首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions.In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).  相似文献   

2.
We present our novel deep multi-task learning method for medical image segmentation. Existing multi-task methods demand ground truth annotations for both the primary and auxiliary tasks. Contrary to it, we propose to generate the pseudo-labels of an auxiliary task in an unsupervised manner. To generate the pseudo-labels, we leverage Histogram of Oriented Gradients (HOGs), one of the most widely used and powerful hand-crafted features for detection. Together with the ground truth semantic segmentation masks for the primary task and pseudo-labels for the auxiliary task, we learn the parameters of the deep network to minimize the loss of both the primary task and the auxiliary task jointly. We employed our method on two powerful and widely used semantic segmentation networks: UNet and U2Net to train in a multi-task setup. To validate our hypothesis, we performed experiments on two different medical image segmentation data sets. From the extensive quantitative and qualitative results, we observe that our method consistently improves the performance compared to the counter-part method. Moreover, our method is the winner of FetReg Endovis Sub-challenge on Semantic Segmentation organised in conjunction with MICCAI 2021. Code and implementation details are available at:https://github.com/thetna/medical_image_segmentation.  相似文献   

3.
Video feedback provides a wealth of information about surgical procedures and is the main sensory cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post-operative analysis of the surgical procedure. A fundamental building block of such capabilities is the identification and localization of surgical instruments and anatomical structures through semantic segmentation. Deep learning has advanced semantic segmentation techniques in the recent years but is inherently reliant on the availability of labelled datasets for model training. This paper introduces a dataset for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learning models for semantic segmentation on the presented dataset. The dataset is publicly available at https://cataracts-semantic-segmentation2020.grand-challenge.org/.  相似文献   

4.
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for early detection of cerebral palsy (CP) in infants. We demonstrate in this paper that end-to-end trainable neural networks for image sequence recognition can be applied to achieve good results in GMA, and more importantly, augmenting raw video with infant body parsing and pose estimation information can significantly improve performance. To solve the problem of efficiently utilizing partially labeled IMVs for body parsing, we propose a semi-supervised model, termed SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts segmentation and another for inter-frame label propagation. During training, the two branches are jointly trained by alternating between using input pairs of only labeled frames and input of both labeled and unlabeled frames. We also investigate training data augmentation by proposing a factorized video generative adversarial network (FVGAN) to synthesize novel labeled frames for training. FVGAN decouples foreground and background generation which allows for generating multiple labeled frames from one real labeled frame. When testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments for body parsing using SPN on two infant movement video datasets; on these partially labeled IMVs, we show that SPN coupled with FVGAN achieves state-of-the-art performance. We further demonstrate that our proposed SPN can be easily adapted to the infant pose estimation task with superior performance. Last but not least, we explore the clinical application of our method for GMA. We collected a new clinical IMV dataset with GMA annotations, and our experiments show that our SPN models for body parsing and pose estimation trained on the first two datasets generalize well to the new clinical dataset and their results can significantly boost the convolutional recurrent neural network (CRNN) based GMA prediction performance when combined with raw video inputs.  相似文献   

5.
Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage and knee osteoarthritis (OA). Deep learning (DL) methods for medical image segmentation have largely outperformed traditional methods, but they often need large amounts of annotated data for model training, which is very costly and time-consuming for medical experts, especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D MR images based on sparse annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to bridge the performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the most effective and representative slices with an unsupervised scheme; it then trains an ensemble model using the annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated by the ensemble method and improved by a bi-directional hierarchical earth mover’s distance (bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the primal–dual Internal Point Method (IPM). Experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset) show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality results for small annotation ratios even as low as 10%.  相似文献   

6.
Supervised deep learning-based methods yield accurate results for medical image segmentation. However, they require large labeled datasets for this, and obtaining them is a laborious task that requires clinical expertise. Semi/self-supervised learning-based approaches address this limitation by exploiting unlabeled data along with limited annotated data. Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images and achieve high performance in classification tasks on popular natural image datasets like ImageNet. In pixel-level prediction tasks such as segmentation, it is crucial to also learn good local level representations along with global representations to achieve better accuracy. However, the impact of the existing local contrastive loss-based methods remains limited for learning good local representations because similar and dissimilar local regions are defined based on random augmentations and spatial proximity; not based on the semantic label of local regions due to lack of large-scale expert annotations in the semi/self-supervised setting. In this paper, we propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information obtained from pseudo-labels of unlabeled images alongside limited annotated images with ground truth (GT) labels. In particular, we define the proposed contrastive loss to encourage similar representations for the pixels that have the same pseudo-label/GT label while being dissimilar to the representation of pixels with different pseudo-label/GT label in the dataset. We perform pseudo-label based self-training and train the network by jointly optimizing the proposed contrastive loss on both labeled and unlabeled sets and segmentation loss on only the limited labeled set. We evaluated the proposed approach on three public medical datasets of cardiac and prostate anatomies, and obtain high segmentation performance with a limited labeled set of one or two 3D volumes. Extensive comparisons with the state-of-the-art semi-supervised and data augmentation methods and concurrent contrastive learning methods demonstrate the substantial improvement achieved by the proposed method. The code is made publicly available at https://github.com/krishnabits001/pseudo_label_contrastive_training.  相似文献   

7.
8.
Instrument segmentation plays a vital role in 3D ultrasound (US) guided cardiac intervention. Efficient and accurate segmentation during the operation is highly desired since it can facilitate the operation, reduce the operational complexity, and therefore improve the outcome. Nevertheless, current image-based instrument segmentation methods are not efficient nor accurate enough for clinical usage. Lately, fully convolutional neural networks (FCNs), including 2D and 3D FCNs, have been used in different volumetric segmentation tasks. However, 2D FCN cannot exploit the 3D contextual information in the volumetric data, while 3D FCN requires high computation cost and a large amount of training data. Moreover, with limited computation resources, 3D FCN is commonly applied with a patch-based strategy, which is therefore not efficient for clinical applications. To address these, we propose a POI-FuseNet, which consists of a patch-of-interest (POI) selector and a FuseNet. The POI selector can efficiently select the interested regions containing the instrument, while FuseNet can make use of 2D and 3D FCN features to hierarchically exploit contextual information. Furthermore, we propose a hybrid loss function, which consists of a contextual loss and a class-balanced focal loss, to improve the segmentation performance of the network. With the collected challenging ex-vivo dataset on RF-ablation catheter, our method achieved a Dice score of 70.5%, superior to the state-of-the-art methods. In addition, based on the pre-trained model from ex-vivo dataset, our method can be adapted to the in-vivo dataset on guidewire and achieves a Dice score of 66.5% for a different cardiac operation. More crucially, with POI-based strategy, segmentation efficiency is reduced to around 1.3 seconds per volume, which shows the proposed method is promising for clinical use.  相似文献   

9.
Automatic and accurate segmentation of anatomical structures on medical images is crucial for detecting various potential diseases. However, the segmentation performance of established deep neural networks may degenerate on different modalities or devices owing to the significant difference across the domains, a problem known as domain shift. In this work, we propose an uncertainty-aware domain alignment framework to address the domain shift problem in the cross-domain Unsupervised Domain Adaptation (UDA) task. Specifically, we design an Uncertainty Estimation and Segmentation Module (UESM) to obtain the uncertainty map estimation. Then, a novel Uncertainty-aware Cross Entropy (UCE) loss is proposed to leverage the uncertainty information to boost the segmentation performance on highly uncertain regions. To further improve the performance in the UDA task, an Uncertainty-aware Self-Training (UST) strategy is developed to choose the optimal target samples by uncertainty guidance. In addition, the Uncertainty Feature Recalibration Module (UFRM) is applied to enforce the framework to minimize the cross-domain discrepancy. The proposed framework is evaluated on a private cross-device Optical Coherence Tomography (OCT) dataset and a public cross-modality cardiac dataset released by MMWHS 2017. Extensive experiments indicate that the proposed UESM is both efficient and effective for the uncertainty estimation in the UDA task, achieving state-of-the-art performance on both cross-modality and cross-device datasets.  相似文献   

10.
Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner. While the validation on identical data sets was a great step forward, results analysis is often restricted to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the systematic investigation on what characterizes images in which state-of-the-art algorithms fail. To address this gap in the literature, we (1) present a statistical framework for learning from challenges and (2) instantiate it for the specific task of instrument instance segmentation in laparoscopic videos. Our framework relies on the semantic meta data annotation of images, which serves as foundation for a General Linear Mixed Models (GLMM) analysis. Based on 51,542 meta data annotations performed on 2,728 images, we applied our approach to the results of the Robust Medical Instrument Segmentation Challenge (ROBUST-MIS) challenge 2019 and revealed underexposure, motion and occlusion of instruments as well as the presence of smoke or other objects in the background as major sources of algorithm failure. Our subsequent method development, tailored to the specific remaining issues, yielded a deep learning model with state-of-the-art overall performance and specific strengths in the processing of images in which previous methods tended to fail. Due to the objectivity and generic applicability of our approach, it could become a valuable tool for validation in the field of medical image analysis and beyond.  相似文献   

11.
Context-aware decision support in the operating room can foster surgical safety and efficiency by leveraging real-time feedback from surgical workflow analysis. Most existing works recognize surgical activities at a coarse-grained level, such as phases, steps or events, leaving out fine-grained interaction details about the surgical activity; yet those are needed for more helpful AI assistance in the operating room. Recognizing surgical actions as triplets of ‹instrument, verb, target› combination delivers more comprehensive details about the activities taking place in surgical videos. This paper presents CholecTriplet2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos. The challenge granted private access to the large-scale CholecT50 dataset, which is annotated with action triplet information. In this paper, we present the challenge setup and the assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge. A total of 4 baseline methods from the challenge organizers and 19 new deep learning algorithms from the competing teams are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%. This study also analyzes the significance of the results obtained by the presented approaches, performs a thorough methodological comparison between them, in-depth result analysis, and proposes a novel ensemble method for enhanced recognition. Our analysis shows that surgical workflow analysis is not yet solved, and also highlights interesting directions for future research on fine-grained surgical activity recognition which is of utmost importance for the development of AI in surgery.  相似文献   

12.
Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-up. However, oncologists’ delineating all abdominal organs from 3D volumes is time-consuming and very expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset (WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards, we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve as the baseline for future research and clinical application development.  相似文献   

13.
In this paper, we propose a novel method of Unsupervised Disentanglement of Scene and Motion (UDSM) representations for minimally invasive surgery video retrieval within large databases, which has the potential to advance intelligent and efficient surgical teaching systems. To extract more discriminative video representations, two designed encoders with a triplet ranking loss and an adversarial learning mechanism are established to respectively capture the spatial and temporal information for achieving disentangled features from each frame with promising interpretability. In addition, the long-range temporal dependencies are improved in an integrated video level using a temporal aggregation module and then a set of compact binary codes that carries representative features is yielded to realize fast retrieval. The entire framework is trained in an unsupervised scheme, i.e., purely learning from raw surgical videos without using any annotation. We construct two large-scale minimally invasive surgery video datasets based on the public dataset Cholec80 and our in-house dataset of laparoscopic hysterectomy, to establish the learning process and validate the effectiveness of our proposed method qualitatively and quantitatively on the surgical video retrieval task. Extensive experiments show that our approach significantly outperforms the state-of-the-art video retrieval methods on both datasets, revealing a promising future for injecting intelligence in the next generation of surgical teaching systems.  相似文献   

14.
Left atrial (LA) and atrial scar segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is an important task in clinical practice. The automatic segmentation is however still challenging due to the poor image quality, the various LA shapes, the thin wall, and the surrounding enhanced regions. Previous methods normally solved the two tasks independently and ignored the intrinsic spatial relationship between LA and scars. In this work, we develop a new framework, namely AtrialJSQnet, where LA segmentation, scar projection onto the LA surface, and scar quantification are performed simultaneously in an end-to-end style. We propose a mechanism of shape attention (SA) via an implicit surface projection to utilize the inherent correlation between LA cavity and scars. In specific, the SA scheme is embedded into a multi-task architecture to perform joint LA segmentation and scar quantification. Besides, a spatial encoding (SE) loss is introduced to incorporate continuous spatial information of the target in order to reduce noisy patches in the predicted segmentation. We evaluated the proposed framework on 60 post-ablation LGE MRIs from the MICCAI2018 Atrial Segmentation Challenge. Moreover, we explored the domain generalization ability of the proposed AtrialJSQnet on 40 pre-ablation LGE MRIs from this challenge and 30 post-ablation multi-center LGE MRIs from another challenge (ISBI2012 Left Atrium Fibrosis and Scar Segmentation Challenge). Extensive experiments on public datasets demonstrated the effect of the proposed AtrialJSQnet, which achieved competitive performance over the state-of-the-art. The relatedness between LA segmentation and scar quantification was explicitly explored and has shown significant performance improvements for both tasks. The code has been released via https://zmiclab.github.io/projects.html.  相似文献   

15.
Tissue-level semantic segmentation is a vital step in computational pathology. Fully-supervised models have already achieved outstanding performance with dense pixel-level annotations. However, drawing such labels on the giga-pixel whole slide images is extremely expensive and time-consuming. In this paper, we use only patch-level classification labels to achieve tissue semantic segmentation on histopathology images, finally reducing the annotation efforts. We propose a two-step model including a classification and a segmentation phases. In the classification phase, we propose a CAM-based model to generate pseudo masks by patch-level labels. In the segmentation phase, we achieve tissue semantic segmentation by our propose Multi-Layer Pseudo-Supervision. Several technical novelties have been proposed to reduce the information gap between pixel-level and patch-level annotations. As a part of this paper, we introduce a new weakly-supervised semantic segmentation (WSSS) dataset for lung adenocarcinoma (LUAD-HistoSeg). We conduct several experiments to evaluate our proposed model on two datasets. Our proposed model outperforms five state-of-the-art WSSS approaches. Note that we can achieve comparable quantitative and qualitative results with the fully-supervised model, with only around a 2% gap for MIoU and FwIoU. By comparing with manual labeling on a randomly sampled 100 patches dataset, patch-level labeling can greatly reduce the annotation time from hours to minutes. The source code and the released datasets are available at: https://github.com/ChuHan89/WSSS-Tissue.  相似文献   

16.
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.  相似文献   

17.
Radiotherapy is a treatment where radiation is used to eliminate cancer cells. The delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs. For nasopharyngeal cancer, more than 20 OARs are needed to be precisely segmented in advance. The challenge of this task lies in complex anatomical structure, low-contrast organ contours, and the extremely imbalanced size between large and small organs. Common segmentation methods that treat them equally would generally lead to inaccurate small-organ labeling. We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs with specifically designed small-organ localization and segmentation sub-networks while maintaining the accuracy of large organ segmentation. In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge. Our proposed framework is extensively tested on both self-collected dataset of 1,164 CT scans and the MICCAI Head and Neck Auto Segmentation Challenge 2015 dataset, which shows superior performance compared with state-of-the-art head and neck OAR segmentation methods.  相似文献   

18.
Accurate 3D segmentation of calf muscle compartments in volumetric MR images is essential to diagnose as well as assess progression of muscular diseases. Recently, good segmentation performance was achieved using state-of-the-art deep learning approaches, which, however, require large amounts of annotated data for training. Considering that obtaining sufficiently large medical image annotation datasets is often difficult, time-consuming, and requires expert knowledge, minimizing the necessary sizes of expert-annotated training datasets is of great importance. This paper reports CMC-Net, a new deep learning framework for calf muscle compartment segmentation in 3D MR images that selects an effective small subset of 2D slices from the 3D images to be labelled, while also utilizing unannotated slices to facilitate proper generalization of the subsequent training steps. Our model consists of three parts: (1) an unsupervised method to select the most representative 2D slices on which expert annotation is performed; (2) ensemble model training employing these annotated as well as additional unannotated 2D slices; (3) a model-tuning method using pseudo-labels generated by the ensemble model that results in a trained deep network capable of accurate 3D segmentations. Experiments on segmentation of calf muscle compartments in 3D MR images show that our new approach achieves good performance with very small annotation ratios, and when utilizing full annotation, it outperforms state-of-the-art full annotation segmentation methods. Additional experiments on a 3D MR thigh dataset further verify the ability of our method in segmenting leg muscle groups with sparse annotation.  相似文献   

19.
Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage Semi-Supervised Learning method for label-efficient Surgical workflow recognition, named as SurgSSL. Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.  相似文献   

20.
PurposeSurgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill.MethodsTo achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment.ResultsF1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team).ConclusionSurgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号