in digital pathology. Previous studies usually require full supervision (e.g., pixel-level annotation) which is challenging to acquire. In this paper, we propose a weakly-supervised model using joint Fully convolutional and Graph convolutional Networks (FGNet) for automated segmentation of pathology images. Instead of using pixel-wise annotations as supervision, we employ an image-level label (i.e., foreground proportion) as weakly-supervised information for training a unified convolutional model. Our FGNet consists of a feature extraction module (with a fully convolutional network) and a classification module (with a graph convolutional network). These two modules are connected via a dynamic superpixel operation, making the joint training possible. To achieve robust segmentation performance, we propose to use mutable numbers of superpixels for both training and inference. Besides, to achieve strict supervision, we employ an uncertainty range constraint in FGNet to reduce the negative effect of inaccurate image-level annotations. Compared with fully-supervised methods, the proposed FGNet achieves competitive segmentation results on three pathology image datasets (i.e., HER2, KI67, and H&E) for cancer region segmentation, suggesting the effectiveness of our method. The code is made publicly available at https://github.com/zhangjun001/FGNet.  相似文献   

14.
The detection of nuclei and cells in histology images is of great value in both clinical practice and pathological studies. However, multiple reasons such as morphological variations of nuclei or cells make it a challenging task where conventional object detection methods cannot obtain satisfactory performance in many cases. A detection task consists of two sub-tasks, classification and localization. Under the condition of dense object detection, classification is a key to boost the detection performance. Considering this, we propose similarity based region proposal networks (SRPN) for nuclei and cells detection in histology images. In particular, a customised convolution layer termed as embedding layer is designed for network building. The embedding layer is added into the region proposal networks, enabling the networks to learn discriminative features based on similarity learning. Features obtained by similarity learning can significantly boost the classification performance compared to conventional methods. SRPN can be easily integrated into standard convolutional neural networks architectures such as the Faster R-CNN and RetinaNet. We test the proposed approach on tasks of multi-organ nuclei detection and signet ring cells detection in histological images. Experimental results show that networks applying similarity learning achieved superior performance on both tasks when compared to their counterparts. In particular, the proposed SRPN achieve state-of-the-art performance on the MoNuSeg benchmark for nuclei segmentation and detection while compared to previous methods, and on the signet ring cell detection benchmark when compared with baselines. The sourcecode is publicly available at: https://github.com/sigma10010/nuclei_cells_det.  相似文献   

15.
Fine-grained nucleus classification is challenging because of the high inter-class similarity and intra-class variability. Therefore, a large number of labeled data is required for training effective nucleus classification models. However, it is challenging to label a large-scale nucleus classification dataset comparable to ImageNet in natural images, considering that high-quality nucleus labeling requires specific domain knowledge. In addition, the existing publicly available datasets are often inconsistently labeled with divergent labeling criteria. Due to this inconsistency, conventional models have to be trained on each dataset separately and work independently to infer their own classification results, limiting their classification performance. To fully utilize all annotated datasets, we formulate the nucleus classification task as a multi-label problem with missing labels to utilize all datasets in a unified framework. Specifically, we merge all datasets and combine their labels as multiple labels. Thus, each data has one ground-truth label and several missing labels. We devise a base classification module that is trained using all data but sparsely supervised by the ground-truth labels only. We then exploit the correlation among different label sets by a label correlation module. By doing so, we can have two trained basic modules and further cross-train them with both ground-truth labels and pseudo labels for the missing ones. Importantly, data without any ground-truth labels can also be involved in our framework, as we can regard them as data with all labels missing and generate the corresponding pseudo labels. We carefully re-organized multiple publicly available nucleus classification datasets, converted them into a uniform format, and tested the proposed framework on them. Experimental results show substantial improvement compared to the state-of-the-art methods. The code and data are available at https://w-h-zhang.github.io/projects/dataset_merging/dataset_merging.html.  相似文献   

16.
The fine-grained localization of clinicians in the operating room (OR) is a key component to design the new generation of OR support systems. Computer vision models for person pixel-based segmentation and body-keypoints detection are needed to better understand the clinical activities and the spatial layout of the OR. This is challenging, not only because OR images are very different from traditional vision datasets, but also because data and annotations are hard to collect and generate in the OR due to privacy concerns. To address these concerns, we first study how joint person pose estimation and instance segmentation can be performed on low resolutions images with downsampling factors from 1x to 12x. Second, to address the domain shift and the lack of annotations, we propose a novel unsupervised domain adaptation method, called AdaptOR, to adapt a model from an in-the-wild labeled source domain to a statistically different unlabeled target domain. We propose to exploit explicit geometric constraints on the different augmentations of the unlabeled target domain image to generate accurate pseudo labels and use these pseudo labels to train the model on high- and low-resolution OR images in a self-training framework. Furthermore, we propose disentangled feature normalization to handle the statistically different source and target domain data. Extensive experimental results with detailed ablation studies on the two OR datasets MVOR+ and TUM-OR-test show the effectiveness of our approach against strongly constructed baselines, especially on the low-resolution privacy-preserving OR images. Finally, we show the generality of our method as a semi-supervised learning (SSL) method on the large-scale COCO dataset, where we achieve comparable results with as few as 1% of labeled supervision against a model trained with 100% labeled supervision. Code is available at https://github.com/CAMMA-public/HPE-AdaptOR.  相似文献   

17.
18.
Deep learning has a huge potential to transform echocardiography in clinical practice and point of care ultrasound testing by providing real-time analysis of cardiac structure and function. Automated echocardiography analysis is benefited through use of machine learning for tasks such as image quality assessment, view classification, cardiac region segmentation, and quantification of diagnostic indices. By taking advantage of high-performing deep neural networks, we propose a novel and eicient real-time system for echocardiography analysis and quantification. Our system uses a self-supervised modality-specific representation trained using a publicly available large-scale dataset. The trained representation is used to enhance the learning of target echo tasks with relatively small datasets. We also present a novel Trilateral Attention Network (TaNet) for real-time cardiac region segmentation. The proposed network uses a module for region localization and three lightweight pathways for encoding rich low-level, textural, and high-level features. Feature embeddings from these individual pathways are then aggregated for cardiac region segmentation. This network is fine-tuned using a joint loss function and training strategy. We extensively evaluate the proposed system and its components, which are echo view retrieval, cardiac segmentation, and quantification, using four echocardiography datasets. Our experimental results show a consistent improvement in the performance of echocardiography analysis tasks with enhanced computational eiciency that charts a path toward its adoption in clinical practice. Specifically, our results show superior real-time performance in retrieving good quality echo from individual cardiac view, segmenting cardiac chambers with complex overlaps, and extracting cardiac indices that highly agree with the experts’ values. The source code of our implementation can be found in the project’s GitHub page.  相似文献   

19.
Skin lesion segmentation from dermoscopic image is essential for improving the quantitative analysis of melanoma. However, it is still a challenging task due to the large scale variations and irregular shapes of the skin lesions. In addition, the blurred lesion boundaries between the skin lesions and the surrounding tissues may also increase the probability of incorrect segmentation. Due to the inherent limitations of traditional convolutional neural networks (CNNs) in capturing global context information, traditional CNN-based methods usually cannot achieve a satisfactory segmentation performance. In this paper, we propose a novel feature adaptive transformer network based on the classical encoder-decoder architecture, named FAT-Net, which integrates an extra transformer branch to effectively capture long-range dependencies and global context information. Furthermore, we also employ a memory-efficient decoder and a feature adaptation module to enhance the feature fusion between the adjacent-level features by activating the effective channels and restraining the irrelevant background noise. We have performed extensive experiments to verify the effectiveness of our proposed method on four public skin lesion segmentation datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. Ablation studies demonstrate the effectiveness of our feature adaptive transformers and memory-efficient strategies. Comparisons with state-of-the-art methods also verify the superiority of our proposed FAT-Net in terms of both accuracy and inference speed. The code is available at https://github.com/SZUcsh/FAT-Net.  相似文献   

20.
In digital pathology, segmentation is a fundamental task for the diagnosis and treatment of diseases. Existing fully supervised methods often require accurate pixel-level annotations that are both time-consuming and laborious to generate. Typical approaches first pre-process histology images into patches to meet memory constraints and later perform stitching for segmentation; at times leading to lower performance given the lack of global context. Since image level labels are cheaper to acquire, weakly supervised learning is a more practical alternative for training segmentation algorithms. In this work, we present a weakly supervised framework for histopathology segmentation using only image-level labels by refining class activation maps (CAM) with self-supervision. First, we compress gigapixel histology images with an unsupervised contrastive learning technique to retain high-level spatial context. Second, a network is trained on the compressed images to jointly predict image-labels and refine the initial CAMs via self-supervised losses. In particular, we achieve refinement via a pixel correlation module (PCM) that leverages self-attention between the initial CAM and the input to encourage fine-grained activations. Also, we introduce a feature masking technique that performs spatial dropout on the compressed input to suppress low confidence predictions. To effectively train our model, we propose a loss function that includes a classification objective with image-labels, self-supervised regularization and entropy minimization between the CAM predictions. Experimental results on two curated datasets show that our approach is comparable to fully-supervised methods and can outperform existing state-of-the-art patch-based methods. https://github.com/PhilipChicco/wsshisto  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号